首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Membrane-associated l-malate and reduced nicotinamide adenine dinucleotide (NADH) oxidase complexes of Micrococcus lysodeikticus were inactivated with deoxycholate. Reactivation of NADH oxidase by addition of Mg(2+) occurred in these detergent-membrane mixtures, but reactivation of l-malate oxidase did not occur in the presence of deoxycholate. Removal of detergent by gel filtration allowed Mg(2+)-dependent restoration of both l-malate and NADH oxidases. Maximal NADH and l-malate oxidase restoration required 10 min and 40 min, respectively, at 30 mm MgSO(4). Maximal restoration of both oxidases required at least 12 mm MgSO(4) in an incubation period of 1 hr. Reduced-minus-oxidized difference spectra of Mg(2+)-restored membrane oxidases showed participation of cytochromes b, c, and a when either l-malate or NADH served as reductant; addition of dithionite did not increase the alpha- and beta-region absorbancy maxima of these hemoproteins when restored membranes were first reduced with the physiological substrates l-malate or NADH. Not all divalent cations tested were equally effective for reactivation of both oxidases. l-Malate oxidase was restored by both Mn(2+) and Ca(2+). NADH oxidase was not activated by Mn(2+) and only slightly stimulated by Ca(2+). Separation of deoxycholate-disrupted membranes (detergent removed) into soluble and particulate fractions showed that both fractions were required for Mg(2+)-dependent oxidase activities. Electron micrographs indicated conditions of detergent treatment did not destroy the vesicular nature of protoplast ghost membranes.  相似文献   

2.
Isolated membranes of Bacillus stearothermophilus 2184D can be disrupted by treatment with sodium dodecyl sulfate (SDS). This disruption is attended by a decreased turbidity of membrane suspensions and a differential loss of activities of the electron transport system. Reduced methyl viologen (MVH)-nitrate reductase activity is insensitive to SDS treatment, whereas reduced nicotinamide adenine dinucleotide (NADH)-nitrate reductase and cyanide-sensitive NADH oxidase activities are decreased by 80% at an SDS concentration of 0.5 mg/mg of membrane protein. NADH-menadione reductase activity is unaffected at this SDS concentration, but at higher detergent levels it also decreases in activity. The abilities of NADH to reduce and nitrate to oxidize the cytochrome components of the membrane were also decreased after SDS treatment. Dilution of solubilized membrane in buffer containing divalent cation results in formation of an aggregate with an increased turbidity and reconstituted NADH-nitrate reductase and cyanide-sensitive NADH oxidase activities. Of several cations tested, magnesium was the most effective, and the reconstitution process was pH-dependent with an optimum at pH 7.4. Intact and aggregated membranes had similar densities and cytochrome contents, and the sensitivity of NADH-nitrate reductase to several inhibitors was similar in intact and reconstituted membranes.  相似文献   

3.
K Matsushita  H R Kaback 《Biochemistry》1986,25(9):2321-2327
The respiratory chain in the cytochrome d deficient mutant Escherichia coli GR19N is a relatively simple, linear system consisting of primary dehydrogenases, ubiquinone 8, cytochrome b-556, and cytochrome o oxidase. By use of right-side-out and inside-out membrane vesicles from this strain, various oxidase activities and the generation of the H+ electrochemical gradient were studied. Oxidation of ubiquinol 1 or N,N,-N',N'-tetramethyl-p-phenylenediamine, which donate electrons directly to the terminal oxidase, generates a H+ electrochemical gradient comparable to that observed during D-lactate oxidation. In contrast, D-lactate/ubiquinone 1 or D-lactate/ferricyanide oxidoreductase activity does not appear to generate a membrane potential, suggesting that electron flow from D-lactate dehydrogenase to ubiquinone is not electrogenic. Moreover, proteoliposomes reconstituted with purified D-lactate dehydrogenase, ubiquinone 8, and purified cytochrome o catalyze D-lactate and ubiquinol 1 oxidation and generate a H+ electrochemical gradient similar to that observed in membrane vesicles. Strikingly, in inside-out vesicles, NADH oxidation generates a H+ electrochemical gradient that is very significantly greater than that produced by either D-lactate or ubiquinol 1; furthermore, NADH/ubiquinone 1 and NADH/ferricyanide oxidoreductase activities are electrogenic. It is suggested that the only component between D-lactate dehydrogenase or ubiquinol and oxygen in GR19N membranes that is directly involved in the generation of the H+ electrochemical gradient is cytochrome o, which functions as a "half-loop" (i.e., the oxidase catalyzes the scalar release of 2 H+ from ubiquinol on the outer surface of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A selective extraction procedure was developed for sequentially extracting a fraction containing the primary dehydrogenase and a fraction containing the cytochromes of the nicotinamide adenine dinucleotide (reduced form) (NADH) oxidase of Bacillus megaterium KM membranes. The primary dehydrogenase (NADH-2,6-dichlorophenolindophenol oxidoreductase) activity was extracted from sonically treated membranes with 0.4% sodium deoxycholate for 30 min at 4 C. The insoluble residue was extracted with 0.4% sodium deoxycholate in 1 m KCl for 30 min at 25 C. A combination of the two extracts and dilution in Mg(2+) gave good recovery of the original membrane NADH oxidase activity. The primary dehydrogenase fraction contained 41% of the membrane protein, no cytochromes, flavine adenine dinucleotide as the sole acid-extractable flavine, and most of the membrane ribonucleic acid (RNA). The cytochrome-containing fraction had 16% of the membrane protein, 61% of the membrane cytochrome with the same relative amounts of cytochromes a and b as the original membrane, no acid-extractable flavine, little RNA, and no oxidoreductase activity. The oxidoreductase fraction remained soluble after removal of deoxycholate whereas the cytochrome fraction became insoluble after removal of deoxycholate-KCl, but the precipitated fraction could be redissolved in 0.4% sodium deoxycholate. Treatment of both fractions with ribonuclease to destroy all of the RNA present did not affect the ability of the fractions to recombine into a functional oxidase unit. Treatment of either fraction with phospholipase A prevented restoration of a functional oxidase when the oxidoreductase and cytochrome fractions were treated in solution, but no affect on restoration of oxidase was observed when the phospholipase A treatment was carried out with the soluble oxidoreductase fraction and the insoluble cytochrome fraction.  相似文献   

5.
The topography of the inner membrane of rat liver mitochondria was studied using a probe, diazobenzenesulfonate, which interacts preferentially with surface components. Inner membranes were examined both in a native orientation as found in the intact mitochondrion or in an inverted state as found in isolated inner membranes prepared by sonication.Enzyme inactivation as a consequence of diazobenzenesulfonate labeling was employed to determine the localization of a number of inner membrane activities. In inner membranes labeled on the outer surface, NADH and succinate oxidation were strongly inhibited while ATPase and ascorbate-N,N,N′,N′-tetramethyl-p-phenylene-diamine (TMPD) oxidase activities were unaffected. In inner membranes labeled on the inner surface. ATPase and succinate oxidation were inactivated while NADH oxidation and ascorbate-TMPD oxidase were unaffected. Succinate dehydrogenase was inhibited only by labeling the inner surface while NADH dehydrogenase was inhibited to a similar extent by treatment of either surface.Sodium dodecylsulfate-polypeptides (66 000 and 26 000) on the outer surface of the inner membrane and five polypeptides (80 000, 66 000, 51 000-48 000, and 26 000) on the inner surface. These results indicate a highly asymmetric localization of inner membrane components.  相似文献   

6.
Fluorine-19 labeled compounds have been incorporated into lipids and proteins of Escherichia coli. 19F-Labeled membrane vesicles, prepared by growing a fatty acid auxotroph of a D-lactate dehydrogenase-deficient strain on 8,8-difluoromyristic acid, can be reconstituted for oxidase and transport activities by binding exogenous D-lactate dehydrogenase. 19F-Labeled D-lactate dehydrogenases prepared by addition of fluorotryptophans to a tryptophan-requiring strain are able to reconstitute D-lactate dehydrogenase-deficient membrane vesicles. Thus, lipid and protein can be labeled independently and used to investigate protein-lipid interactions in membranes.  相似文献   

7.
Abstract Malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 42-fold. The native enzyme had an apparent molecular mass of 68 kDa and consisted of two subunits of 35 kDa. The enzyme exhibited maximum activity with oxaloacetate at pH 8.5 and 60 °C. The K m for oxaloacetate was 50 μM and for NADH 30 μM. The K m values for l-malate and NAD were 4 and 1.1 mM, respectively. Substrate inhibition was found at oxaloacetate concentrations higher than 250 μM. The N-terminal amino acid sequence of the enzyme was similar to the sequences of a variety of other malate dehydrogenases from plants, animals and micro-organisms.  相似文献   

8.
A cytochrome that can pump sodium ion   总被引:2,自引:0,他引:2  
Previous studies have shown that the bacterium, Vitreoscilla, generates a respiratory-driven delta psi Na+. Two major respiratory electron transport proteins, NADH dehydrogenase (NADH:Quinone oxidoreductase), and cytochrome o terminal oxidase are candidates for the electrogenic Na+ pumping that mediates the delta psi Na+ formation. The NADH oxidase activity of the membranes was enhanced more by Na+ than by Li+. The NADH:Quinone oxidoreductase activity in the respiratory chain was enhanced by Na+ and Li+, whereas the quinol oxidase activity of cytochrome o was enhanced specifically by Na+, and not by Li+, K+, or choline. Purified cytochrome o, reconstituted into Na(+)-loaded liposomes in the right-side-out orientation, catalyzed a net Na+ extrusion when energized with Q1H2(1). In nonloaded inside-out proteoliposomes, this cytochrome catalyzed a net uptake of 22Na+ when energized with ascorbate/TMPD. Both Na(+)-pumping activities were inhibited by CN-. These results are consistent with the Vitreoscilla cytochrome o being a redox-driven Na+ pump.  相似文献   

9.
After treating Bacillus megaterium KM membranes with 0.2% sodium deoxycholate, most of the membrane reduced nicotinamide adenine dinucleotide (NADH) oxidase was inactivated, and all of the membrane NADH-2,6 dichlorophenol indophenol oxidoreductase was solubilized. Dilution of the deoxycholate-treated membranes in the presence of divalent cations restored almost all of the original membrane NADH oxidase. The effectiveness of the divalent cation activation decreased in the order Ba(2+) > Ca(2+) > Mg(2+) > Mn(2+). After centrifugation, the deoxycholate-treated membranes at 100,000 x g for 1 hr, all of the NADH oxidase that was activated by a divalent cation was soluble. Cation-activated oxidase, however, was insoluble. The results show that 0.2% deoxycholate at least partially solubilizes the total electron chain from NADH to O(2) in an inactive from which can be reactivated by divalent cations with the formation of active, insoluble NADH oxidase.  相似文献   

10.
Plasma membranes isolated from rat liver by two-phase partition exhibited dehydrogenase activities for ascorbate free radical (AFR) and ferricyanide reduction in a ratio of specific activities of 1 : 40. NADH-AFR reductase could not be solubilized by detergents from plasma membrane fractions. NADH-AFR reductase was inhibited in both clathrin-depleted membrane and membranes incubated with anti-clathrin antiserum. This activity was reconstituted in plasma membranes in proportion to the amount of clathrin-enriched supernatant added. NADH ferricyanide reductase was unaffected by both clathrin-depletion and antibody incubation and was fully solubilized by detergents. Also, wheat germ agglutinin only inhibited NADH-AFR reductase. The findings suggest that NADH-AFR reductase and NADH-ferricyanide reductase activities of plasma membrane represent different levels of the electron transport chain. The inability of the NADH-AFR reductase to survive detergent solubilization might indicate the involvement of more than one protein in the electron transport from NADH to the AFR but not to ferricyanide.  相似文献   

11.
Membrane-bound, pyrroloquinoline quinone-dependent, alcohol dehydrogenase functions as the primary dehydrogenase in the respiratory chain of acetic acid bacteria. In this study, an ability of the enzyme to directly react with ubiquinone was investigated in alcohol dehydrogenases purified from both Acetobacter aceti and Gluconobacter suboxydans by two different approaches. First, it was shown that the enzymes are able to reduce natural ubiquinones, ubiquinone-9 or -t0, in a detergent solution as well as a soluble short-chain homologue, ubiquinone-I. In order to show the reactivity of the enzyme with natural ubiquinone in a native membrane environment, furthermore, alcohol dehydrogenase was reconstituted into proteoliposomes together with natural ubiquinone and a terminal ubiquinol oxidase. The reconstitution was done by binding the detergent-free dehydrogenase at room temperature to proteoliposomes that had been prepared in advance from a ubiquinol oxidase and phospholipids containing ubiquinone by detergent dialysis using octyl-β-D-glucopyranoside; the enzyme of A. aceti was reconstituted together with ubiquinone-9 and A. aceti cytochrome a1 while G. suboxydans alcohol dehydrogenase was done into proteoliposomes containing ubiquinone-10 and G. suboxydans cytochrome o. The proteoliposomes thus reconstituted had a reasonable level of ethanol oxidase activity, the electron transfer reaction of which was also able to generate a ‘membrane potential. Thus, it has been shown that alcohol dehydrogenase of acetic acid bacteria donates electrons directly to ubiquinone in the cytoplasmic membranes and thus the ethanol oxidase respiratory chain of acetic acid bacteria is constituted of only three membranous respiratory components, alcohol dehydrogenase, ubiquinone, and terminal ubiquinol oxidase.  相似文献   

12.
Fluorine-19 labeled compounds have been incorporated into lipids and proteins of Escherichia coli. 19F-Labeled membrane vesicles, prepared by growing a fatty acid auxotroph of a d-lactate dehydrogenase-deficient strain on 8,8-difluoromyristic acid, can be reconstituted for oxidase and transport activities by binding exogenous d-lactate dehydrogenase. 19F-Labeled d-lactate dehydrogenases prepared by addition of fluorotryptophans to a tryptophan-requiring strain are able to reconstitute d-lactate dehydrogenase-deficient membrane vesicles. Thus, lipid and protein can be labeled independently and used to investigate protein-lipid interactions in membranes.  相似文献   

13.
D-Glucose dehydrogenase is a pyrroloquinoline quinone-dependent primary dehydrogenase linked to the respiratory chain of a wide variety of bacteria. The enzyme exists in the membranes of Escherichia coli, mainly as an apoenzyme which can be activated by the addition of pyrroloquinoline quinone and magnesium. Thus, membrane vesicles of E. coli can oxidize D-glucose to gluconate and generate an electrochemical proton gradient in the presence of pyrroloquinoline quinone. The D-glucose oxidase-respiratory chain was reconstituted into proteoliposomes, which consisted of two proteins purified from E. coli membranes, D-glucose dehydrogenase and cytochrome o oxidase, and E. coli phospholipids containing ubiquinone 8. The electron transfer rate during D-glucose oxidation and the membrane potential generation in the reconstituted proteoliposomes were almost the same as those observed in the membrane vesicles when pyrroloquinoline quinone was added. The results demonstrate that the quinoprotein, D-glucose dehydrogenase, can reduce ubiquinone 8 directly within phospholipid bilayer and that the D-glucose oxidase system of E. coli has a relatively simple respiratory chain consisting of primary dehydrogenase, ubiquinone 8, and a terminal oxidase.  相似文献   

14.
R M Rakita  B R Michel  H Rosen 《Biochemistry》1990,29(4):1075-1080
Neutrophil myeloperoxidase, hydrogen peroxide, and chloride constitute a potent antimicrobial system with multiple effects on microbial cytoplasmic membranes. Among these is inhibition of succinate-dependent respiration mediated, principally, through inactivation of succinate dehydrogenase. Succinate-dependent respiration is inhibited at rates that correlate with loss of microbial viability, suggesting that loss of respiration might contribute to the microbicidal event. Because respiration in Escherichia coli can be mediated by dehydrogenases other than succinate dehydrogenase, the effects of the myeloperoxidase system on other membrane dehydrogenases were evaluated by histochemical activity stains of electrophoretically separated membrane proteins. Two bands of succinate dehydrogenase activity proved the most susceptible to inactivation with complete loss of staining activity within 20 min, under the conditions employed. A group with intermediate susceptibility, consisting of lactate, malate, glycerol-3-phosphate, and dihydroorotate dehydrogenases as well as three bands of glucose-6-phosphate dehydrogenase, was almost completely inactivated within 30 min. The relatively resistant group, including the dehydrogenases for glutamate, NADH, and NADPH and the remaining bands of glucose-6-phosphate dehydrogenase, retained substantial amounts of diaphorase activity for up to 60 min of incubation with the myeloperoxidase system. The differential effects of myeloperoxidase on dehydrogenase inactivation could not be correlated with published enzyme contents of flavin or iron-sulfur centers, potential targets of myeloperoxidase-derived oxidants. Despite the relative resistance of NADH dehydrogenase/diaphorase activity to myeloperoxidase-mediated inactivation, electron transport particles prepared from E. coli incubated for 20 min with the myeloperoxidase system lost 55% of their NADH oxidase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
NADH dehydrogenase activity was characterized in the mitochondrial lysates of Phytomonas serpens, a trypanosomatid flagellate parasitizing plants. Two different high molecular weight NADH dehydrogenases were characterized by native PAGE and detected by direct in-gel activity staining. The association of NADH dehydrogenase activities with two distinct multisubunit complexes was revealed in the second dimension performed under denaturing conditions. One subunit present in both complexes cross-reacted with the antibody against the 39 kDa subunit of bovine complex I. Out of several subunits analyzed by MS, one contained a domain characteristic for the LYR family subunit of the NADH:ubiquinone oxidoreductases. Spectrophotometric measurement of the NADH:ubiquinone 10 and NADH:ferricyanide dehydrogenase activities revealed their different sensitivities to rotenone, piericidin, and diphenyl iodonium.  相似文献   

16.
Localization of Enzymes in Mycoplasma.   总被引:16,自引:8,他引:8  
Pollack, J. D. (University of Connecticut, Storrs), Shmuel Razin, and Robert C. Cleverdon. Localization of enzymes in Mycoplasma. J. Bacteriol. 90:617-622. 1965.-Cells of eight parasitic and two saprophytic Mycoplasma strains were lysed by use of osmotic shock, and the membranes were separated from the soluble fraction by use of differential centrifugation. Cell fractions were tested for reduced nicotinamide adenine dinucleotide (NADH(2)) oxidase, reduced nicotinamide adenine dinucleotide phosphate (NADPH(2)) oxidase, glucose-6-phosphate dehydrogenase, adenosine triphosphatase, ribonuclease, and deoxyribonuclease activities. Adenosine triphosphatase was confined to the membrane fraction of all Mycoplasma strains. The NADH(2) oxidase activity was associated with the membranes of the saprophytic M. laidlawii and with the soluble fraction of the parasitic Mycoplasma strains. NADPH(2) oxidase activity was detected only in the soluble fraction of the parasitic strains. Glusose-6-phosphate dehydrogenase was demonstrated only in the soluble fraction of M. laidlawii. Ribonuclease activity was found usually in both membrane and soluble fractions, but was generally higher in the membrane fraction. In the human and bovine Mycoplasma strains, deoxyribonuclease activity could not be demonstrated in the soluble fraction; in the remaining strains, activity was highest in the soluble fraction. Dissolution of M. laidlawii strain B membranes by sodium deoxycholate significantly increased membrane-NADH(2) oxidase and adenosine triphosphatase activities.  相似文献   

17.
Role of plasma membrane redox activities in elongation growth in plants   总被引:4,自引:0,他引:4  
Comparing isolated plasma membrane vesicles and excised hypocotyl segments from etiolated seedlings of soybean [ Glycine max (L.) Merr. cv. Williams], certain antiproliferative agents that inhibited growth inhibited plasma membrane redox activities. Additionally, auxins that stimulated growth stimulated plasma membrane redox activities. Hormone stimulation was restricted to NADH oxidase (determined from disappearance of NADH) and was given both by isolated plasma membranes and by a soluhilizedenzyme preparation. Comparing IAA, the native auxin regulator, and 2,4-D, a synthetic regulator, stimulation was observed, hut the dose-response curves were different. Yet, the dose-response relationships of both stimulation of auxin growth and stimulation of NADH oxidase were parallel. Inhibition of auxin-induced growth by antiproliferative drugs was more complex. Some, like actinomycin D, preferentially inhibited NADH oxidase (EC 1.6.99.2) but inhibited NADH-ferricya-nide oxido-reductase (EC 1.6.99.3) as well. Others, like adriamycin, inhibited primarily the NADH-ferricyanide oxido-reductase. Therefore, growth control by auxin appeared to involve NADH oxidase as a rate-limiting terminal oxidase to link electron flow from NADH to oxygen. This observation may provide a fundamental difference from animal cells. With the latter, impermeant electron acceptors such as diferric transferrin or ferricyanide fulfill such a role. In plants, these impermeant electron acceptors were without effect on growth or were growth inhibitory.  相似文献   

18.
The function of type II NADH dehydrogenase (NDH-2) in Gram-positive Corynebacterium glutamicum was investigated by preparing strains with ndh, the NDH-2 gene, disrupted and over-expressed. Although disruption showed no growth defects on glucose minimum medium, the growth rate of the over-expressed strain was lower compared with its parent, C. glutamicum KY9714. Ndh-disruption and over-expression did not lead to a large change in the respiratory chain and energetics, including the cytochrome components and the H+/O ratio. However, in the strain that lacked NDH-2, membrane l-lactate oxidase activity increased, while NDH-2 over-expression led to decreased l-lactate and malate oxidase activities. In addition, relatively high cytoplasmic lactate dehydrogenase (LDH) activity was always present as was malate dehydrogenase, irrespective of NDH-2 level. Furthermore, l-lactate or malate-dependent NADH oxidase activity could be reproduced by reconstitution with the membranes and the cytoplasmic fraction isolated from the disruptant. These results suggest that coupling of LDH and the membrane l-lactate oxidase system, together with the malate-dependent NADH oxidase system, operates to oxidize NADH when the NDH-2 function is defective in C. glutamicum.  相似文献   

19.
The activity of an auxin-stimulated NADH oxidase of the plasma membrane of hypocotyls of etiolated soybean (Glycine max Merr.) seedlings responded to guanine and other nucleotides, but in a manner that differed from that of enzymes coupled to the classic trimeric and low molecular weight monomeric guanine nucleotide-binding proteins (G proteins). In the presence and absence of either auxin or divalent ions, both GTP and GDP as well as guanosine-5[prime]-O-(3-thiotriphosphate) (GTP-[gamma]-S) and other nucleoside di- and triphosphates stimulated the oxidase activity over the range 10 [mu]M to 1 mM. GTP and GTP-[gamma]-S stimulated the activity at 10 nM in the absence of added magnesium and at 1 nM in the presence of added magnesium ions. Other nucleotides stimulated at 100 nM and above. The NADH oxidase was stimulated by 10 [mu]M mastoparan and by 40 [mu]M aluminum fluoride. Neither cholera nor pertussis toxins, tested at a concentration sufficient to block mammalian G protein function, inhibited the activity. Guanosine 5[prime]-O-(2-thiodi-phosphate) (GDP-[beta]-S) did not stimulate activity, suggesting that the stimulation in response to GDP may be mediated by a plasma membrane nucleoside diphosphate kinase through conversion of GDP to GTP. Auxin stimulation of the NADH oxidase was unaffected by nucleotides at either high or low nucleotide concentrations in the absence of added divalent ions. However, pretreatment of plasma membranes with auxin increased the apparent affinity for nucleotide binding. This increased affinity, however, appeared not to be the mechanism of auxin stimulation of the oxidase, since auxin stimulation was similar with or without low concentrations of guanine nucleotides. The stimulation by nucleotides was observed after incubating the membranes with 0.1% Triton X-100 prior to assay. The results suggest a role of guanine (and other) nucleotides in the regulation of plasma membrane NADH oxidase that differs from the interactions with G proteins commonly described for animal models.  相似文献   

20.
Mycoplasmalike organisms (MLOs), purified from aster yellows-infected plants were osmotically lysed, and the membranes were separated from the cytoplasmic fraction through differential centrifugation. Electron microscopic examinations of sections of the purified MLOs and the isolated membranes showed pleomorphic bodies and unit membranous empty vesicles, respectively. Cell fractions were tested for NADH oxidase, NADPH oxidase, ATPase, RNase, DNase, and p-nitrophenyl phosphatase activity. NADH oxidase and ATPase were confined to the membrane fraction and NADPH oxidase to the cytoplasmic fraction of the MLOs. para-Nitrophenyl phosphatase, RNase, and DNase activities were detected in both membrane and cytoplasmic fractions, but p-nitrophenyl phosphatase and RNase appeared to be associated with membranes and DNase with the cytoplasmic fraction. Glucose-6-phosphate dehydrogenase was found in the cytoplasmic fraction of the MLO cells. Our findings on the distribution of enzymes in MLO cells and cell fractions are the first basic documentation on nonhelical, nonculturable microbes parasitic to plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号