首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A set of 6 base-modified 2′-deoxyadenosine derivatives was incorporated to diverse DNA sequences by primer extension using Vent (exo-) polymerase and the influence of the modification on cleavage by diverse restriction endonucleases was studied. While 8-substituted (Br or methyl) adenine derivatives were well tolerated by the restriction enzymes and the corresponding sequences were cleaved, the presence of 7-substituted 7-deazaadenine in the recognition sequence resulted in blocking of cleavage by some enzymes depending on the nature and size of the 7-substituent. All sequences with modifications outside of the recognition sequence were perfectly cleaved by all the restriction enzymes. The results are useful both for protection of some sequences from cleavage and for manipulation of functionalized DNA by restriction cleavage.  相似文献   

2.
The five satellite DNAs of Drosophila melanogaster have been isolated by the combined use of different equilibrium density gradients and hydrolyzed by seven different restriction enzymes; Hae III, Hind II + Hind III, Hinf, Hpa II, EcoR I and EcoR II. The 1.705 satellite is not hydrolyzed by any of the enzymes tested. Hae III is the only restriction enzyme that cuts the 1.672 and 1.686 satellites. The cleavage products from either of these reactions has a heterogeneous size distribution. Part of the 1.688 satellite is cut by Hae III and by Hinf into three discrete fragments with M.W. that are multiples of 2.3 X 10(5) daltons (approximately 350 base pairs). In addition, two minor bands are detected in the 1.688-Hinf products. The mole ratios of the trimer, dimer and monomer are: 1:6.30 : 63.6 for 1.688-Hae III and 1 : 22.0 : 403 for 1.688-Hinf. Circular mitochondrial DNA (rho = 1.680) is cut into discrete fragments by all of the enzymes tested and molecular weights of these fragments have been determined.  相似文献   

3.
phiX RF DNA was cleaved by restriction enzymes from Haemophilus influenzae Rf (Hinf I) and Haemophilus haemolyticus (Hha. I). Twenty one fragments of approximately 25 to 730 base pairs were produced by Hinf I and seventeen fragments of approximately 40 to 1560 base pairs by Hha I. The order of these fragments has been established by digestion on Haemophilus awgyptius (Hae III) and Arthrobacter luteus (Alu I) endonuclease fragments of phiX RF with Hinf I and Hha1. By this method of reciprocal digestion a detailed cleavage map of phiX RF DNA was constructed, which includes also the previously determined Hind II, Hae III and Alu I cleavage maps of phiX 174 RF DNA (1, 2). Moreover, 28 conditional lethal mutants of bacteriophage phiX174 were placed in this map using the genetic fragment assay (3).  相似文献   

4.
The utility of restriction endonucleases as a tool in molecular biology is in large part due to the high degree of specificity with which they cleave well-characterized DNA recognition sequences. The specificity of restriction endonucleases is not absolute, yet many commonly used assays of biological phenomena and contemporary molecular biology techniques rely on the premise that restriction enzymes will cleave only perfect cognate recognition sites. In vitro, mispaired heteroduplex DNAs are commonly formed, especially subsequent to polymerase chain reaction amplification. We investigated a panel of restriction endonucleases to determine their ability to cleave mispaired heteroduplex DNA substrates. Two straightforward, non-radioactive assays are used to evaluate mispaired heteroduplex DNA cleavage: a PCR amplification method and an oligonucleotide-based assay. These assays demonstrated that most restriction endonucleases are capable of site-specific double-strand cleavage with heteroduplex mispaired DNA substrates, however, certain mispaired substrates do effectively abrogate cleavage to undetectable levels. These data are consistent with mispaired substrate cleavage previously reported for Eco RI and, importantly, extend our knowledge of mispaired heteroduplex substrate cleavage to 13 additional enzymes.  相似文献   

5.
The effect of binding of an antitumour drug cis-diamminedichloroplatinum(II) (cis-[Pt(NH3)2Cl2]) to DNA on cutting effectiveness of BamHI, EcoRI, and SalI restriction endonucleases was quantitatively determined. The platinum complex inhibits the cleavage of plasmid pHC624 DNA linearized by BglI restrictase. From the present results we conclude that the yield of restriction endonuclease cleavage is also lowered if the platinum complex is bound outside the recognition DNA sequence of these enzymes. We propose that the origin of platinum adducts on DNA outside the recognition sequence can decrease the yield of restriction enzyme cleavage via inducing a conformational perturbation in the recognition DNA sequence of these enzymes and also via inhibition of the linear diffusion of these enzymes on DNA.  相似文献   

6.
《Molecular cell》2022,82(5):907-919.e7
  1. Download : Download high-res image (184KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
Cleavage of phosphorothioate-substituted DNA by restriction endonucleases   总被引:7,自引:0,他引:7  
M13 RF DNA was synthesized in vitro in the presence of various single deoxynucleoside 5'-O-(1-thiotriphosphate) phosphorothioate analogues, and the three other appropriate deoxynucleoside triphosphates using a M13 (+)-single-stranded template, Escherichia coli DNA polymerase I and T4 DNA ligase. The resulting DNAs contained various restriction endonuclease recognition sequences which had been modified at their cleavage points in the (-)-strand by phosphorothioate substitution. The behavior of the restriction enzymes AvaI, BamHI, EcoRI, HindIII, and SalI towards these substituted DNAs was investigated. EcoRI, BamHI, and HindIII were found to cleave appropriate phosphorothioate-substituted DNA at a reduced rate compared to normal M13 RF DNA, and by a two-step process in which all of the DNA is converted to an isolable intermediate nicked molecule containing a specific discontinuity at the respective recognition site presumably in the (+)-strand. By contrast, SalI cleaved substituted DNA effectively without the intermediacy of a nicked form. AvaI, however, is only capable of cleaving the unsubstituted (+)-strand in appropriately modified DNA.  相似文献   

9.
Liu G  Ou HY  Wang T  Li L  Tan H  Zhou X  Rajakumar K  Deng Z  He X 《PLoS genetics》2010,6(12):e1001253
Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation) were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(3)2 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631) leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16-28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.  相似文献   

10.
The requirement of S-adenosyl-L-methionine (AdoMet) in the cleavage reaction carried out by type III restriction-modification enzymes has been investigated. We show that DNA restriction by EcoPI restriction enzyme does not take place in the absence of exogenously added AdoMet. Interestingly, the closely related EcoP15I enzyme has endogenously bound AdoMet and therefore does not require the addition of the cofactor for DNA cleavage. By employing a variety of AdoMet analogs, which differ structurally from AdoMet, this study demonstrates that the carboxyl group and any substitution at the epsilon carbon of methionine is absolutely essential for DNA cleavage. Such analogs could bring about the necessary conformational change(s) in the enzyme, which make the enzyme proficient in DNA cleavage. Our studies, which include native polyacrylamide gel electrophoresis, molecular size exclusion chromatography, UV, fluorescence and circular dichroism spectroscopy, clearly demonstrate that the holoenzyme and apoenzyme forms of EcoP15I restriction enzyme have different conformations. Furthermore, the Res and Mod subunits of the EcoP15I restriction enzyme can be separated by gel filtration chromatography in the presence of 2 M NaCl. Reconstitution experiments, which involve mixing of the isolated subunits, result in an apoenzyme form, which is restriction proficient in the presence of AdoMet. However, mixing the Res subunit with Mod subunit deficient in AdoMet binding does not result in a functional restriction enzyme. These observations are consistent with the fact that AdoMet is required for DNA cleavage. In vivo complementation of the defective mod allele with a wild-type mod allele showed that an active restriction enzyme could be formed. Furthermore, we show that while the purified c2-134 mutant restriction enzyme is unable to cleave DNA, the c2-440 mutant enzyme is able to cleave DNA albeit poorly. Taken together, these results suggest that AdoMet binding causes conformational changes in the restriction enzyme and is necessary to bring about DNA cleavage.  相似文献   

11.
Several type II restriction endonucleases interact with two copies of their target sequence before they cleave DNA. Three such enzymes, NgoMIV, Cfr10I and NaeI, were tested on plasmids with one or two copies of their recognition sites, and on catenanes containing two interlinked rings of DNA with one site in each ring. The enzymes showed distinct patterns of behaviour. NgoMIV and NaeI cleaved the plasmid with two sites faster than that with one site and the catenanes at an intermediate rate, while Cfr10I gave similar steady-state rates on all three substrates. Both Cfr10I and NgoMIV converted the majority of the substrates with two sites directly to the products cut at both sites, while NaeI cleaved just one site at a time. All three enzymes thus synapse two DNA sites through three-dimensional space before cleaving DNA. With Cfr10I and NgoMIV, both sites are cleaved in one turnover, in a manner consistent with their tetrameric structures, while the cleavage of a single site by NaeI indicates that the second site acts not as a substrate but as an activator, as reported previously. The complexes spanning two sites have longer lifetimes on catenanes with one site in each ring than on circular DNA with two sites, which indicates that the catenanes have more freedom for site juxtaposition than plasmids with sites in cis.  相似文献   

12.
Unique restriction endonucleases Bpu 10l and Bsil have been isolated from Bacillus pumilas and Bacillus sphaericus, respectively. The recognition sequences and cleavage points of these enzymes have been determinated as 5'-CC1TNAGC-3'/3'-GGANT1CG-5' for Bpu 10l and 5'-C1TCGTG-3'/3'-GAGCA1C-5' for Bsil. Restriction endonucleases Bpu 10l and Bsil represent a new class of enzymes which recognize non-palindromic nucleotide sequences and hydrolize DNA within the recognition sequence. Bpu 10l and Bsil recognition sequences may be regarded as quasipalindromic and the enzymes may be designated as type II-Q restriction endonucleases.  相似文献   

13.
Type II DNA restriction and modification systems are ideally suited for analysis of mechanisms by which proteins specifically recognize unique DNA sequences. Each system is comprised of a unique DNA recognition site and two enzymes, which in those cases examined in detail, are comprised of distinct polypeptide chains. Thus, not only are the DNA substrates extremely well defined, but each system affords the opportunity to compare distinct proteins which interact with a common DNA sequence. This review will focus only on those Type II systems which have been examined in sufficient molecular detail to permit some insight into modes of specific DNA-protein interaction.  相似文献   

14.
Type I DNA restriction enzymes are large, molecular machines possessing DNA methyltransferase, ATPase, DNA translocase and endonuclease activities. The ATPase, DNA translocase and endonuclease activities are specified by the restriction (R) subunit of the enzyme. We demonstrate that the R subunit of the Eco KI type I restriction enzyme comprises several different functional domains. An N-terminal domain contains an amino acid motif identical with that forming the catalytic site in simple restriction endonucleases, and changes within this motif lead to a loss of nuclease activity and abolish the restriction reaction. The central part of the R subunit contains amino acid sequences characteristic of DNA helicases. We demonstrate, using limited proteolysis of this subunit, that the helicase motifs are contained in two domains. Secondary structure prediction of these domains suggests a structure that is the same as the catalytic domains of DNA helicases of known structure. The C-terminal region of the R subunit can be removed by elastase treatment leaving a large fragment, stable in the presence of ATP, which can no longer bind to the other subunits of Eco KI suggesting that this domain is required for protein assembly. Considering these results and previous models of the methyltransferase part of these enzymes, a structural and operational model of a type I DNA restriction enzyme is presented.  相似文献   

15.
Before cleaving DNA substrates with two recognition sites, the Cfr10I, NgoMIV, NaeI and SfiI restriction endonucleases bridge the two sites through 3D space, looping out the intervening DNA. To characterise their looping interactions, the enzymes were added to plasmids with two recognition sites interspersed with two res sites for site-specific recombination by Tn21 resolvase, in buffers that contained either EDTA or CaCl2 so as to preclude DNA cleavage by the endonuclease; the extent to which the res sites were sequestered into separate loops was evaluated from the degree of inhibition of resolvase. With Cfr10I, a looped complex was detected in the presence but not in the absence of Ca(2+); it had a lifetime of about 90 seconds. Neither NgoMIV nor NaeI gave looped complexes of sufficient stability to be detected by this method. In contrast, SfiI with Ca(2+) produced a looped complex that survived for more than seven hours, whereas its looping interaction in EDTA lasts for about four minutes. When resolvase was added to a SfiI binding reaction in EDTA followed immediately by CaCl2, the looped DNA was blocked from recombination while the unlooped DNA underwent recombination. By measuring the distribution between looped and unlooped DNA at various SfiI concentrations, and by fitting the data to a model for DNA binding by a tetrameric protein to two sites in cis, an equilibrium constant for the looping interaction was determined. The equilibrium constant was essentially independent of the length of DNA between the SfiI sites.  相似文献   

16.
Cleavage of DNA by mammalian DNA topoisomerase II   总被引:46,自引:0,他引:46  
Using the P4 unknotting assay, DNA topoisomerase II has been purified from several mammalian cells. Similar to prokaryotic DNA gyrase, mammalian DNA topoisomerase II can cleave double-stranded DNA and be trapped as a covalent protein-DNA complex. This cleavage reaction requires protein denaturant treatment of the topoisomerase II-DNA complex and is reversible with respect to salt and temperature. The product after reversal of the cleavage reaction remains supertwisted, suggesting that the two ends of the putatively broken DNA are held tightly by the topoisomerase. Alternatively, the enzyme-DNA interaction is noncovalent, and the covalent linking of topoisomerase to DNA is induced by the protein denaturant. Detailed characterization of the cleavage products has revealed that topoisomerase II cuts DNA with a four-base stagger and is covalently linked to the protruding 5'-phosphoryl ends of each broken DNA strand. Calf thymus DNA topoisomerase II cuts SV40 DNA at multiple and specific sites. However, no sequence homology has been found among the cleavage sites as determined by direct nucleotide-sequencing studies.  相似文献   

17.
DNA computing study is a new paradigm in computer science and biological computing fields. As one of DNA computing approaches, DNA automaton is composed of the hardware, input DNA molecule and state transition molecules. By now restriction enzymes are key hardware for DNA computing automaton. It has been found that DNA computing efficiency may be independent on DNA ligases when type IIS restriction enzymes like FokI are used as hardware. In this study, we compared FokI with four other distinct enzymes HgaI, BsmFI, BbsI, and BseMII, and found their differential independence on T4 DNA ligase when performing automaton reactions. Since DNA automaton is a potential powerful tool to tackle gene relationship in genomic network scale, the feasible ligase-free DNA automaton may set an initial base to develop functional DNA automata for various DNA technology development and implications in genetics study in the near future.  相似文献   

18.
19.
Cleavage of phage lambda DNA by restriction endonucleases in the presence of model phosphatidylcholine membranes was studied. Bsp1, Pst1 and Bam H1 were found to cleave DNA under these conditions to a considerably decreased extent. This effect does not result from irreversible inactivation of the enzymes or their direct interaction with the membranes. The most probable explanation of the membrane inhibitory effect is the change of DNA substrate properties resulting from its Mg2+-mediated binding to the membranes.  相似文献   

20.
Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far. We herein for the first time report cleavage by restriction endonuclease of LNA-modified DNA oligonucleotides. The experiments revealed that RsaI is an efficient enzyme capable of recognizing and cleaving LNA-modified DNA oligonucleotides. Furthermore, introduction of LNA nucleotides protects against cleavage by the restriction endonucleases PvuII, PstI, SacI, KpnI and EcoRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号