首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W Kim  K Choi  Y Kim  H Park  J Choi  Y Lee  H Oh  I Kwon    S Lee 《Applied microbiology》1996,62(7):2482-2488
Bacillus sp. strain CK 11-4, which produces a strongly fibrinolytic enzyme, was screened from Chungkook-Jang, a traditional Korean fermented-soybean sauce. The fibrinolytic enzyme (CK) was purified from supernatant of Bacillus sp. strain CK 11-4 culture broth and showed thermophilic, hydrophilic, and strong fibrinolytic activity. The optimum temperature and pH were 70 degrees C and 10.5, respectively, and the molecular weight was 28,200 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The first 14 amino acids of the N-terminal sequence of CK are Ala-Gin-Thr-Val-Pro-Tyr-Gly-Ile-Pro-Leu-Ile-Lys-Ala-Asp. This sequence is identical to that of subtilisin Carlsberg and different from that of nattokinase, but CK showed a level of fibrinolytic activity that was about eight times higher than that of subtilisin Carlsberg. The amidolytic activity of CK increased about twofold at the initial state of the reaction when CK enzyme was added to a mixture of plasminogen and substrate (H-D-Val-Leu-Lys-pNA). A similar result was also obtained from fibrin plate analysis.  相似文献   

2.
Bacillus subtilis DC33 producing a novel fibrinolytic enzyme was isolated from Ba-bao Douchi, a traditional soybean-fermented food in China. The strong fibrin-specific enzyme subtilisin FS33 was purified to electrophoretic homogeneity using the combination of various chromatographic steps. The optimum temperature, pH value, and pI of subtilisin FS33 were 55°C, 8.0, and 8.7, respectively. The molecular weight was 30 kDa measured by SDS–PAGE under both reducing and non-reducing conditions. The enzyme showed a level of fibrinolytic activity that was about six times higher than that of subtilisin Carlsberg. The first 15 amino acid residues of N-terminal sequence of the enzyme were A-Q-S-V-P-Y-G-I-P-Q-I-K-A-P-A, which are different from that of other known fibrinolytic enzymes. The amidolytic activities of subtilisin FS33 were inhibited completely by 5 mM phenylmethanesulfonyl fluoride (PMSF) and 1 mM soybean trypsin inhibitor (SBTI), but 1,4-dithiothreitol (DTT), β-mercaptoethanol, and p-hydroxymercuribenzoate (PHMB) did not affect the enzyme activity; serine and tryptophan are thus essential in the active site of the enzyme. The highest affinity of subtilisin FS33 was towards N-Succ-Ala-Ala-Pro-Phe-pNA. Therefore, the enzyme was considered to be a subtilisin-like serine protease. The fibrinolytic enzyme had a high degrading activity for the Bβ-chains and Aα-chain of fibrin(ogen), and also acted on thrombotic and fibrinolytic factors of blood, such as plasminogen, urokinase, thrombin, and kallikrein. So subtilisin FS33 was able to degrade fibrin clots in two ways, i.e., (a) by forming active plasmin from plasminogen and (b) by direct fibrinolysis.  相似文献   

3.
Meju is a traditional Korean fermented soy product used as a key element for soy sauce and doenjang. Bacilli with antimicrobial activity were isolated from meju prepared by traditional methods at Sunchang county, Jeollabukdo, Korea. Six isolates were identified as Bacillus amyloliquefaciens by recA gene sequencing and RAPD-PCR. One isolate, B. amyloliquefaciens MJ5-41, showed the strongest fibrinolytic activity. A 27 kDa active fibrinolytic enzyme, AprE5-41, was purified from the culture supernatant of MJ5-41 grown on LB by chromatographic methods. The optimum pH and temperature for purified AprE5-41 were 7.0 and 45°C, respectively. AprE5-41 quickly degraded Aα and Bβ chains but not the gamma-chain of fibrinogen. AprE5-41 exhibited the highest specificity for N-succinyl-Ala-Ala-Pro-Phe pnitroanilide, a known substrate for α-chymotrypsin, cathepsin G, and subtilisin BPN'. The structural gene, aprE5-41, was cloned by PCR and successfully expressed in B. subtilis.  相似文献   

4.
Jeot-gal is a traditional Korean fermented seafood and has long been used for seasoning. We isolated 188 strains from shrimp, anchovy, and yellow corvina Jeot-gal, and screened sixteen strains that showed strong fibrinolytic activities on a fibrin plate. Among those strains, the strain that had the largest halo zone was chosen and identified as Bacillus licheniformis by using 16S rDNA sequencing and an API CHB kit. The fibrinolytic activity of Bacillus licheniformis was characterized and designated as bpKJ-31. The active component of bpKJ-31 was identified as a 37 kDa protein, designated bacillopeptidase F, by internal peptide mapping and N-terminal sequencing. The optimum activity of bpKJ-31 was shown at pH 9 and 40 degrees C, with a chromogenic substrate for plasmin. It had high degrading activity for the Bbeta-chain and Aalpha-chain of fibrin(ogen), and also acted on thrombin, but not skim milk and casein. The amidolytic activity of bpKJ-31 was inhibited by 1 mM phenylmethanesulfonyl fluoride, but 1 mM EDTA did not affect the enzyme activity, indicating that bpKJ-31 is an alkaline serine protease, like a plasmin. The bpKJ-31 showed approximately 14.3% higher fibrinolytic activity than the plasmin. These features of bpKJ-31 make it attractive as a health-promoting biomaterial.  相似文献   

5.
[目的]溶栓疗法是血栓性疾病安全且有效的治疗手段,从微生物中寻找溶栓药物是一种理想有效的途径,枯草芽孢杆菌(Bacillus subtilis)BS-26菌株发酵液具有很强的体外纤溶活性,本文分析了发酵液中纤溶酶的性质并对活性组分进行了分离纯化.[方法]利用纤维蛋白平板法检测纤溶酶活性,利用硫酸铵分级盐析、DEAE-Sepharose Fast Flow阴离子交换层析和聚丙烯酰胺制备电泳等方法,进行分离纯化.[结果]此菌株产生的纤溶酶在50℃以下和pH5.0~11.0范围内具有较好的稳定性,最适作用温度为42℃;最适pH值为9.0;Mg2 、Ca2 对此酶有明显的激活作用,而Cu2 能完全抑制酶的活性;174.2μg/mL的苯甲基磺酰氟、1000μg/mL的鸡卵类粘蛋白和1000μg/mL大豆胰蛋白酶抑制剂能完全抑制酶活性,初步说明此酶属于丝氨酸蛋白酶类;体外溶纤作用表明,该酶溶解纤维蛋白的方式是直接溶解,而不是通过激活纤溶酶原.从该菌株的发酵液中获得了一种纤溶酶组分,比活力达8750 U/mg,回收率为3.2%,所获得样品纯度相对于发酵液提高了41倍,该酶在SDS-PAGE中是单肽链蛋白,分子量为32 kDa.[结论]获得了一种纤溶酶的单一组分,为纤溶酶发酵产品的大规模纯化及进一步研制和开发新的溶栓药物提供重要理论依据.  相似文献   

6.
A fibrinolytic enzyme from Bacillus subtilis BK-17 has been purified to homogeneity by gel-filtration and ion-exchange chromatography. Compared to the crude enzyme extract, the specific activity of the enzyme increased 929-fold with a recovery of 29%. The subunit molecular mass of the purified enzyme was estimated to be 31 kDa by SDS–PAGE. The N-terminal amino acid sequence of the purified fibrinolytic enzyme was: A-Q-S-V-P-Y-G-V-S-Q-I-K-A-P-A-A-H-N. The sequence was highly homologous to the fibrinolytic enzymes nattokinase, subtilisin J and subtilisin E from Bacillus spp. However, there was a substitution of three amino acid residues in the N-terminal sequence. The amidolytic activity of the purified enzyme for several substrates was assessed. In comparison with nattokinase and CK (fibrinolytic enzyme from a Bacillus spp.), which showed strong fibrinolytic activity, the amidolytic activity of the enzyme for the synthetic substrate, kallikrein (H-D-Val-Leu-Arg-pNA, S-2266) increased 2.4- and 11.8-fold, respectively.  相似文献   

7.
A non-toxic, direct-acting fibrinolytic enzyme, FCF-11, from a newly isolated Bacillus amyloliquefaciens FCF-11 was purified, characterized and assayed both in vitro and in vivo for its thrombolytic potential. Corn husk was used as for the first time as the sole carbon/nitrogen source for enzyme production. The molecular weight of the purified enzyme was 18.2 kDa and purification increased its specific activity 443.5-fold with a recovery of 17 %. Maximal activity was attained at a temperature of 40 °C and pH of 8.0. Additionally the isoelectric point of this protein was 10 ± 0.2. Tosyl lysine chloromethyl ketone, phenylmethylsulphonyl fluoride, soybean trypsin inhibitor, and aprotinin highly repressed this activity. The presence of ethylenediaminetetraacetic acid, and two metalloprotease inhibitors, 2,2′-bipyridine and o-phenanthroline, didn’t affect the enzymatic activity. Furthermore, it was found to exhibit a higher specificity for the chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like serine protease. Its apparent K m and V max for the synthetic substrate N-Suc-Phe-pNA were 0.45 mM and 8.26 μmoles/mg/min, respectively. FCF-11 showed direct action upon blood clots in vitro and prolonged the blood clotting time to 4.1-fold, suggesting this enzyme be a beneficial thrombolytic agent especially, with regard with low molecular weight and non specificity to other plasma proteins. FCF-11 could not degrade collagen and was non-cytotoxic to HT29 cells or mammalian erythrocytes. Further, enzyme at a dose of 2 mg/kg was devoid of toxicity as well as hemorrhagic activity on BALB/c mouse model, supporting its suitability for the development of a better and safer thrombolytic drug.  相似文献   

8.
A fibrinolytic enzyme obtained from B. subtilis was purified, using DEAE-cellulose column chromatography, and gel filtration on Sephadex G-100. The preparation was homogeneous as tested by gel filtration on Sephadex G-200, and disc electrophoresis. The molecular weight of this enzyme was 29.400 estimated by gel filtration on Sephadex G-100. The optimum pH for enzyme activity was 7.2 Copper ions significantly increased enzyme activity, while Zn++ and Mn++ caused marked inhibition.  相似文献   

9.
A fibrinolytic protease secreting producing Bacillus amyloliquefaciens strain KJ10 was initially screened from the fermented soybean. Maximum productivity was obtained in the culture medium after 40 h incubation, 34 °C incubation temperature at pH 8.0. Fibrinolytic protease production was enhanced in the culture medium with 1% sucrose (3712 ± 52 U/mL), 1% (w/v) yeast extract (3940 ± 28 U/mL) and 0.1% MgSO4 (3687 ± 38 U/mL). Enzyme was purified up to 22.9-fold with 26%recovery after Q-Sepharose HP column chromatography. After three steps purification, enzyme activity was 1606U/mg and SDS-PAGE analysis revealed 29 kDa protein and enzyme band was detected by zymograpy. Enzyme was highly active at pH 8.0, at wide temperature ranges (40 °C ? 55 °C) and was activated by Mn2+ (102 ± 3.1%) and Mg2+ (101.4 ± 2.9%) ions. The purified fibrinolytic enzyme was highly specific against N-Suc-Ala-Ala-Pro-Phe-pNA (189 mmol/min/mL) and clot lytic activity reached 28 ± 1.8% within 60 minin vitro. The purified fibrinolytic enzyme showed least erythrocytic lysis activity confirmed safety to prevent various health risks, including hemolytic anemia. Based on this study, administration of fibrinolytic enzyme from B. amyloliquefaciens strain KJ10 is safe for clinical applications.  相似文献   

10.
豆豉纤溶酶高产菌株的筛选研究   总被引:5,自引:0,他引:5  
以中国豆豉为材料,取6个不同来源的样品经富集培养后,用自制血纤维蛋白平板进行初筛;利用LB纤维蛋白平板复筛与血琼脂平板进行体外溶血试验相结合的方法,筛选出安全性良好并有一定纤溶活性的菌株。再对复筛得到的菌株进行摇瓶培养,用纤维蛋白平板法测定并比较不同菌株发酵液的纤溶活性。结果成功地筛选出5株纤溶活性高和通过溶血性实验的芽孢杆菌菌株,其中菌株DC-C4粗酶液的酶活稍高,达到280IU/mL。采用16S-23S rDNA序列分析法及传统的生理生化特征鉴定法对该菌株进行鉴定,确定菌株DC-C4为蜡状芽孢杆菌(Bacillus cereus)。本实验为开发新型溶栓药物及保健食品提供了实验参考依据。  相似文献   

11.
The organism Bacillus amyloliquefaciens is capable of producing alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) and isoamylase (glycogen 6-glucanohydrolase, EC 3.2.1.68) extracellurlarly and a membrane-bound, intracellular alpha-glucosidase (alpha-D-glucoside glucohydrolase, EC 3.2.1.20). The amounts of alpha-glucosidase in cells of B. amyloliquefaciens grown on amylaceous polysaccharides were significantly higher then in cells grown on non-carbohydrate carbon sources. alpha-Glucosidase was exclusively found associated with membranes from ruptured spheroplasts by subcellular fractionation and solubilization studies. Salt solutions and chelating agents alone did not dislodge alpha-glucosidase from membranes, but in combination with detergents were most effective in solubilizing active enzyme (0.1% sodium cholate (pH 8.0)/0.4 M sodium chloride). Purified alpha-glucosidase very rapidly hydrolized p-nitrophenyl alpha-D-glucopyranoside and sucrose. Maltose, maltotriose, isomaltose and isomaltotriose were hydrolized at slower rates, whereas beta-glucosides and polymeric alpha-glucans were not attacked. Other properties of the purified enzyme were as follows: Temperature optimum for catalysis = 39 +/- 1 degrees C; pH optimum = 6.8; molecular weight = 27,000 +/- 1000. alpha-Glucosidase is proposed to function in the endogenous metabolism of alpha-glucans provided extracellularly as carbon sources for growth of B. amyloliquefaciens.  相似文献   

12.
A serine protease with preference for fibrin protein was purified and characterized from Bacillus amyloliquefaciens MCC2606, isolated from dosa batter. The protease was purified using ammonium sulfate precipitation, ion-exchange, and gel filtration chromatography. The degradation activity of the protease toward the fibrin was significantly higher compared with other protein substrates in the study. The molecular weight of the CFR15-protease was estimated to be 32?kDa based on SDS-PAGE. The purified enzyme exhibited both fibrinolytic and fibrinogenolytic activity. The optimum pH and temperature for the activity of the enzyme was found to be 10.5 and 45°C. A significant inhibition was seen with the protease inhibitors phenyl methyl sulphonyl fluoride and ethylene diamine tetra acetic acid and the activity of the enzyme was enhanced in presence of Mn2+. There was an observed increase in vitro activated partial thromboplastin time and prothrombin time of both time and dose dependent study. Among the four chains of fibrin, the β-chain of fibrin appears to be the primary component and site susceptible for CFR15-protease in early action as indicated by MS/MS analysis of initial degradation products. These results indicated that the CFR15-protease have the potential to be an effective fibrinolytic agent.  相似文献   

13.
【目的】确立蛹拟青霉深层培养液中高纯度、高纤溶活性纤溶酶的分离纯化方法并测定其酶学性质。【方法】采用硫酸铵盐析、Sephadex G-25凝胶色谱、Phenyl-Sepharose HP疏水相互作用色谱、CM-Sepharose FF弱阳离子交换色谱和Superdex 75凝胶色谱对蛹拟青霉纤溶酶进行分离。用Lowry法测定蛋白质浓度,纤维蛋白平板法测定其纤溶活性,SDS-PAGE鉴定其纯度并确定其分子量,IEF法测定其等电点。【结果】研究发现,以蔗糖和豆饼为培养基主要基质时,蛹拟青霉深层培养可以产生至少两种纤溶酶。提纯后的纤溶酶Ⅱ比活力达到800.46 U/mg,总纯化倍数为30.07倍。纤溶酶Ⅱ的相对分子量和等电点分别为32 kD和9.3±0.2。纤溶酶Ⅱ是一种糖蛋白,总含糖量为0.98%(W/V)。该酶可以顺次降解人血纤维蛋白(原)的α、β和γ链。其最适作用pH及温度分别为7.4和41°C。Aprotinine与PMSF对该纤溶酶的活性完全抑制,推测此纤溶酶可能是一种丝氨酸蛋白酶。【结论】单一的高纤溶活性纤溶酶的获得和酶学性质的确定,为该酶开发成为新型溶栓药物提供了理论依据。  相似文献   

14.
Bacillus sp. strain DJ-4, which produces extracellular proteases, was screened from Doen-Jang, a traditional Korean fermented food. A fibrinolytic enzyme (subtilisin DJ-4) was purified using commercial chromatographic techniques. The relative molecular mass of the isolated protein was 29 kDa by SDS-PAGE and fibrin zymography assay. The enzyme was characterized as a serine protease by an inhibitor assay on the fibrin zymography gel and by an amidolytic assay using a chromogenic substrate. The enzyme was inhibited by PMSF, but not by EDTA or leupeptin. The first 14 amino acids of the N-terminal sequence were identical to that of subtilisin BPN', but the activity of subtilisin DJ-4 was 2.2 and 4.3 times higher than those of subtilisin BPN' and subtilisin Carlsberg, respectively.  相似文献   

15.
We have isolated a bacterium (TP-6) from the Indonesian fermented soybean, Tempeh, which produces a strong fibrinolytic protease and was identified as Bacillus subtilis. The protease (TPase) was purified to homogeneity by ammonium sulfate fractionation and octyl sepharose and SP sepharose chromatography. The N-terminal amino acid sequence of the 27.5 kDa enzyme was determined, and the encoding gene was cloned and sequenced. The result demonstrates that TPase is a serine protease of the subtilisin family consisting of 275 amino acid residues in its mature form. Its apparent K m and V max for the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-pNA were 259 μM and 145 μmol mg−1 min−1, respectively. The fibrinogen degradation pattern generated by TPase as a function of time was similar to that obtained with plasmin. In addition, N-terminal amino acid sequence analysis of the fibrinogen degradation products demonstrated that TPase cleaves Glu (or Asp) near hydrophobic acids as a P1 site in the α- and β-chains of fibrinogen to generate fragments D′, E′, and D′ similar to those generated by plasmin. On plasminogen-rich fibrin plates, TPase did not seem to activate fibrin clot lysis. Moreover, the enzyme converted the active plasminogen activator inhibitor-1 to the latent form.Seong-Bo Kim and Dong-Woo Lee contributed equally to the work.  相似文献   

16.
A novel fibrinolytic enzyme, subtilisin BSF1, from a newly isolated Bacillus subtilis A26 was purified, characterized and the gene was isolated and sequenced. The subtilisin BSF1 was purified to homogeneity by five-step procedure with a 4.97-fold increase in specific activity and 6.28% recovery. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PAGE and gel filtration. The purified enzyme exhibited high fibrinolytic activity on fibrin agar plates.Interestingly, the enzyme was highly active over a wide range of pH from 7.0 to 12.0, with an optimum at pH 9.0. The relative activities at pH 10.0 and 11.0 were 97.8% and 85.2% of that at pH 9.0. The optimum temperature for enzyme activity was 60 °C. The activity of subtilisin BSF1 was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The N-terminal amino acid sequence of the first 11 amino acids (aa) of the purified fibrinolytic enzyme was AQSVPYGISQI.The bsf1 gene encoding the subtilisin BSF1 was isolated and its DNA sequence was determined. The bsf1 gene consisted of 1146 bp encoding a pre-pro-protein of 381 amino acids organized into a signal peptide (29 aa), a pro-peptide (77 aa) and a mature domain (275 aa). The deduced amino acids sequence of the mature enzyme (BSF1) differs from those of nattokinase from B. subtilis natto and subtilisin DFE from Bacillus amyloliquefaciens DC-4 by 5 and 39 amino acids, respectively.  相似文献   

17.
A novel fibrinolytic enzyme from Rhizopus chinensis 12 was purified through ammonium sulfate precipitation, hydrophobic interaction, ionic exchange, and gel filtration chromatography. The purification protocol resulted in a 893-fold purification of the enzyme, with a final yield of 42.6%. The apparent molecular weight of the enzyme was 18.0 kDa, determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis, and 16.6 kDa by gel filtration chromatography, which revealed a monomeric form of the enzyme. The isoelectric point of the enzyme estimated by isoelectric focusing electrophoresis was 8.5±0.1. The enzyme hydrolyzed fibrin. It cleaved the , , and chains of fibrinogen simultaneously, and it also hydrolyzed casein and N-succinyl-Ala-Ala-Pro-Phe-pNA. The enzyme had an optimal temperature of 45°C, and an optimal pH of 10.5. EDTA, PCMB, and PMSF inhibited the activity of the enzyme, and SBTI, Lys, TPCK, and Aprotinine had no obvious inhibition, which suggested that the activity center of the enzyme had hydrosulfuryl and metal. The first 12 amino acids of the N-terminal sequence of the enzyme were S-V-S-E-I-Q-L-M-H-N-L-G and had no homology with that of other fibrinolytic enzyme from other microbes.  相似文献   

18.
A fibrinolytic enzyme (SFE1) from Streptomyces sp. XZNUM 00004 was purified to electrophoretic homogeneity with the methods including ammonium sulfate precipitation, polyacrylamide gel, DEAE-Sepharose Fast Flow anion exchange and gel-filtration chromatography. The molecular weight of SFE1 was estimated to be 20 kDa by SDS-PAGE, fibrin zymography, and gel filtration chromatography. The isoelectric point was 4.9. K (m) and V (max) values were 0.96 mg/ml and 181.8 unit/ml, respectively. It was very stable at pH 5.0-8.0 and below 65 °C. The optimum pH for enzyme activity was 7.8. The optimum temperature was 35 °C. The fibrinolytic activity of SFE1 was enhanced by Na(+), K(+), Mn(2+), Mg(2+), Zn(2+) and Co(2+). Conversely, Cu(2+) showed strong inhibition. Furthermore, the fibrinolytic activity was strongly inhibited by PMSF, and partly inhibited by EDTA and EGTA. SFE1 rapidly hydrolyzed the Aα-chain of fibrinogen, followed by the Bβ-chain and finally the γ-chain. The first 15 amino acids of the N-terminal sequence were APITLSQGHVDVVDI. Additionally, SFE1 directly digested fibrin and not by plasminogen activators in vitro. SFE1 can be further developed as a potential candidate for thrombolytic therapy.  相似文献   

19.
In the present investigation, a microorganism hydrolyzing carboxymethylcellulose (CMC) was isolated and identified as Bacillus subtilis strain LFS3 by 16S rDNA sequence analysis. The carboxymethylcellulase (CMCase) enzyme produced by the B. subtilis strain LFS3 was purified by (NH?)?SO? precipitation, ion exchange and gel filtration chromatography, with an overall recovery of 15 %. Native-PAGE analysis of purified CMCase revealed the molecular weight of enzyme to be about 185 kDa. The activity profile of CMCase enzyme showed the optimum activity at temperature 60 °C and pH 4.0, respectively. The enzyme activity was induced by Na?, Mg2?, NH??, and EDTA, whereas strongly inhibited by Hg2? and Fe3?. The purified enzyme hydrolyzed CMC, filter paper, and xylan, but not p-nitrophenyl β-D-glucopyranoside and cellulose. Kinetic analysis of purified enzyme showed the K(m) value of 2.2 mg/ml. Thus, acidophilic as well as thermophilic nature makes this cellulase a suitable candidate for current mainstream biomass conversion into fuel and other industrial processes.  相似文献   

20.
A pectin-releasing enzyme produced by Kluyveromyces wickerhamii IFO 1675 (PPase-W) was purified to homogeneity from a culture filtrate by cation-exchange and size-exclusion chromatographies. This enzyme had a molecular weight of 35,000 determined by both size exclusion chromatography and ultracentrifugal analysis, and of 40,000 by SDS-PAGE. It contained 2.4% sugar, and its isoelectric point was at pH 5.2. PPase-W catalyzed the release of highly polymerized pectin from various protopectins, and also showed endopolygalacturonase (endo-PGase) activity. The purified enzyme had optimum PGase activity at about pH 5.2 and 50°C and was stable in the range of pH from 4.0 to 7.0 and up to 50°C. The properties of PPase-W were compared with those of PPase-F from Kluyveromyces fragilis IFO 0288, and some differences were found. Also, some preliminary data dealing with the relationship between enzyme activities (PPase and endo-PGase) and protein structure are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号