首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Cordycepin and xylosyladenine: inhibitors of methylation of nuclear RNA.   总被引:1,自引:0,他引:1  
Cordycepin and xylosyladenine inhibited methylation of nuclear RNA to a greater extent than RNA synthesis in L1210 cells in vitro. Inhibition of base methylation, 2′-0-methylation and 5′cap methylation was equal to, 2 to 5-fold greater and 1.5-fold greater, respectively than inhibition of RNA synthesis. Cordycepin was more potent than xylosyladenine in inhibiting 2′-0-methylation of cytidine and adenosine, but not guanosine. These results suggest that impirment in the 2′-0-methylation of nuclear RNA may be one of the major effects that limits the biological activity of rRNA and mRNA by these drugs.  相似文献   

3.
4.
5.
6.
A unique set of diguanosine cap analogues containing a 5'-5' tetraphosphate linkage instead of the normal triphosphate was synthesized by chemical methylation of G5'pppp5'G. Both 7-methylguanosine products, m7G5'pppp5'G and m7G5'pppp5'm7G, acted as potent inhibitors of capped brome mosaic virus (BMV) RNA translation in the homologous wheat germ protein synthesis system. Inhibition of in vitro protein synthesis required the presence of the 7-methyl group on guanosine and was specific for capped mRNA. In comparison with the partial cap analogue, m7GTP, the methylated diguanosine tetraphosphate structures were 25-50 fold more potent inhibitors of in vitro protein synthesis. Analysis of the in vitro translation products of the four species of BMV RNA showed a differential sensitivity to inhibition by m7G5'pppp5'm7G.  相似文献   

7.
Formation of low molecular weight RNA species in HeLa cells   总被引:17,自引:0,他引:17  
It has been previously shown that newly synthesized nuclear low molecular weight RNA species C and D are first detected in the cytoplasm for a few minutes before they are finally found in the nucleus. The following are some of the observations made in the present study, regarding the formation of C and D RNA: (1) The 5′ end cap ribose methylation of the C RNA precursor is complete in its cytoplasmic stage; the internal ribose methylation of the precursor seems to be completed about the time of its apparent transition from cytoplasm to nucleus. (2) The few nucleotides lost from the D RNA precursor during maturation seem to be excised sometime near its apparent cytoplasmic → nuclear transition. Newly synthesized C RNA also appears to lose some of its non-conserved nucleotides about the time of that transition, while the other extra nucleotides are lost later, in the nucleus. (3) The maturation of C and D RNA is inhibited early during suppression of protein synthesis by cycloheximide, while their synthesis is not. (4) The cytoplasmic precursors of C and D RNA are not associated with ribonucleoprotein particles as large as those reported for mature C and D RNA, although they do not appear to be free in the cytoplasm. (5) When the cellular UTP pool is depleted by exposure of the cells to amino sugars, and the synthesis of C, D, and other RNA species decreases, the level of[3H]uridine labeling of C and D RNA increases, while that of 4 S and 5 S RNA does not. These data are compatible with the existence of more than one nuclear UTP pool.  相似文献   

8.
The 5' end of eukaryotic mRNA carries a N(7)-methylguanosine residue linked by a 5'-5' triphosphate bond. This cap moiety ((7m)GpppN) is an essential RNA structural modification allowing its efficient translation, limiting its degradation by cellular 5' exonucleases and avoiding its recognition as "nonself" by the innate immunity machinery. In vitro synthesis of capped RNA is an important bottleneck for many biological studies. Moreover, the lack of methods allowing the synthesis of large amounts of RNA starting with a specific 5'-end sequence have hampered biological and structural studies of proteins recognizing the cap structure or involved in the capping pathway. Due to the chemical nature of N(7)-methylguanosine, the synthesis of RNAs possessing a cap structure at the 5' end is still a significant challenge. In the present work, we combined a chemical synthesis method and an enzymatic methylation assay in order to produce large amounts of RNA oligonucleotides carrying a cap-0 or cap-1. Short RNAs were synthesized on solid support by the phosphoramidite 2'-O-pivaloyloxymethyl chemistry. The cap structure was then coupled by the addition of GDP after phosphorylation of the terminal 5'-OH and activation by imidazole. After deprotection and release from the support, GpppN-RNAs or GpppN(2'-Om)-RNAs were purified before the N(7)-methyl group was added by enzymatic means using the human (guanine-N(7))-methyl transferase to yield (7m)GpppN-RNAs (cap-0) or (7m)GpppN(2'-Om)-RNAs (cap-1). The RNAs carrying different cap structures (cap, cap-0 or, cap-1) act as bona fide substrates mimicking cellular capped RNAs and can be used for biochemical and structural studies.  相似文献   

9.
10.
The 5' end of the flavivirus plus-sense RNA genome contains a type 1 cap (m(7)GpppAmG), followed by a conserved stem-loop structure. We report that nonstructural protein 5 (NS5) from four serocomplexes of flaviviruses specifically methylates the cap through recognition of the 5' terminus of viral RNA. Distinct RNA elements are required for the methylations at guanine N-7 on the cap and ribose 2'-OH on the first transcribed nucleotide. In a West Nile virus (WNV) model, N-7 cap methylation requires specific nucleotides at the second and third positions and a 5' stem-loop structure; in contrast, 2'-OH ribose methylation requires specific nucleotides at the first and second positions, with a minimum 5' viral RNA of 20 nucleotides. The cap analogues GpppA and m(7)GpppA are not active substrates for WNV methytransferase. Footprinting experiments using Gppp- and m(7)Gppp-terminated RNAs suggest that the 5' termini of RNA substrates interact with NS5 during the sequential methylation reactions. Cap methylations could be inhibited by an antisense oligomer targeting the first 20 nucleotides of WNV genome. The viral RNA-specific cap methylation suggests methyltransferase as a novel target for flavivirus drug discovery.  相似文献   

11.
Injection of labeled leucine into oocytes and developing embryos of the tobacco hornworm, Manduca sexta, revealed that the rate of protein synthesis increases dramatically after fertilization and continues to rise until gastrulation. Cell-free preparations of oocytes and developing embryos show a similar pattern of in vitro incorporation. When messenger RNA extracted from unfertilized oocytes was examined by gradient density centrifugation under denaturing conditions, a broad peak was observed which centered around 15 S. In contrast to mRNA extracted from oocytes, that from embryos was found to be capped by 7-methylguanosine at the 5′ terminus. When translation of oocyte mRNA was compared with that of embryo mRNA in a cell-free translation system derived from wheat germ, oocyte RNA translated less efficiently. In the presence of an inhibitor of methylation, S-adenosylhomocysteine, the differences were further widened. In competition with a cap analog, 7-methylguanosine 5′-monophosphate, embryo mRNA translation was inhibited more than oocyte at low concentrations of analog. These results are taken to indicate that the lack of a cap at the 5′ terminus could be one mechanism to inhibit translation prior to fertilization.  相似文献   

12.
J Wojcierowski  H Antosz  J Halliop 《Cytobios》1976,16(63-64):151-161
Physico-chemical properties and RNA synthesis in the rat liver and human lymphocytes have been compared in a nuclear system in vitro. Human lymphocytes were isolated from blood of healthy donors and of chronic lymphocytic leukaemia patients. The isolated nuclei served as the source of polymerase and template DNA. 3H-CTP was incorporated into the acid insoluble fraction linearly for 60 min. The nuclei of lymphocytes contained small amounts of RNA and protein, and the isolation procedure was complicated. Rat liver nuclei seem to be less prone to clumping at high pH values and may incorporate much more 3H-CTP. The nuclear synthesis was compared with incorporation of 3H-rU and 32P-orthophosphate into nuclear RNA of intact lymphocytes. Normal cells easily incorporated 32-P, and in contrast leukaemic cells incorporated 3H-rU to a greater extent.  相似文献   

13.
14.
In Xenopus oocytes, progesterone stimulates the cytoplasmic polyadenylation and resulting translational activation of c-mos mRNA, which is necessary for the induction of oocyte maturation. Although details of the biochemistry of polyadenylation are beginning to emerge, the mechanism by which 3' poly(A) addition stimulates translation initiation is enigmatic. A previous report showed that polyadenylation induced cap-specific 2'-O-methylation, and suggested that this 5' end modification was important for translational activation. Here, we demonstrate that injected c-mos RNA undergoes polyadenylation and cap ribose methylation. Inhibition of this methylation by S-isobutylthioadenosine (SIBA), a methyltransferase inhibitor, has little effect on progesterone-induced c-mos mRNA polyadenylation or general protein synthesis, but prevents the synthesis of Mos protein as well as oocyte maturation. Maturation can be rescued, however, by the injection of factors that act downstream of Mos, such as cyclin A and B mRNAs. Most importantly, we show that the translational efficiency of injected mRNAs containing cap-specific 2'-O-methylation (cap I) is significantly enhanced compared to RNAs that do not contain the methylated ribose (cap 0). These results suggest that cap ribose methylation of c-mos mRNA is important for translational recruitment and for the progression of oocytes through meiosis.  相似文献   

15.
In liver cells recovering from reversible ischemia the increase in RNA synthesis by isolated nuclei is preceded by activation of ornithine decarboxylase, leading in turn to an increase in putrescine concentration. Treatment of the animals with 1,3-diaminopropane and putrescine prevents ornithine decarboxylase activation but does not hinder the enhancement of RNA synthesis in post-ischemic liver nuclei; therefore, ornithine decarboxylase activation does not seem to be a necessary prerequisite for the increase in RNA synthesis. Hypophysectomy does not prevent the post-ischemic increases of ornithine decarboxylase and RNA synthesis; but pre-treatment of the animals with cycloheximide—which has a dual effect on the activity of ornithine decarboxylase—abolishes the post-ischemic enhancement of RNA synthesis. In contrast with regenerating liver, changes in ornithine decarboxylase activity and putrescine concentrations in reversible ischemia are not associated to changes in S-adenosylmethionine decarboxylase activity and in spermine and spermidine concentrations that seem to be characteristic of tissues where increases in RNA synthesis are followed by DNA synthesis and cell multiplication.  相似文献   

16.
17.
18.
19.
Exogenous E. coli RNA polymerase was used to determine the in situ DNA template activity of ethanol/acetone fixed avian erythrocytes. No RNA polymerase-catalyzed incorporation of 3H-UTP was detected in mature avian erythrocytes while simultaneously fixed avian lymphocytes did exhibit incorporation of 3H-UTP. Nuclei of mature erythrocytes which were subjected to treatments known to remove histones showed dramatic increases in RNA polymerase-catalyzed incorporation of 3H-UTP. The chromatin of treated cells was presumed to be more accessible to RNA polymerase as determined by the increase in RNA polymerase-catalyzed incorporation of 3H-UTP. Incubation of acid-treated nuclei in poly-L-lysine prior to incubation with RNA polymerase failed to inhibit the incorporation of 3H-UTP. Possible mechanisms for the inactivation of avian erythrocyte nuclei are discussed.  相似文献   

20.
Liver nuclei isolated from rats 5 h after turpentine injection show an increased release of rRNA, of the transport-related nucleoside-triphosphatase activity and of the amount of nuclear RNA; RNA methylation is also likely to undergo some activation. These changes occur when RNA synthesis is still normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号