首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Studies were undertaken with adult male rats to test the hypothesis that euglycemic hyperinsulinemia would alter mean arterial blood pressure (MAP) and heart rate (HR) relationships by activation of the sympathetic nervous system. Conscious rats were infused either with insulin or control vehicle (0, 0.47, 1.5, 4.7, 15.0 mU.kg-1.min-1) for 75 min before injection of hexamethonium. Compared with the control period, insulin infusion significantly increased MAP by 7.1 +/- 0.1, 12.7 +/- 2.0, and 19.7 +/- 0.3 (SE) mmHg and HR by 44 +/- 8.4, 66 +/- 10.3, and 95 +/- 6.3 beats/min, respectively, during the three highest rates of infusion. The dose-dependent increases in MAP and HR were due to increases in the activity of hexamethonium-sensitive pathways. In chemically sympathectomized rats, insulin infusion did not produce a significant increase in either MAP or HR. The influence of exogenous norepinephrine on MAP and HR was also studied after insulin infusion. Compared with the insulin-vehicle infusion, insulin infusion significantly depressed (P less than 0.05) the norepinephrine dose-response increase in MAP. In addition, isolated smooth muscle strips were studied to determine the influence of insulin on their in vitro responses to increasing doses of norepinephrine. Although insulin did not alter contractility, it significantly (P less than 0.05) decreased the sensitivity of the vascular strips to norepinephrine. Collectively, the data from these euglycemic experiments indicated that infusions of insulin caused increases in HR and MAP because of activation of the sympathetic nervous system, even though the responsiveness of the vascular smooth muscle was depressed.  相似文献   

2.
This study tested whether leptin restores sympathetic-vagal balance, heart rate (HR) variability, and cardiac baroreflex sensitivity (BRS) in streptozotocin (STZ)-induced diabetes. Sprague-Dawley rats were instrumented with arterial and venous catheters, and a cannula was placed in the lateral ventricle for intracerebroventricular (ICV) leptin infusion. Blood pressure (BP) and HR were monitored by telemetry. BRS and HR variability were estimated by linear regression between HR and BP responses to phenylephrine or sodium nitroprusside and autoregressive spectral analysis. Measurements were made during control period, 7 days after induction of diabetes, and 7 days after ICV leptin infusion. STZ diabetes was associated with hyperglycemia (422 +/- 17 mg/dl) and bradycardia (-79 +/- 4 beats/min). Leptin decreased glucose levels (165 +/- 16 mg/dl) and raised HR to control values (303 +/- 10 to 389 +/- 10 beats/min). Intrinsic HR (IHR) and chronotropic responses to a full-blocking dose of propranolol and atropine were reduced during diabetes (260 +/- 7 vs. 316 +/- 6, -19 +/- 2 vs. -43 +/- 6, and 39 +/- 3 vs. 68 +/- 8 beats/min), and leptin treatment restored these variables to normal (300 +/- 7, -68 +/- 10, and 71 +/- 8 beats/min). Leptin normalized BRS (bradycardia, -2.6 +/- 0.3, -1.7 +/- 0.2, and -3.0 +/- 0.5; and tachycardia, -3.2 +/- 0.4, -1.9 +/- 0.3, and -3.4 +/- 0.3 beats.min(-1).mmHg(-1) for control, diabetes, and leptin) and HR variability (23 +/- 4 to 11 +/- 1.5 ms2). Chronic glucose infusion to maintain hyperglycemia during leptin infusion did not alter the effect of leptin on IHR but abolished the improved BRS. These results show rapid impairment of autonomic nervous system control of HR after the induction of diabetes and that central nervous system actions of leptin can abolish the hyperglycemia as well as the altered IHR and BRS in STZ-induced diabetes.  相似文献   

3.
We have previously demonstrated that leptin-mediated activation of the central nervous system (CNS) melanocortin system reduces appetite and increases sympathetic activity and blood pressure (BP). In the present study we examined whether endogenous melanocortin system activation, independent of leptin's actions, contributes to the regulation of BP and metabolic functions in obese Zucker rats, which have mutated leptin receptors. The long-term cardiovascular and metabolic effects of central melanocortin-3/4 receptor (MC3/4R) antagonism with SHU-9119 were assessed in lean (n = 6) and obese (n = 8) Zucker rats. BP and heart rate (HR) were measured 24-h/day by telemetry and an intracerebroventricular cannula was placed in the brain lateral ventricle. After stable control measurements, SHU-9119 was infused intracerebroventricularlly (1 nmol/h) for 10 days followed by a 10-day recovery period. Chronic CNS MC3/4R antagonism significantly increased food intake and body weight in lean (20 ± 1 to 45 ± 2 g and 373 ± 11 to 432 ± 14 g) and obese (25 ± 2 to 35 ± 2 g and 547 ± 10 to 604 ± 11 g) rats. No significant changes were observed in plasma glucose levels in lean or obese rats, whereas plasma leptin and insulin levels markedly increased in lean Zucker rats during CNS MC3/4R antagonism. Chronic SHU-9119 infusion in obese Zucker rats reduced mean arterial pressure (MAP) and HR by 6 ± 1 mmHg and 24 ± 5 beats/min, whereas in lean rats SHU-9119 infusion reduced HR by 31 ± 9 beats/min while causing only a transient decrease in MAP. These results suggest that in obese Zucker rats the CNS melanocortin system contributes to elevated BP independent of leptin receptor activation.  相似文献   

4.
The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.  相似文献   

5.
The effect of insulin on blood pressure (BP) is debated, and an involvement of an activated renin-angiotensin aldosterone system (RAAS) has been suggested. We studied the effect of chronic insulin infusion on telemetry BP and assessed sympathetic activity and dependence of the RAAS. Female Sprague-Dawley rats received insulin (2 units/day, INS group, n = 12) or insulin combined with losartan (30 mg.kg(-1).day(-1), INS+LOS group, n = 10), the angiotensin II receptor antagonist, for 6 wk. Losartan-treated (LOS group, n = 10) and untreated rats served as controls (n = 11). We used telemetry to measure BP and heart rate (HR), and acute ganglion blockade and air-jet stress to investigate possible control of BP by the sympathetic nervous system. In addition, we used myograph technique to study vascular function ex vivo. The INS and INS+LOS groups developed euglycemic hyperinsulinemia. Insulin did not affect BP but increased HR (27 beats/min on average). Ganglion blockade reduced mean arterial pressure (MAP) similarly in all groups. Air-jet stress did not increase sympathetic reactivity but rather revealed possible blunting of the stress response in hyperinsulinemia. Chronic losartan markedly reduced 24-h-MAP in the INS+LOS group (-38 +/- 1 mmHg P < 0.001) compared with the LOS group (-18 +/- 1 mmHg, P 相似文献   

6.
We hypothesized that the more-pronounced hypotensive and bradycardic effects of an antiorthostatic posture change from seated to supine than water immersion are caused by hydrostatic carotid baroreceptor stimulation. Ten seated healthy males underwent five interventions of 15-min each of 1) posture change to supine, 2) seated water immersion to the Xiphoid process (WI), 3) seated neck suction (NS), 4) WI with simultaneous neck suction (-22 mmHg) adjusted to simulate the carotid hydrostatic pressure increase during supine (WI + NS), and 5) seated control. Left atrial diameter increased similarly during supine, WI + NS, and WI and was unchanged during control and NS. Mean arterial pressure (MAP) decreased the most during supine (7 +/- 1 mmHg, P < 0.05) and less during WI + NS (4 +/- 1 mmHg) and NS (3 +/- 1 mmHg). The decrease in heart rate (HR) by 13 +/- 1 beats/min (P < 0.05) and the increase in arterial pulse pressure (PP) by 17 +/- 4 mmHg (P < 0.05) during supine was more pronounced (P < 0.05) than during WI + NS (10 +/- 2 beats/min and 7 +/- 2 mmHg, respectively) and WI (8 +/- 2 beats/min and 6 +/- 1 mmHg, respectively, P < 0.05). Plasma vasopressin decreased only during supine and WI, and plasma norepinephrine, in addition, decreased during WI + NS (P < 0.05). In conclusion, WI + NS is not sufficient to decrease MAP and HR to a similar extent as a 15-min seated to supine posture change. We suggest that not only static carotid baroreceptor stimulation but also the increase in PP combined with low-pressure receptor stimulation is a possible mechanism for the more-pronounced decrease in MAP and HR during the posture change.  相似文献   

7.
Bradykinin (BK) is a peptide known to activate afferent nerve fibers from the kidney and elicit reflex changes in the cardiovascular system. The present study was specifically designed to test the hypothesis that bradykinin B2 receptors mediated the pressor responses elicited during intrarenal bradykinin administration. Pulsed Doppler flow probes were positioned around the left renal artery to measure renal blood flow (RBF). A catheter, to permit selective intrarenal administration of BK, was advanced into the proximal left renal artery. The femoral artery was cannulated to measure mean arterial pressure (MAP). MAP, heart rate (HR), and RBF were recorded from conscious unrestrained rats while five-point cumulative dose-response curves during an intrarenal infusion of BK (5-80 microg x kg(-1) x min(-1)) were constructed. Intrarenal infusion of BK elicited dose-dependent increases in MAP (maximum pressor response, 26+/-3 mmHg), accompanied by a significant tachycardia (130+/-18 beats/min) and a 28% increase in RBF. Ganglionic blockade abolished the BK-induced increases in MAP (maximum response, -6+/-5 mmHg), HR (maximum response 31+/-14 beats/min), and RBF (maximum response, 7+/-2%). Selective intrarenal B2-receptor blockade with HOE-140 (50 microg/kg intrarenal bolus) abolished the increases in MAP and HR observed during intrarenal infusion of BK (maximum MAP response, -2+/-3 mmHg; maximum HR response, 15+/-11 beats/min). Similarly, the increases in RBF were prevented after HOE-140 treatment. In fact, after HOE-140, intrarenal BK produced a significant decrease in RBF (22%) at the highest dose of BK. Results from this study show that the cardiovascular responses elicited by intrarenal BK are mediated predominantly via a B2-receptor mechanism.  相似文献   

8.
In this study the hypothesis was tested that chronic infusion of ANG II attenuates acute volume expansion (VE)-induced inhibition of renal sympathetic nerve activity (SNA). Rats received intravenous infusion of either vehicle or ANG II (12 ng. kg(-1). min(-1)) for 7 days. ANG II-infused animals displayed an increased contribution of SNA to the maintenance of mean arterial pressure (MAP) as indicated by ganglionic blockade, which produced a significantly (P < 0.01) greater decrease in MAP (75 +/- 3 mmHg) than was observed in vehicle-infused (47 +/- 8 mmHg) controls. Rats were then anesthetized, and changes in MAP, mean right atrial pressure (MRAP), heart rate (HR), and renal SNA were recorded in response to right atrial infusion of isotonic saline (20% estimated blood volume in 5 min). Baseline MAP, HR, and hematocrit were not different between groups. Likewise, MAP was unchanged by acute VE in vehicle-infused animals, whereas VE induced a significant bradycardia (P < 0.05) and increase in MRAP (P < 0.05). MAP, MRAP, and HR responses to VE were not statistically different between animals infused with vehicle vs. ANG II. In contrast, VE significantly (P < 0.001) reduced renal SNA by 33.5 +/- 8% in vehicle-infused animals but was without effect on renal SNA in those infused chronically with ANG II. Acutely administered losartan (3 mg/kg iv) restored VE-induced inhibition of renal SNA (P < 0.001) in rats chronically infused with ANG II. In contrast, this treatment had no effect in the vehicle-infused group. Therefore, it appears that chronic infusion of ANG II can attenuate VE-induced renal sympathoinhibition through a mechanism requiring AT(1) receptor activation. The attenuated sympathoinhibitory response to VE in ANG II-infused animals remained after arterial barodenervation and systemic vasopressin V(1) receptor antagonism and appeared to depend on ANG II being chronically increased because ANG II given acutely had no effect on VE-induced renal sympathoinhibition.  相似文献   

9.
The baroreflex control of heart rate (HR) was evaluated in conscious chronic renal hypertensive rats (RHR; 1K-1C, 2 mo) under control conditions and after reversal of hypertension by unclipping the renal artery or sodium nitroprusside infusion. Unclipping and nitroprusside infusion were both followed by significant decreases in the mean arterial pressure (unclipping: from 199 +/- 4 to 153 +/- 8 mmHg; nitroprusside infusion: from 197 +/- 9 to 166 +/- 6 mmHg) as well as slight and significant increases, respectively, in the baroreflex bradycardic response index (unclipping: from 0.2 +/- 0.04 to 0.6 +/- 0.1 beats x min(-1) x mmHg(-1); nitroprusside infusion: from 0.1 +/- 0.04 to 0.5 +/- 0.1 beats x min(-1) x mmHg(-1)). However, this index was still depressed compared with that for normotensive control rats (2.1 +/- 0.2 beats x min(-1) x mmHg(-1)). The index for the baroreflex tachycardic response was also depressed under control conditions and remained unchanged after hypertension reversal. RHR possessed markedly attenuated vagal tone as demonstrated by pharmacological blockade of parasympathetic and sympathetic control of HR with methylatropine and propranolol, respectively. A reduced bradycardic response was also observed in anesthetized RHR during electrical stimulation of the vagus nerve or methacholine chloride injection, indicating impairment of efferent vagal influence over the HR. Together, these data indicate that 2 h after hypertension reversal in RHR, the previously described normalization of baroreceptor gain occurs independent of the minimal or lack of recovery of baroreflex control over HR.  相似文献   

10.
Previous studies have demonstrated that insulin and IGF-1 both increase lumbar sympathetic nerve activity (LSNA) and decrease mean arterial pressure (MAP). We hypothesized that the peripheral responses to insulin and IGF-1 are mediated, at least in part, via the central nervous system. In this study we determined the effects of the peripheral administration of both insulin and IGF-1 on cardiovascular dynamics and LSNA following removal of the area postrema (APX), a major site of blood-brain communication. Insulin infusion in normal rats decreased MAP but increased HR and LSNA. When insulin was infused in APX rats it also decreased the MAP but the MAP recovered rapidly and plateaued at a level equivalent to normals after 40 min. Insulin significantly increased the HR and LSNA in the APX rats compared to normals. However, when hypoglycemia was prevented by glucose infusion, the HR and LSNA responses to insulin in the APX rats were similar to normals. IGF-1 also decreased MAP and to a greater extent in the APX rats compared to normals but the increased LSNA in APX rats was equivalent to normals. The APX rats when compared to normals had a greater sensitivity to insulin-induced hypoglycemia while IGF-1 decreased the plasma glucose to a lesser degree in APX rats. We conclude that insulin and IGF-1 entry into the CNS at least via the area postrema does not contribute significantly to the hypotensive response and that the greater depressor response to IGF-1 is likely due to enhanced vascular sensitivity in APX rats. The increased HR and LSNA following insulin were likely mediated by an increased reflexive response to hypoglycemia.  相似文献   

11.
Baroreflex responses to changes in arterial pressure are impaired in spontaneously hypertensive rats (SHR). Mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances were measured before and during electrical stimulation (5-90 Hz) of the left aortic depressor nerve (ADN) in conscious SHR and normotensive control rats (NCR). The protocol was repeated after beta-adrenergic-receptor blockade with atenolol. SHR exhibited higher basal MAP (150 +/- 5 vs. 103 +/- 2 mmHg) and HR (393 +/- 9 vs. 360 +/- 5 beats/min). The frequency-dependent hypotensive response to ADN stimulation was preserved or enhanced in SHR. The greater absolute fall in MAP at higher frequencies (-68 +/- 5 vs. -38 +/- 3 mmHg at 90-Hz stimulation) in SHR was associated with a preferential decrease in hindquarter (-43 +/- 5%) vs. mesenteric (-27 +/- 3%) resistance. In contrast, ADN stimulation decreased hindquarter and mesenteric resistances equivalently in NCR (-33 +/- 7% and -30 +/- 7%). Reflex bradycardia was also preserved in SHR, although its mechanism differed. Atenolol attenuated the bradycardia in SHR (-88 +/- 14 vs. -129 +/- 18 beats/min at 90-Hz stimulation) but did not alter the bradycardia in NCR (-116 +/- 16 vs. -133 +/- 13 beats/min). The residual bradycardia under atenolol (parasympathetic component) was reduced in SHR. MAP and HR responses to ADN stimulation were also preserved or enhanced in SHR vs. NCR after deafferentation of carotid sinuses and contralateral right ADN. The results demonstrate distinct differences in central baroreflex control in conscious SHR vs. NCR. Inhibition of cardiac sympathetic tone maintains reflex bradycardia during ADN stimulation in SHR despite impaired parasympathetic activation, and depressor responses to ADN stimulation are equivalent or even greater in SHR due to augmented hindquarter vasodilation.  相似文献   

12.
Abdominal aortic pressure (AAP), heart rate (HR), and aortic nerve activity (ANA) during parabolic flight were measured by using a telemetry system to clarify the acute effect of microgravity (microG) on hemodynamics in rats. While the animals were conscious, AAP increased up to 119 +/- 3 mmHg on exposure to microG compared with the value at 1 G (95 +/- 3 mmHg; P < 0.001), whereas AAP decreased immediately on exposure to microG under urethane anesthesia (microG: 72 +/- 9 mmHg vs. 1 G: 78 +/- 8 mmHg; P < 0.05). HR also increased during microG in conscious animals (microG: 349 +/- 12 beats/min vs. 1 G: 324+9 beats/min; P < 0.01), although no change was observed under anesthesia. ANA, which was measured under anesthesia, decreased in response to acute microG exposure (microG: 33 +/- 7 counts/s vs. 1 G: 49 +/- 5 counts/s; P < 0.01). These results suggest that microG essentially induces a decrease of arterial pressure; however, emotional stress and body movements affect the responses of arterial pressure and HR during exposure to acute microG.  相似文献   

13.
Six-week-old Dahl salt-sensitive (S) and -resistant (R) rats received for 2 wk an intracerebroventricular infusion of aldosterone (Aldo) (22.5 ng/h) or vehicle containing artificial cerebrospinal fluid (aCSF) with 0.15 M Na+. At 8 wk, mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in conscious rats at rest, in response to air stress, and to an intracerebroventricular injection of the alpha2-adrenoceptor agonists guanabenz or ouabain. Baroreflex control of RSNA and HR was estimated by using intravenous phenylephrine and nitroprusside. In Dahl S but not Dahl R rats, Aldo raised resting MAP by 20-25 mmHg, doubled sympathoexcitatory and pressor responses to air stress and sympathoinhibitory and depressor responses to guanabenz, and impaired baroreflex function. In Dahl S but not Dahl R rats, Aldo significantly increased content of ouabain-like compounds (OLC) in the hypothalamus and attenuated excitatory responses to ouabain. Aldo did not affect water intake, plasma electrolytes, or OLC in plasma and adrenal glands. In another set of three groups of Dahl S rats, Aldo dissolved in aCSF containing 0.16, 0.15, or 0.14 M Na+ was infused intracerebroventricularly for 2 wk. CSF Na+ concentration ([Na+]) showed only a nonsignificant increase, but resting MAP increased from 111 +/- 3 mmHg in rats with Aldo in 0.14 M Na+ to 131 +/- 3 and 147 +/- 3 mmHg with Aldo in 0.15 and 0.16 M Na+, respectively (P < 0.05 for both). These findings indicate that in Dahl S rats, intracerebroventricular infusion of Aldo causes similar central responses as high salt intake, i.e., increases in brain OLC content, sympathetic hyperreactivity, and hypertension. The extent of the increase in blood pressure (BP) by intracerebroventricular Aldo depends on the [Na+] in the vehicle. In Dahl R rats, intracerebroventricular Aldo did not increase brain OLC, sympathetic reactivity, and BP, suggesting that in this rat strain, a decrease in central responsiveness to mineralocorticoids may contribute to its salt-resistant nature.  相似文献   

14.
Patients with postural tachycardia syndrome (POTS) have excessive tachycardia without hypotension during orthostasis as well as exercise. We tested the hypothesis that excessive tachycardia during exercise in POTS is not related to abnormal baroreflex control of heart rate (HR). Patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter) and HR (ECG) were measured. Baroreflex sensitivity of HR was assessed by bolus intravenous infusion of phenylephrine at each workload. In both positions, HR was higher in the patients than the controls during exercise. Supine baroreflex sensitivity (HR/systolic pressure) in POTS patients was -1.3 +/- 0.1 beats.min(-1).mmHg(-1) at rest and decreased to -0.6 +/- 0.1 beats.min(-1).mmHg(-1) during 75-W exercise, neither significantly different from the controls (P > 0.6). In the upright position, baroreflex sensitivity in POTS patients at rest (-1.4 +/- 0.1 beats.min(-1).mmHg(-1)) was higher than the controls (-1.0 +/- 0.1 beats.min(-1).mmHg(-1)) (P < 0.05), and it decreased to -0.1 +/- 0.04 beats.min(-1).mmHg(-1) during 75-W exercise, lower than the controls (-0.3 +/- 0.09 beats.min(-1).mmHg(-1)) (P < 0.05). The reduced arterial baroreflex sensitivity of HR during upright exercise was accompanied by greater fluctuations in systolic and pulse pressure in the patients than in the controls with 56 and 90% higher coefficient of variations, respectively (P < 0.01). However, when baroreflex control of HR was corrected for differences in HR, it was similar between the patients and controls during upright exercise. These results suggest that the tachycardia during exercise in POTS was not due to abnormal baroreflex control of HR.  相似文献   

15.
We determined the interaction between the vestibulosympathetic reflex and the arterial chemoreflex in 12 healthy subjects. Subjects performed three trials in which continuous recordings of muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), heart rate (HR), and arterial oxygen saturation were obtained. First, in prone subjects the otolith organs were engaged by use of head-down rotation (HDR). Second, the arterial chemoreflex was activated by inspiration of hypoxic gas (10% O2 and 90% N2) for 7 min with HDR being performed during minute 6. Third, hypoxia was repeated (15 min) with HDR being performed during minute 14. HDR [means +/- SE; increase (Delta)7 +/- 1 bursts/min and Delta50 +/- 11% for burst frequency and total MSNA, respectively; P < 0.05] and hypoxia (Delta6 +/- 2 bursts/min and Delta62 +/- 29%; P < 0.05) increased MSNA. Additionally, MSNA increased when HDR was performed during hypoxia (Delta11 +/- 2 bursts/min and Delta127 +/- 57% change from normoxia; P < 0.05). These increases in MSNA were similar to the algebraic sum of the individual increase in MSNA elicited by HDR and hypoxia (Delta13 +/- 1 bursts/min and Delta115 +/- 36%). Increases in MAP (Delta3 +/- 1 mmHg) and HR (Delta19 +/- 1 beats/min) during combined HDR and hypoxia generally were smaller (P < 0.05) than the algebraic sum of the individual responses (Delta5 +/- 1 mmHg and Delta24 +/- 2 beats/min for MAP and HR, respectively; P < 0.05). These findings indicate an additive interaction between the vestibulosympathetic reflex and arterial chemoreflex for MSNA. Therefore, it appears that MSNA outputs between the vestibulosympathetic reflex and arterial chemoreflex are independent of one another in humans.  相似文献   

16.
Acute studies suggest that adiponectin may reduce sympathetic activity and blood pressure (BP) via actions on the central nervous system (CNS). However, the chronic effects of adiponectin on energy expenditure and cardiovascular function are still poorly understood. We tested if chronic intracerebroventricular (ICV) infusion of adiponectin (1 or 7μg/day) in Sprague-Dawley rats fed a high fat diet (HFD) for 8 weeks and at the high dose (7μg/day) in spontaneously hypertensive rats (SHRs), a hypertensive model associated with sympathetic overactivity, evoked chronic reductions in BP and heart rate (HR). We also determined if chronic ICV adiponectin infusion alters appetite, whole body oxygen consumption (VO(2)), and insulin and leptin levels. Neither dose of adiponectin infused for 7 days significantly altered BP or HR in the HFD group (115±2 to 112±2mmHg and 384±6 to 379±6bpm at 1μg/day; 109±3 to 111±3mmHg and 366±5 and 367±5bpm at 7μg/day). The higher dose slightly reduced food intake (14±1 to 11±1g/day), whereas VO(2), insulin and leptin levels were not affected by the treatment. In SHRs, ICV adiponectin infusion reduced appetite (22±2 to 12±2g/day) and insulin levels (~55%), but did not alter BP (162±4 to 164±3mmHg) or HR (312±5 to 322±8bpm). These results suggest that adiponectin, acting via its direct actions on the CNS, has a small effect to reduce appetite and insulin levels, but it has no long-term action to reduce BP or HR, or to alter whole body metabolic rate.  相似文献   

17.
Recent data indicate that bilateral carotid sinus denervation in patients results in a chronic impairment in the rapid reflex control of blood pressure during orthostasis. These findings are inconsistent with previous human experimental investigations indicating a minimal role for the carotid baroreceptor-cardiac reflex in blood pressure control. Therefore, we reexamined arterial baroreflex [carotid (CBR) and aortic baroreflex (ABR)] control of heart rate (HR) using newly developed methodologies. In 10 healthy men, 27 +/- 1 yr old, an abrupt decrease in mean arterial pressure (MAP) was induced nonpharmacologically by releasing a unilateral arterial thigh cuff (300 Torr) after 9 min of resting leg ischemia under two conditions: 1) ABR and CBR deactivation (control) and 2) ABR deactivation. Under control conditions, cuff release decreased MAP by 13 +/- 1 mmHg, whereas HR increased 11 +/- 2 beats/min. During ABR deactivation, neck suction was gradually applied to maintain carotid sinus transmural pressure during the initial 20 s after cuff release (suction). This attenuated the increase in HR (6 +/- 1 beats/min) and caused a greater decrease in MAP (18 +/- 2 mmHg, P < 0.05). Furthermore, estimated cardiac baroreflex responsiveness (DeltaHR/DeltaMAP) was significantly reduced during suction compared with control conditions. These findings suggest that the carotid baroreceptors contribute more importantly to the reflex control of HR than previously reported in healthy individuals.  相似文献   

18.
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF) and vascular conductance (CVC) in conscious, chronically instrumented dogs during treadmill exercise ranging from mild to severe workloads. Metaboreflex responses were also observed during mild exercise with constant heart rate (HR) of 225 beats/min and beta(1)-adrenergic receptor blockade to attenuate the substantial reflex increases in cardiac work. The muscle metaboreflex was activated via graded partial occlusion of hindlimb blood flow. During mild exercise, with muscle metaboreflex activation, hindlimb ischemia elicited significant reflex increases in mean arterial pressure (MAP), HR, and cardiac output (CO) (+39.0 +/- 5.2 mmHg, +29.9 +/- 7.7 beats/min, and +2.0 +/- 0.4 l/min, respectively; all changes, P < 0.05). CBF increased from 51.9 +/- 4.3 to 88.5 +/- 6.6 ml/min, (P < 0.05), whereas no significant change in CVC occurred (0.56 +/- 0.06 vs. 0.59 +/- 0.05 ml. min(-1). mmHg(-1); P > 0.05). Similar responses were observed during moderate exercise. In contrast, with metaboreflex activation during severe exercise, no further increases in CO or HR occurred, the increases in MAP and CBF were attenuated, and a significant reduction in CVC was observed (1.00 +/- 0.12 vs. 0.90 +/- 0.13 ml. min(-1). mmHg(-1); P < 0.05). Similarly, when the metaboreflex was activated during mild exercise with the rise in cardiac work lessened (via constant HR and beta(1)-blockade), no increase in CO occurred, the MAP and CBF responses were attenuated (+15.6 +/- 4.5 mmHg, +8.3 +/- 2 ml/min), and CVC significantly decreased from 0.63 +/- 0.11 to 0.53 +/- 0.10 ml. min(-1). mmHg(-1). We conclude that the muscle metaboreflex induced increases in sympathetic nerve activity to the heart functionally vasoconstricts the coronary vasculature.  相似文献   

19.
We have previously shown that acute intravenous injection of the angiotensin-converting enzyme (ACE) inhibitor enalapril in diabetic rats evokes a baroreflex-independent sympathoexcitatory effect that does not occur with angiotensin receptor blockade alone. As ACE inhibition also blocks bradykinin degradation, we sought to determine whether bradykinin mediated this effect. Experiments were performed in conscious male Sprague-Dawley rats, chronically instrumented to measure mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), 2 wk after streptozotocin (55 mg/kg iv, diabetic, n = 11) or citrate vehicle (normal, n = 10). Enalapril (2.5 mg/kg iv) decreased MAP in normal rats (-15 +/- 3 mmHg), while a smaller response (-4 +/- 1 mmHg) occurred in diabetic rats. Despite these different depressor responses to enalapril, HR (+44 +/- 8 vs. +26 +/- 7 bpm) and RSNA (+90 +/- 21 vs +71 +/- 8% baseline) increased similarly between the groups (P > or = 0.22 for both). Pretreatment with the bradykinin B2 receptor antagonist Hoe 140 (10 microg/kg bolus followed by 0.8.mug(-1)kg.min(-1) infusion) attenuated the decrease in MAP observed with enalapril in normal rats but had no effect in diabetic rats. Moreover, the normal group had smaller HR and RSNA responses (HR: +13 +/- 8 bpm; RSNA: +32 +/- 13% baseline) that were abolished in the diabetic group (HR: -4 +/- 5 bpm; RSNA: -5 +/- 9% baseline; P < 0.05 vs. preenalapril values). Additionally, bradykinin (20 microg/kg iv) evoked a larger, more prolonged sympathoexcitatory effect in diabetic compared with normal rats that was further potentiated after treatment with enalapril. We conclude that enhanced bradykinin signaling mediates the baroreflex-independent sympathoexcitatory effect of enalapril in diabetic rats.  相似文献   

20.
To test the hypothesis that high osmolality acts in the brain to chronically support mean arterial pressure (MAP) and lumbar sympathetic nerve activity (LSNA), the osmolality of blood perfusing the brain was reduced in conscious water-deprived and water-replete rats by infusion of hypotonic fluid via bilateral nonoccluding intracarotid catheters. In water-deprived rats, the intracarotid hypotonic infusion, estimated to lower osmolality by approximately 2%, decreased MAP by 9+/-1 mmHg and LSNA to 86+/-7% of control; heart increased by 25+/-8 beats per minute (bpm) (all P<0.05). MAP, LSNA, and heart rate did not change when the hypotonic fluid was infused intravenously. The intracarotid hypotonic fluid infusion was also ineffective in water-replete rats. Prior treatment with a V1 vasopressin antagonist did not alter the subsequent hypotensive and tachycardic effects of intracarotid hypotonic fluid infusion in water-deprived rats. In summary, acute decreases in osmolality of the carotid blood of water-deprived, but not water-replete, rats decreases MAP and LSNA and increases heart rate. These data support the hypothesis that the elevated osmolality induced by water deprivation acts via a region perfused by the carotid arteries, presumably the brain, to tonically increase MAP and LSNA and suppress heart rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号