首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
Analysis of the ACP1 gene product: classification as an FMN phosphatase.   总被引:1,自引:0,他引:1  
The relationship between the ACP1 gene product, an 18kDa acid phosphatase (E.C. 3.1.3.2) postulated to function as a protein tyrosyl phosphatase, and the cellular flavin mononucleotide (FMN) phosphatase has been examined in vitro and by using cultured Chinese hamster ovary (CHO) cells. Kinetic analysis indicated that at pH 6 the acid phosphatase utilized a variety of phosphate monoesters as substrates. While small molecules such as FMN were effectively utilized as substrates (kcat/Km = 7.3 x 10(3) s-1M-1), the tyrosyl phosphorylated form of the adipocyte lipid binding protein was a relatively poor substrate (kcat/Km = 1.7 x 10(-1) s-1M-1) suggesting a role for the phosphatase in flavin metabolism. Fractionation of CHO cell extracts revealed that 90% of the FMN phosphatase activity was soluble and that all of the soluble activity eluted from a Sephadex G-75 column with the acid phosphatase. All of the soluble FMN phosphatase activity was inhibited by immunospecific antibodies directed against the bovine heart ACP1 gene product. These results suggest that the ACP1 gene product functions cellularly not as a protein tyrosyl phosphatase but as a soluble FMN phosphatase.  相似文献   

2.
We have characterized an open reading frame of 2,454 bp on chromosome I of Schizosaccharomyces pombe as the gene encoding trehalose-6P phosphatase (tpp1(+)). Disruption of tpp1(+) caused in vivo accumulation of trehalose-6P upon heat shock and prevented cell growth at 37 to 40 degrees C. Accumulation of trehalose-6P in cells bearing a chromosomal disruption of the tpp1(+) gene and containing a plasmid with tpp1(+) under the control of the thiamine-repressible promotor correlated with tpp1(+) repression. The level of tpp1(+) mRNA rose upon heat shock, osmostress, or oxidative stress and was negatively controlled by cyclic AMP-dependent protein kinase activity. Expression of tpp1(+) during oxidative or osmotic stress, but not during heat shock, was under positive control by the wis1-sty1 (equivalent to phh1 and spc1) mitogen-activated protein kinase pathway. Analysis of Tpp1 protein levels suggests that the synthesis of trehalose-6P phosphatase may also be subjected to translational or posttranslational control.  相似文献   

3.
In this paper evidences are presented strongly confirming that an extracellular 32P-phosphopeptide phosphatase activity of yeast is accounted for by acid phosphatase. Dephosphorylation of 32P phosphoseryl peptides was achieved with whole yeast cells, thus demonstrating extracellular location of protein phosphatase activity. The acid phosphatase and protein phosphatase activity copurified throughout purification procedure. Purified enzyme showed the same pH-profile and had the same Km value with phosphopeptide substrate as intact cells. Protein phosphatase activity is repressed by phosphate in the same manner as acid phosphatase activity, showing that not only repressible but also constitutive acid phosphatase displays protein phosphatase activity. Using mutant strains defective in acid phosphatase activity it was confirmed that acid phosphatase and protein phosphatase activities are the products of the same gene(s).  相似文献   

4.
5.
The agp gene of Escherichia coli encodes an acid glucose-1-phosphatase, one of the numerous phosphatases optimally active between pH 4 and 6 found in the periplasmic space of this bacterium. An agp-phoA protein fusion linked to a gene conferring kanamycin resistance was inserted into the chromosome in place of agp by homologous recombination and was mapped to minute 22.6. Because the activity of glucose-1-phosphatase cannot be measured accurately in whole cells, the alkaline phosphatase activity of the agp-phoA hybrid protein was used to monitor the expression of the chromosomal agp gene. The expression of agp was subject to catabolite repression but was unaffected by the concentration of inorganic phosphate in the growth medium. The product of the agp gene was required for growth on glucose-1-phosphate as the sole carbon source, a function for which alkaline phosphatase or other acid phosphatases cannot substitute.  相似文献   

6.
The expression of murine endostatin was achieved by placing its gene downstream of an alkaline phosphatase gene (phoA) promoter. To ensure proper folding and secretion of the recombinant protein, the mouse endostatin was fused with alkaline phosphatase signal peptide. SDS/polyacrylamide gel electrophoresis analysis of the culture medium of recombinant Escherichia coli cells revealed that endostatin was efficiently secreted. The signal peptide was efficiently cleaved during secretion as demonstrated by N-terminal amino acid sequencing. The maximum yield of secreted endostatin during fermentation was 40 mg/liter. Up to 28 mg of endostatin was purified from 1 liter of cell culture broth. The biological activity of recombinant protein was tested in a bovine aortic endothelial (BAE) cell proliferation assay. The recombinant endostatin inhibited the growth of BAE cells stimulated by basic fibroblast growth factor, and its ED50 was comparable to that from a previous report. Flow cytometric measurements of BAE cells cultivated in medium with endostatin demonstrated a cell cycle arrest mainly in the G0/G1 phase and a decrease in the S phase.  相似文献   

7.
Regulation of rhodopsin dephosphorylation by arrestin   总被引:9,自引:0,他引:9  
We have characterized the opsin phosphatase activities in extracts of rod outer segments and determined their relationship to known protein phosphatases. The opsin phosphatase activity in the extracts was not due to protein phosphatases 1, 2B, or 2C because it was neither stimulated by Mg2+ or Ca2+/calmodulin nor inhibited by protein phosphatase inhibitors-1 or -2. Opsin phosphatase activity in rod outer segment extracts was potently inhibited by okadaic acid (IC50 approximately 10 nM), a preferential inhibitor of protein phosphatase 2A. Moreover, during chromatography on DEAE-Sepharose, the opsin phosphatase activity co-eluted with three peaks of protein phosphatase 2A activity, termed protein phosphatases 2A0, 2A1, and 2A2. The opsin phosphatase activity of each peak was stimulated by polylysine, a known activator of protein phosphatase 2A. Finally, treatment of rod outer segment extracts with 80% ethanol at room temperature converted the activity from a high molecular weight form characteristic of the protein phosphatase 2A0, 2A1, and 2A2 species to a low molecular weight form characteristic of the protein phosphatase 2A catalytic subunit. We conclude that protein phosphatase 2A is likely to be the physiologically relevant rhodopsin phosphatase. The 48-kDa rod outer segment protein arrestin (S-antigen) was found to inhibit the dephosphorylation of freshly photolyzed rhodopsin by protein phosphatase 2A but did not inhibit the dephosphorylation of unbleached rhodopsin. Arrestin has no effect on the dephosphorylation of phorphorylase a, indicating that the effect was substrate-directed. It appears that dephosphorylation of the photoreceptor protein phosphorhodopsin occurs only after decay of the photoactivated protein and that this may be regulated in vivo by arrestin. The binding of arrestin to photolyzed phosphorylated rhodopsin, i.e. the binding of a regulatory protein to a protein phosphatase substrate to form a complex resistant to dephosphorylation represents a novel mechanism for the regulation of protein phosphatase 2A.  相似文献   

8.
Purified alkaline phosphatase and plasma membranes from human liver were shown to dephosphorylate phosphohistones and plasma membrane phosphoproteins. The protein phosphatase activity of the liver plasma membranes was inhibited by levamisole, a specific inhibitor of alkaline phosphatase, and by phenyl phosphonate and orthovanadate, but was relatively insensitive to fluoride (50 mM). Endogenous membrane protein phosphatase activity was optimal at pH 8.0, compared to pH 7.8 for purified liver alkaline phosphatase. Plasma membranes also exhibited protein kinase activity using exogenous histone or endogenous membrane proteins (autophosphorylation) as substrates; this activity was cAMP-dependent. Autophosphorylation of plasma membrane proteins was apparently enhanced by phenyl phosphonate, levamisole, or orthovanadate. The dephosphorylation of phosphohistones by protein phosphatase 1 was not inhibited by levamisole but was inhibited by fluoride. Inhibition of endogenous protein phosphatase activity by orthovanadate during autophosphorylation of plasma membranes could be reversed by complexation of the inhibitor with (R)-(-)-epinephrine, and the dephosphorylation that followed was levamisole-sensitive. Neither plasma membranes nor purified liver alkaline phosphatase dephosphorylated glycogen phosphorylase a. These results suggest that the increased [32P]phosphate incorporation by endogenous protein kinases into the membrane proteins is due to inhibition of alkaline phosphatase and that the major protein phosphatase of these plasma membranes is alkaline phosphatase.  相似文献   

9.
10.
The bimG11 allele causes a conditional growth defect in the fungus Aspergillus nidulans preventing both progression through mitosis and normal polar growth. Previously, we have shown that the bimG11 mutation increases the phosphorylation of nuclear proteins and that the gene encodes a protein similar to mammalian type 1 protein phosphatase. Assay of protein phosphatase activity in protein extracts of Aspergillus demonstrates directly that type 1 phosphatase activity is greatly reduced in the mutant at restrictive temperature. Expression of a muscle type 1 protein phosphatase fully complements all aspects of the bimG11 phenotype, and restores the level of PP1 activity to nearly normal. Expression of the related phosphatase, PP2A, does not complement the bimG11 mutation, showing that complementation can only be achieved by the type 1 gene. This clearly demonstrates that the phenotype of bimG11 is due to reduced PP1 activity and that the PP1 catalytic subunit is functionally conserved over a wide span of evolution.  相似文献   

11.
The first evidence for tyrosine phosphatase signalling pathways in plants is presented by characterizing a putative protein tyrosine phosphatase gene from the unicellular green alga Chlamydomonas eugametos . This cDNA, referred to as VH-PTP13 , contains an open reading frame specifying a protein with a molecular weight of 30.3 kDa, that has significant homology with a distinct group of dual-specificity phosphatases. The highest homology is found with CL-100 , a human stress-response gene that regulates MAPkinase activity. The purified VH-PTP13 protein expressed in E. coli had phosphatase activity and inactivated MAPkinases from alfalfa and tobacco. Non-dividing C. eugametos gametes did not express the VH-PTP13 gene whereas synchronously dividing vegetative cells only expressed VH-PTP13 in the early G1-phase of the cycle, implying a function there. When vegetative cells were subjected to oxidative stress, expression of the VH-PTP13 gene was strongly induced, analogous to the human CL-100 gene. Its potential role in plant signalling pathways is discussed.  相似文献   

12.
Phylogenetic comparisons of gene and protein sequences between related species are often used to identify evolutionarily conserved elements that are important for gene expression, function, or regulation. However, homologoues may sometimes be difficult to identify by conventional low stringency hybridisation techniques, if they have undergone substantial sequence divergence. A new approach, cloning by synteny, is described that was used to identify the C. briggsae homologue of the C. elegans sex-determining gene tra-2. We show that four genes tra-2, ppp-1, art-1, and sod-1 are organised in a syntenic cluster and suggest that extensive conservation of gene linkage may exist between C. briggsae and C. elegans. We have also constructed a C. briggsae cDNA library to facilitate characterisation of these genes. Given the rapid progress in the physical mapping and sequencing of the C. elegans genome, cloning by synteny may provide the fastest method for identifying C. briggsae gene homologues, especially for genes encoding novel proteins.  相似文献   

13.
14.
Loss-of-function gac1 mutants of Saccharomyces cerevisiae fail to accumulate normal levels of glycogen because of low glycogen synthase activity. Increased dosage of GAC1 results in increased activity of glycogen synthase and a corresponding hyperaccumulation of glycogen. The glycogen accumulation phenotype of gac1 is similar to that of glc7-1, a type 1 protein phosphatase mutant. We have partially characterized the GAC1 gene product (Gac1p) and show that levels of Gac1p increase during growth with the same kinetics as glycogen accumulation. Gac1p is phosphorylated in vivo and is hyperphosphorylated in a glc7-1 mutant. Gac1p and the type 1 protein phosphatase directly interact in vitro, as assayed by coimmunoprecipitation, and in vivo, as determined by the dihybrid assay described elsewhere (S. Fields and O.-k. Song, Nature [London] 340:245-246, 1989). The interaction between Gac1p and the glc7-1-encoded form of the type 1 protein phosphatase is defective, as assayed by either immunoprecipitation or the dihybrid assay. Increased dosage of GAC1 partially suppresses the glycogen defect of glc7-1. Collectively, our data support the hypotheses that GAC1 encodes a regulatory subunit of type 1 protein phosphatase and that the glycogen accumulation defect of glc7-1 is due at least in part to the inability of the mutant phosphatase to interact with its regulatory subunit.  相似文献   

15.
Canine cardiac sarcoplasmic reticulum vesicles contain intrinsic phospholamban protein phosphatase activity, which is also effective in dephosphorylating phosphorylase a. The phosphatase associated with sarcoplasmic reticulum membranes was solubilized with Triton X-100 and subjected to chromatography on Mono Q HR 5/5 and polylysine-agarose. A single peak of phosphatase activity was eluted from each column and it was coincident for both phospholamban and phosphorylase a, used as substrates. Thermal denaturation of the enzyme resulted in progressive and coincident loss of both phospholamban and phosphorylase a phosphatase activities. Enzymic activity was partially inhibited by protein phosphatase inhibitor 1. Migration of the enzyme during sucrose density gradient ultracentrifugation corresponded to a globular protein with an apparent Mr of 46,000. This enzyme preparation could dephosphorylate both the calcium-calmodulin-dependent as well as the cAMP-dependent sites on phospholamban. Thus, dephosphorylation of phospholamban by this sarcoplasmic reticulum-associated phosphatase may participate in modulating sarcoplasmic reticulum function in cardiac muscle.  相似文献   

16.
17.
目的:表达并纯化有活性的GST-Cdc25C融合蛋白,以用于Cdc25C功能研究。方法:利用RT-PCR克隆MCF-7细胞的cdc25c全长基因;在大肠杆菌中表达GST-Cdc25C融合蛋白;利用GSH交联的琼脂糖珠纯化GST-Cdc25C融合蛋白;通过体外磷酸酶活性分析检测GST-Cdc25C融合蛋白的磷酸酶活性。结果:克隆获得1465 bp的人源cdc25c全长基因,并克隆至pGEX-4T-1原核表达载体;在原核系统中可溶性表达了相对分子质量约87×103的GST-Cdc25C融合蛋白;通过亲和纯化获得的GST-Cdc25C融合蛋白具有较好的磷酸酶活性。结论:得到了有磷酸酶活性的GST-Cdc25C融合蛋白,可用于后续的Cdc25C功能研究。  相似文献   

18.
19.
Abstract: The involvement of cell cycle-regulatory proteins in apoptosis of neuronally differentiated PC12 cells induced by the removal of nerve growth factor and serum was examined. Three major findings are presented. (1) Cdc2 kinase protein levels increased fivefold in apoptotic PC12 cells by day 3 of serum and nerve growth factor deprivation. Histone H1 kinase activity was increased significantly in p13suc1 precipitates of apoptotic PC12 cells, which was due to increased activation and/or expression of cdc2 kinase. (2) The protein levels of cyclin-dependent kinase 4, cyclin D, and proliferating cell nuclear antigen that are normally expressed in the cell cycle were increased during neuronal PC12 cell apoptosis. (3) The levels of the catalytic subunit, but not the regulatory subunit of the calcium/calmodulin-dependent protein phosphatase 2B, decreased significantly concomitant with a significant decrease in protein phosphatase 2B activity early in the apoptotic process. Protein phosphatase 2A activity decreased slightly but significantly after 3 days of serum and nerve growth factor deprivation, and no alterations in protein phosphatase 1 were observed during the apoptotic process. These data demonstrate that certain cell cycle-regulatory proteins are inappropriately expressed and that alterations in specific phosphorylation events, as indicated by the increase in histone H1 kinase activity and the decrease in protein phosphatase 2B activity, are most likely occurring during apoptosis of PC12 cells. These observations support the hypothesis that apoptosis may be due in part to a nondividing cell's uncoordinated attempt to reenter and progress through the cell cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号