首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free nitric oxide (NO) activates soluble guanylate cyclase (sGC), an enzyme, within both pulmonary and vascular smooth muscle. sGC catalyzes the cyclization of guanosine 5'-triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP). Binding rates of NO to the ferrous heme(s) of sGC have been measured in vitro. However, a missing link in our understanding of the control mechanism of sGC by NO is a comprehensive in vivo kinetic analysis. Available literature data suggests that NO dissociation from the heme center of sGC is accelerated by its interaction with one or more cofactors in vivo. We present a working model for sGC activation and NO consumption in vivo. Our model predicts that NO influences the cGMP formation rate over a concentration range of approximately 5-100 nM (apparent Michaelis constant approximately 23 nM), with Hill coefficients between 1.1 and 1.5. The apparent reaction order for NO consumption by sGC is dependent on NO concentration, and varies between 0 and 1.5. Finally, the activation of sGC (half-life approximately 1-2 s) is much more rapid than deactivation (approximately 50 s). We conclude that control of sGC in vivo is most likely ultra-sensitive, and that activation in vivo occurs at lower NO concentrations than previously reported.  相似文献   

2.
Soluble guanylate cyclase (sGC), as a nitric oxide (NO) sensor, is a critical heme-containing enzyme in NO-signaling pathway of eukaryotes. Human sGC is a heterodimeric hemoprotein, composed of a α-subunit (690 AA) and a heme-binding β-subunit (619 AA). Upon NO binding, sGC catalyzes the conversion of guanosine 5′-triphosphate (GTP) to 3′,5′-cyclic guanosine monophosphate (cGMP). cGMP is a second messenger and initiates the nitric oxide signaling, triggering vasodilatation, smooth muscle relaxation, platelet aggregation, and neuronal transmission etc. The breakthrough of the bottle neck problem for sGC-mediated NO singling was made in this study. The recombinant human sGC β1 subunit (HsGCβ619) and its truncated N-terminal fragments (HsGCβ195 and HsGCβ384) were efficiently expressed in Escherichia coli and purified successfully in quantities. The three proteins in different forms (ferric, ferrous, NO-bound, CO-bound) were characterized by UV–vis and EPR spectroscopy. The homology structure model of the human sGC heme domain was constructed, and the mechanism for NO binding to sGC was proposed. The EPR spectra showed a characteristic of five-coordinated heme-nitrosyl species with triplet hyperfine splitting of NO. The interaction between NO and sGC was investigated and the schematic mechanism was proposed. This study provides new insights into the structure and NO-binding of human sGC. Furthermore, the efficient expression system of E. coli will be beneficial to the further studies on structure and activation mechanism of human sGC.  相似文献   

3.
Soluble guanylate cyclase   总被引:1,自引:0,他引:1  
Soluble guanylate cyclase (sGC) is a mammalian nitric oxide (NO) sensor. When NO binds to the sGC heme, its GTP cyclase activity markedly increases, thus generating cyclic GMP, which serves to regulate several cell signaling functions. A good deal is known about the kinetics and equilibrium of binding of NO to sGC, leading to a proposed multistep mechanism of sGC activation that involves at least two NO-binding sites. The crystal structure of a member of a recently discovered family of prokaryotic sGC homologues has provided important insights into structure-function relationships within the sGC family of proteins.  相似文献   

4.
Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200-fold compared with only four-fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sGC, which belongs to the heme nitric oxide oxygen (H-NOX) domain family, also evolutionarily conserved in prokaryotes. Here we report crystal structures of the free, NO-bound, and CO-bound H-NOX domains of a cyanobacterial homolog. These structures and complementary mutational analysis in sGC reveal a molecular ruler mechanism that allows sGC to favor NO over CO while excluding oxygen, concomitant to signaling that exploits differential heme pivoting and heme bending. The heme thereby serves as a flexing wedge, allowing the N-terminal subdomain of H-NOX to shift concurrent with the transition of the six- to five-coordinated NO-bound state upon sGC activation. This transition can be modulated by mutations at sGC residues 74 and 145 and corresponding residues in the cyanobacterial H-NOX homolog.  相似文献   

5.
Nitric oxide signals through activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain) to the effector domain (catalytic domain), in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105) of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC.  相似文献   

6.
Although soluble guanylyl cyclase (sGC) functions in an environment in which O(2), NO, and CO are potential ligands for its heme moiety, the enzyme displays a high affinity for only its physiological ligand, NO, but has a limited affinity for CO and no affinity for O(2). Recent studies of a truncated version of the sGC beta(1)-subunit containing the heme-binding domain (Boon, E. M., Huang, S H., and Marletta, M. A. (2005) Nat. Chem. Biol., 1, 53-59) showed that introduction of the hydrogen-bonding tyrosine into the distal heme pocket changes the ligand specificity of the heme moiety and results in an oxygen-binding sGC. The hypothesis that the absence of hydrogen-bonding residues in the distal heme pocket is sufficient to provide oxygen discrimination by sGC was put forward. We tested this hypothesis in a context of a complete sGC heterodimer containing both the intact alpha(1)- and beta(1)-subunits. We found that the I145Y substitution in the full-length beta-subunit of the sGC heterodimer did not produce an oxygen-binding enzyme. However, this substitution impeded the association of NO and destabilized the NO.heme complex. The tyrosine in the distal heme pocket also impeded both the binding and dissociation of the CO ligand. We propose that the mechanism of oxygen exclusion by sGC not only involves the lack of hydrogen bonding in the distal heme pocket, but also depends on structural elements from other domains of sGC.  相似文献   

7.
The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells including soluble guanylate cyclase (sGC). hsp90 associates with the heme-free (apo) sGC-β1 subunit and helps to drive heme insertion during maturation of sGC to its NO-responsive active form. Here, we found that NO caused apo-sGC-β1 to rapidly and transiently dissociate from hsp90 and associate with sGC-α1 in cells. This NO response (i) required that hsp90 be active and that cellular heme be available and be capable of inserting into apo-sGC-β1; (ii) was associated with an increase in sGC-β1 heme content; (iii) could be mimicked by the heme-independent sGC activator BAY 60-2770; and (iv) was followed by desensitization of sGC toward NO, sGC-α1 disassociation, and reassociation with hsp90. Thus, NO promoted a rapid, transient, and hsp90-dependent heme insertion into the apo-sGC-β1 subpopulation in cells, which enabled it to combine with the sGC-α1 subunit to form the mature enzyme. The driving mechanism likely involves conformational changes near the heme site in sGC-β1 that can be mimicked by the pharmacologic sGC activator. Such dynamic interplay between hsp90, apo-sGC-β1, and sGC-α1 in response to NO is unprecedented and represent new steps by which cells can modulate the heme content and activity of sGC for signaling cascades.  相似文献   

8.
Soluble guanylyl cyclase (sGC) is the major physiological receptor for nitric oxide (NO) throughout the central nervous system. Three different subunits form the α11 and α21 heterodimeric enzymes that catalyze the reaction of GTP to the second messenger cGMP. Both forms contain a prosthetic heme group which binds NO and mediates activation by NO. A number of studies have shown that NO/cGMP signaling plays a major role in neuronal cell differentiation during development of the central nervous system. In the present work, we studied regulation and expression of sGC in brain of rats during postnatal development using biochemical methods. We consistently observed a surprising decrease in cerebral NO sensitive enzyme activity in adult animals in spite of stable expression of sGC subunits. Total hemoprotein heme content was decreased in cerebrum of adult animals, likely because of an increase in heme oxygenase activity. But the loss of sGC activity was not simply because of heme loss in intact heterodimeric enzymes. This was shown by enzyme activity determinations with cinaciguat which can be used to test heme occupancy in intact heterodimers. A reduction in heterodimerization in cerebrum of adult animals was demonstrated by co‐precipitation analysis of sGC subunits. This explained the observed decrease in NO sensitive guanylyl cyclase activity in cerebrum of adult animals. We conclude that differing efficiencies in heterodimer formation may be an important reason for the lack of correlation between sGC protein expression and sGC activity that has been described previously. We suggest that heterodimerization of sGC is a regulated process that changes during cerebral postnatal development because of still unknown signaling mechanisms.  相似文献   

9.
Soluble guanylate cyclase (sGC), a heterodimer consisting of alpha- and beta-subunit, is the key enzyme of the NO/cGMP signaling pathway. The heme moiety ligated to the beta-subunit via His(105) is crucial for the activation of the enzyme by NO. In addition to this NO binding capability, the heme status of the enzyme influences the activity of non-NO sGC activators and sGC inhibitors. Different sGC activity profiles were observed in the presence, absence, or the oxidized form of heme. Modulating the heme status is therefore crucial for the investigation of the mechanism of sGC activation. Here, we present a simple and reliable procedure for the removal of the heme moiety of sGC that is capable of eliminating any traces of unbound heme and detergent from the sample mixture in one single step. Samples containing 15 microg sGC and the non-ionic detergent Tween 20 (2%) were incubated at 37 degrees C for 10 min and loaded onto centrifugal ion exchange columns. After centrifugation, heme was bound entirely to the ion exchanger and could not be eluted, even after incubation with 1M NaCl. Tween 20 was found completely within the flowthrough. Heme-free sGC was eluted from the ion exchanger after application of 300 mM NaCl. The absence of the heme moiety was confirmed by UV/Vis spectra and determination of the enzymatic activity. In summary, the described procedure is suitable for the preparation of very small amounts of highly purified heme-free sGC for the investigation of the mechanism of action of different types of sGC activators.  相似文献   

10.
It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols.Nitric oxide (NO)2 is the most studied of the endogenously generated nitrogen oxides and is well known to mediate many aspects of cardiovascular function including the regulation of vascular tone and platelet aggregation (for example, see Ref. 1). These responses are in large part due to the interaction of NO with its most established endogenous receptor, soluble guanylate cyclase (sGC) (2). This 150-kDa heterodimeric heme protein catalyzes the production of the second messenger molecule cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP) (3). The basal activity of sGC is enhanced several hundred fold upon binding of NO to the single regulatory heme site. This stimulation of activity is a result of a conformational change induced by cleavage of the proximal histidine heme ligand upon formation of the ferrous nitrosyl complex, which is preferentially pentacoordinate (4). In addition to heme site regulation of sGC, there are numerous reports indicating that oxidation of cysteine thiol residues on this protein can also alter/regulate both the basal activity and the degree of NO-mediated activation (510).Recently, the one-electron reduced and protonated congener of NO, nitroxyl (HNO) has received significant interest as a cardiovascular agent whose actions are independent of NO formation (11). For example, a study by Ellis and co-workers (12) suggests that HNO is a vital component of endothelium-derived relaxing factor along with NO in rat aorta. HNO is also able to mediate murine aorta vasorelaxation even in the presence of NO scavengers (13). Furthermore, the vasodilation produced by HNO was inhibited by the sGC heme site inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one implicating sGC activation in this HNO-mediated effect. In addition to its effects on large conduit vessels like the aorta, HNO also dilates rat small mesenteric resistance-like arteries through sGC-dependent and voltage-dependent K+ channel-dependent mechanisms (14). Nitroxyl (derived from the HNO-donor Angeli''s salt) is also a potent dilator of feline pulmonary vasculature equal to that of the NO donors SPER/NO, DETA/NO, and SULFI/NO (15). Most recently, HNO was found to be a potent dilator of rat coronary arteries through an sGC-mediated mechanism (16). The evidence presented in these studies suggests that HNO is able to modulate cGMP levels through an interaction with sGC, an idea in conflict with a previous report showing that NO is the only nitrogen oxide capable of directly activating sGC (17).HNO forms a stable adduct with the ferrous heme of deoxymyoglobin (18, 19) providing precedence for a possible interaction between HNO and sGC that is akin to the interaction of NO with ferrous sGC. In light of all the reports indicating possible HNO-mediated activation of sGC, an examination of the direct interaction of HNO with purified sGC was carried out to evaluate the possibility that HNO may be capable of directly interacting with sGC to elicit activation. Moreover, due to the previously reported thiol redox regulation of sGC (see above) and the known thiophilicity of HNO (20), we also examined the effects of HNO-mediated thiol modification on enzyme activity.  相似文献   

11.
The enzyme-soluble guanylate cyclase (sGC), which converts GTP to cGMP, is a receptor for the signaling agent nitric oxide (NO). YC-1, a synthetic benzylindazole derivative, has been shown to activate sGC in an NO-independent fashion. In the presence of carbon monoxide (CO), which by itself activates sGC approximately 5-fold, YC-1 activates sGC to a level comparable to stimulation by NO alone. We have used kinetic analyses and resonance Raman spectroscopy (RR) to investigate the interaction of YC-1 and CO with guanylate cyclase. In the presence of CO and 200 microM YC-1, the V(max)/K(m GTP) increases 226-fold. While YC-1 does not perturb the RR spectrum of the ferrous form of baculovirus/Sf9 cell expressed sGC, it induces a shift in the Fe-CO stretching frequency for the CO-bound form from 474 to 492 cm(-1). Similarly, YC-1 has no effect on the RR spectrum of ferrous beta1(1-385), the isolated sGC heme-binding domain, but shifts the nu(Fe-CO) of CO-beta1(1-385) from 478 to 491 cm(-1), indicating that YC-1 binds in heme-binding region of sGC. In addition, the CO-bound forms of sGC and beta1(1-385) in the presence of YC-1 lie on the nu(Fe-CO) vs nu(C-O) correlation curve for proximal ligands with imidazole character, which suggests that histidine remains the heme proximal ligand in the presence of YC-1. Interestingly, YC-1 does not shift nu(Fe-CO) for the CO-bound form of H105G(Im), the imidazole-rescued heme ligand mutant of beta1(1-385). The data are consistent with binding of CO and YC-1 to the sGC heme-binding domain leading to conformational changes that give rise to an increase in catalytic turnover and a change in the electrostatic environment of the heme pocket.  相似文献   

12.
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme formed by an alpha subunit and a beta subunit, the latter containing the heme where nitric oxide (NO) binds. When NO binds, the basal activity of sGC is increased several hundred fold. sGC activity is also increased by YC-1, a benzylindazole allosteric activator. In the presence of NO, YC-1 synergistically increases the catalytic activity of sGC by enhancing the affinity of NO for the heme. The site of interaction of YC-1 with sGC is unknown. We conducted a mutational analysis to identify the binding site and to determine what residues were involved in the propagation of NO and/or YC-1 activation. Because guanylyl cyclases (GCs) and adenylyl cyclases (ACs) are homologous, we used the three-dimensional structure of AC to guide the mutagenesis. Biochemical analysis of purified mutants revealed that YC-1 increases the catalytic activity not only by increasing the NO affinity but also by increasing the efficacy of NO. Effects of YC-1 on NO affinity and efficacy were dissociated by single-point mutations implying that YC-1 has, at least, two types of interaction with sGC. A structural model predicts that YC-1 may adopt two configurations in one site that is pseudosymmetric with the GTP binding site and equivalent to the forskolin site in AC.  相似文献   

13.
The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine monophasphate (cGMP)-signalling pathway is impaired under oxidative stress conditions due to oxidation and subsequent loss of the prosthetic sGC heme group as observed in particular in chronic renal failure. Thus, the pool of heme free sGC is increased under pathological conditions. sGC activators such as cinaciguat selectively activate the heme free form of sGC and target the disease associated enzyme. In this study, a therapeutic effect of long-term activation of heme free sGC by the sGC activator cinaciguat was investigated in an experimental model of salt-sensitive hypertension, a condition that is associated with increased oxidative stress, heme loss from sGC and development of chronic renal failure. For that purpose Dahl/ss rats, which develop severe hypertension upon high salt intake, were fed a high salt diet (8% NaCl) containing either placebo or cinaciguat for 21 weeks. Cinaciguat markedly improved survival and ameliorated the salt-induced increase in blood pressure upon treatment with cinaciguat compared to placebo. Renal function was significantly improved in the cinaciguat group compared to the placebo group as indicated by a significantly improved glomerular filtration rate and reduced urinary protein excretion. This was due to anti-fibrotic and anti-inflammatory effects of the cinaciguat treatment. Taken together, this is the first study showing that long-term activation of heme free sGC leads to renal protection in an experimental model of hypertension and chronic kidney disease. These results underline the promising potential of cinaciguat to treat renal diseases by targeting the disease associated heme free form of sGC.  相似文献   

14.
Nitric oxide (NO) transduces most of its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC). Activation of sGC results in the production of cGMP from GTP. In this paper, we demonstrate a novel protein interaction between CCT (chaperonin containing t-complex polypeptide) subunit eta and the alpha1beta1 isoform of sGC. CCTeta was found to interact with the beta1 subunit of sGC via a yeast-two-hybrid screen. This interaction was then confirmed in vitro with a co-immunoprecipitation from mouse brain. The interaction between these two proteins was further supported by a co-localization of the proteins within rat brain. Using the yeast two-hybrid system, CCTeta was found to bind to the N-terminal portion of sGC. In vitro assays with purified CCTeta and Sf9 lysate expressing sGC resulted in a 30-50% inhibition of diethylamine diazeniumdiolate-NO-stimulated sGC activity. The same assays were then performed using BAY41-2272, an NO-independent allosteric sGC activator, and CCTeta had no effect on this activity. Furthermore, CCTeta had no effect on basal or sodium nitroprusside-stimulated alphabeta(Cys-105) sGC, a constitutively active mutant that only lacks the heme group. The N-terminal 94 amino acids of CCTeta seem to be critical for the mediation of this inhibition. Lastly, a 45% inhibition of sGC activity by CCTeta was seen in vivo in BE2 cells stably transfected with CCTeta and treated with sodium nitroprusside. These data suggest that CCTeta binds to sGC and, in cooperation with some other factor, inhibits its activity by modifying the binding of NO to the heme group or the subsequent conformational changes.  相似文献   

15.
Isatin (indole-dione-2,3) is an endogenous indole that exhibits a wide spectrum of biological and pharmacological activities. Physiologically relevant concentrations of isatin (ranged from 1 nM to 10 μM) did not influence basal activity of soluble human platelet guanylate cyclase (sGC), but caused a bell-shaped inhibition of the NO-activated enzyme. Inhibition of the NO-dependent activation by isatin did not depend on a chemical nature of the NO donors. The inhibitory effects of ODC (a heme-dependent inhibitor of sGC) and isatin were non-additive suggesting that the inhibitory effect of isatin may involve the heme binding domain (possibly heme iron) and experiments with hemin revealed some isatin-dependent changes in its spectrum. Isatin also inhibited sGC activation by the allosteric activator YC-1. It is suggested that the bell shaped inhibition of the NO-dependent activation of sGC by isatin may be attributed to complex interaction of isatin with the heme binding domain and the allosteric YC-1-binding site of sGC.  相似文献   

16.
Soluble guanylyl cyclase (sGC) is a heterodimeric nitric oxide (NO) receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI) interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT) and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.  相似文献   

17.
Nitric oxide (NO) is a physiologically relevant activator of the hemoprotein soluble guanylate cyclase (sGC). In the presence of NO, sGC is activated several hundredfold above the basal level by a mechanism that remains to be elucidated. The heme ligand n-butyl isocyanide (BIC) was used to probe the mechanism of NO activation of sGC. Electronic absorption spectroscopy was used to show that BIC binds to the sGC heme, forming a 6-coordinate complex with an absorbance maximum at 429 nm. BIC activates sGC 2-5-fold, and synergizes with the allosteric activator YC-1, to activate the enzyme 15-25-fold. YC-1 activates the sGC-BIC complex, and leads to an increase in both the V(max) and K(m). BIC was also used to probe the mechanism of NO activation. The activity of the sGC-BIC complex increases 15-fold in the presence of NO, without displacing BIC at the heme, which is consistent with previous reports that proposed the involvement of a non-heme NO binding site in the activation process.  相似文献   

18.
Nitric oxide (NO) signaling regulates key processes in cardiovascular physiology, specifically vasodilation, platelet aggregation, and leukocyte rolling. Soluble guanylate cyclase (sGC), the mammalian NO sensor, transduces an NO signal into the classical second messenger cyclic GMP (cGMP). NO binds to the ferrous (Fe2+) oxidation state of the sGC heme cofactor and stimulates formation of cGMP several hundred-fold. Oxidation of the sGC heme to the ferric (Fe3+) state desensitizes the enzyme to NO. The heme-oxidized state of sGC has emerged as a potential therapeutic target in the treatment of cardiovascular disease. Here, we investigate the molecular mechanism of NO desensitization and find that sGC undergoes a reductive nitrosylation reaction that is coupled to the S-nitrosation of sGC cysteines. We further characterize the kinetics of NO desensitization and find that heme-assisted nitrosothiol formation of β1Cys-78 and β1Cys-122 causes the NO desensitization of ferric sGC. Finally, we provide evidence that the mechanism of reductive nitrosylation is gated by a conformational change of the protein. These results yield insights into the function and dysfunction of sGC in cardiovascular disease.  相似文献   

19.
Heme is a vital molecule for all life forms with heme being capable of assisting in catalysis, binding ligands, and undergoing redox changes. Heme-related dysfunction can lead to cardiovascular diseases with the oxidation of the heme of soluble guanylyl cyclase (sGC) critically implicated in some of these cardiovascular diseases. sGC, the main nitric oxide (NO) receptor, stimulates second messenger cGMP production, whereas reactive oxygen species are known to scavenge NO and oxidize/inactivate the heme leading to sGC degradation. This vulnerability of NO-heme signaling to oxidative stress led to the discovery of an NO-independent activator of sGC, cinaciguat (BAY 58–2667), which is a candidate drug in clinical trials to treat acute decompensated heart failure. Here, we present crystallographic and mutagenesis data that reveal the mode of action of BAY 58–2667. The 2.3-Å resolution structure of BAY 58–2667 bound to a heme NO and oxygen binding domain (H-NOX) from Nostoc homologous to that of sGC reveals that the trifurcated BAY 58–2667 molecule has displaced the heme and acts as a heme mimetic. Carboxylate groups of BAY 58–2667 make interactions similar to the heme-propionate groups, whereas its hydrophobic phenyl ring linker folds up within the heme cavity in a planar-like fashion. BAY 58–2667 binding causes a rotation of the αF helix away from the heme pocket, as this helix is normally held in place via the inhibitory His105–heme covalent bond. The structure provides insights into how BAY 58–2667 binds and activates sGC to rescue heme-NO dysfunction in cardiovascular diseases.  相似文献   

20.
Soluble guanylate cyclase (sGC) mediates NO signaling for a wide range of physiological effects in the cardiovascular system and the central nervous system. The α1β1 isoform is ubiquitously distributed in cytosolic fractions of tissues, whereas α2β1 is mainly found in the brain. The major occurrence and the unique characteristic of human sGC α2β1 indicate a special role in the mediation of neuronal communication. We have efficiently purified and characterized the recombinant heme-binding domain of the human sGC α2 subunit (hsGC α2(H)) and heterodimeric α2β1 (hsGC β1(H)-α2(H)) by UV-vis spectroscopy, circular dichrosim spectroscopy, EPR spectroscopy, and homology modeling. The heme dissociation and related NO/CO binding/dissociation of both hsGC α2(H) and hsGC β1(H)-α2(H) were investigated. The two truncated proteins interact with heme noncovalently. The CO binding affinity of hsGC α2(H) is threefold greater than that of human sGC α1(H), whereas the dissociation constant k (1) for dissociation of NO from hsGC α2(H) is sevenfold larger than that for dissociation of NO from hsGC α1(H), although k (2) is almost identical. The results indicate that in comparison with the α1β1 isoform, the brain α2β1 isoform exhibits a distinctly different CO/NO affinity and binding rate in favor of NO signaling, and this is consistent with its physiological role in the activation and desensitization. Molecular modeling and sequence alignments are consistent with the hypothesis that His105 contributes to the different CO/NO binding properties of different isoforms. This valuable information is helpful to understand the molecular mechanism by which human sGC α2β1 mediates NO/CO signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号