首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Abstract: Recent work indicates an important role for excitatory amino acids in behavioral sensitization to amphetamine. We therefore examined, using in vivo microdialysis in awake rats, the effects of amphetamine on efflux of glutamate, aspartate, and serine in the ventral tegmental area and nucleus accumbens, brain regions important for the initiation and expression of amphetamine sensitization, respectively. Water-pretreated and amphetamine-pretreated rats were compared to determine if sensitization altered such effects. In both brain regions, Ca2+-dependent efflux of glutamate accounted for ∼20% of basal glutamate efflux. A challenge injection of water or 2.5 mg/kg of amphetamine did not significantly alter glutamate, aspartate, or serine efflux in the ventral tegmental area or nucleus accumbens of water- or amphetamine-pretreated rats. However, 5 mg/kg of amphetamine produced a gradual increase in glutamate efflux in both regions that did not reverse, was observed in both water- and amphetamine-pretreated rats, and was prevented by haloperidol. Although increased glutamate efflux occurred with too great a delay to mediate acute behavioral responses to amphetamine, it is possible that repeated augmentation of glutamate efflux during repeated amphetamine administration results in compensatory changes in levels of excitatory amino acid receptors in the ventral tegmental area and nucleus accumbens that contribute to development or expression of amphetamine sensitization.  相似文献   

2.
It is found that serotonin content in the brain areas and heart of rats with low alcohol motivation decreases after 5 months of chronic consumption of 48% ethanol solution in a dose of 4 g/kg; in animals with high alcohol motivation serotonin content decreases only in the hypothalamus. Under chronic alcoholization for 1 and 12 months no considerable changes were found in serotonin level of the studied tissues. 60 min after intraperitoneal administration of 20% ethanol solution in a dose of 3 g/kg in intact animals there occurs an increase of serotonin content in the brain hemispheres and heart and its decrease in the hypothalamus; in rat with low alcohol motivation after taking ethanol for 5 months this administration evokes a decrease of serotonin content in the hypothalamus and truncus cerebri; in rats with high alcohol motivation--its decrease in the hypothalamus. Excretion of 5-oxyindoleacetic acid with urine decreases 10 months after alcohol intoxication. When rats were not given ethanol after its chronic taking for 3 months serotonin oxidation was intensified for the first day, which was not observed after 7-month alcoholization of animals.  相似文献   

3.
The effect of acute and chronic ethanol administration on rat brain superoxide dismutase (SOD) activity was studied. Intraperitoneal injections of ethanol led to an inhibition of SOD activity. When ethanol was fed as the sole fluid, the SOD activity decreased progressively, reaching a plateau after 6 weeks of treatment. Withdrawal of ethanol produced a recovery of control values within 48 hr. SOD activity was also decreased in rats born from ethanol-drinking mothers. Inhibition of SOD activity by ethanol may allow an accumulation of cytotoxic O2 radicals; this may account for some nervous system disorders during alcohol intoxication.  相似文献   

4.
The study of alcohol dependence mechanisms has been aided by work in rodents, where regimens of intermittent chronic administration with repeated episodes of intoxication and withdrawal can be coupled with controlled timing of in vitro studies and the possibility of relating them to behavior. The chronic intermittent ethanol (CIE) model in the rat has been found to be a good model of human alcohol dependence, showing persistent signs of withdrawal and self-administration. Studies in CIE rats suggest that plastic changes in GABA-mediated inhibition involving the GABAA receptor system may be responsible for the behavioral alterations. Here we summarize a combination of evidence that the alcoholic rat CIE model demonstrates changes in GABAA receptor subunit levels, in receptor localization, and in physiology and pharmacology, leading to alterations in behavior that contribute to the hyperexcitable alcohol withdrawal state (anxiety, insomnia, seizure susceptibility) and alcohol dependence. Special Issue dedicated to Dr. Simo S. Oja  相似文献   

5.
To study the relationship between three animal models of schizophrenia, i.e. genetically determined akinetic catatonia, stereotypies induced by amphetamine-like psychostimulators, and behavioural changes in chronic intoxication with such stimulators, the frequency of different types of reactions to a functional amphetamine analogue, methylphenidate, was studied in wild Norway rats, non-selected Wistar rats, and Wistar rats bred for predisposition to akinetic catatonia. A positive relationship between the predisposition to catatonia and the level of stereotypies in a single methylphenidate administration was found in wild rats, but not in Wistar bred for catatonia (the latter differed from the non-selected rats in a higher frequency of “hyperactive” reactions). A closer study of catatonia in laboratory rats permitted subdivision into several types—occurring in selected and non-selected rats both naturally and as a result of chronic intoxication with amphetamines. It was found in non-selected Wistar rats that there is a positive relationship between some of these types and an increased stereotypy level in repeated methylphenidate administration. It is concluded that the natural akinetic catatonia and the chronic intoxication with amphetamines are two homologous varieties of the same model of schizophrenia, while the stereotypies are characteristics of this model. Studies of monoamine oxidase (MAO) activity imply a cortical component in the predisposition to akinetic catatonia.  相似文献   

6.
The effects after the acute activation of the kappa opioid receptor (KOR) can be distinguished from the effect after repeated administration of KOR agonist. Here, we report the effect of repeated administration of U69593 during abstinence after amphetamine-induced locomotor sensitization. Rats were injected once daily with amphetamine for five consecutive days. From day 6 to 9, rats that developed locomotor sensitization, received once daily injection of U69593 or vehicle. On day 10, all rats were injected with a challenging dose of amphetamine and locomotor activity was measured to assess the expression of sensitization. Microdialysis studies were carried out to assess dopamine extracellular levels in NAc. Rats that develop and express horizontal locomotor sensitization to amphetamine show increased dopamine release in the NAc induced by high K(+). The repeated treatment with U69593 reverses the sensitized depolarization-stimulated dopamine release in the NAc, but not the expression of locomotor sensitization induced by amphetamine. Thus, repeated activation of KORs during early amphetamine withdrawal dissociates the behavioral responses and the neurochemical responses that accompany the expression of sensitization to amphetamine.  相似文献   

7.
Albino mongrel rats were used for the determination of the gamma-glutamyl transferase (gamma-GTF) and acetylcholine esterase (AChE) activities in various brain areas (cerebral hemispheres, cerebellum, hippocampus, brain stem) during acute (1.5; 4 and 6 g/kg i. p.) and chronic (15 months) alcoholic intoxication and alcohol withdrawal (24-48 h, 4 and 8 days). An increase or a decrease in the activity of these two enzymes in the various rat brain areas depends on the dose of ethanol and the time of its action. The activity of gamma-GTF grew in all brain areas during chronic ethanol intoxication; the activity of AChE was also enhanced in three brain areas but it was diminished in cerebral hemispheres. Alcohol withdrawal caused diverse changes in the activities of these two enzymes in various areas of the brain. A tendency to normalization of the gamma-GTF and AChE activities is manifested 4-8 days after alcohol withdrawal.  相似文献   

8.
目的:为了进一步研究苯丙胺神经毒性作用机制,我们对大鼠进行不同时长的反复苯丙胺刺激,检测大鼠部分脑区中蛋白羰基化的变化情况,我们的研究为苯丙胺的成瘾及治疗提供了新的理论依据。方法:分别对大鼠进行1d、3d、7d、10d及14d的苯丙胺反复刺激,进行旷场测试检测其活动量变化后,采用DNPH法检查的大鼠大脑前皮层、海马区、杏仁核三大脑区总蛋白的蛋白羰基化水平变化,探讨反复苯丙胺刺激对大鼠脑部蛋白羰基化的影响。结果:苯丙胺刺激7d及14d时,大鼠活动量出现了显著性增加,同时大鼠前皮层总蛋白的蛋白羰基化也出现了显著性增加,而海马区及杏仁核区域总蛋白的蛋白羰基化没有明显变化。结论:反复苯丙胺刺激能够增加大鼠活动量及大脑前皮层总蛋白蛋白羰基化水平。  相似文献   

9.
We showed previously that amphetamine challenge produces a delayed increase in glutamate efflux in the ventral tegmental area of both naive and chronic amphetamine-treated rats. The present study examined the mechanisms underlying this response. The NMDA receptor antagonist MK-801 (0.1 mg/kg, i.p.) or the D1 dopamine receptor antagonist SCH 23390 (0.1 mg/kg, i.p.), given 30 min before acute amphetamine (5 mg/kg, i.p.), prevented amphetamine-induced glutamate efflux. Neither antagonist by itself altered glutamate efflux. Ibotenic acid lesions of the prefrontal cortex similarly prevented amphetamine-induced glutamate efflux, while producing a trend toward decreased basal glutamate levels (82.8% of sham group). Previous work has shown that the doses of NMDA and D1 receptor antagonists used in this study prevent the induction of behavioral sensitization when coadministered repeatedly with amphetamine, and that identical prefrontal cortex lesions performed before repeated amphetamine prevent the induction of ambulatory sensitization. Thus, treatments that prevent acute amphetamine from elevating glutamate efflux in the ventral tegmental area also prevent repeated amphetamine from eliciting behavioral sensitization. These findings suggest that repeated elevation of glutamate levels during a chronic amphetamine regimen may contribute to the cascade of neuroadaptations within the ventral tegmental area that enables the induction of sensitization.  相似文献   

10.
The exacerbation of the locomotor and stereotypic effects of amphetamine after repeated drug administration is well documented. To elaborate on the involvement of the nigrostriatal and mesolimbic dopamine (DA) systems in modulating behavioral sensitization, locomotor activity and the time spent engaged in repetitive stereotyped behaviors following systemic amphetamine injection were assessed after electrical stimulation of the nucleus accumbens and neostriatum. It was found that exposure to repeated sessions of high frequency, low current stimulation of the anteromedial neostriatum and nucleus accumbens significantly enhanced the locomotor excitation induced by administration of 3.0 mg/kg of amphetamine. Stereotypic behaviors were also modified as a function of electrical stimulation of these brain regions, with the development of a significant decrease in the duration of focused head and body movements corresponding to the facilitated locomotor effects of the drug. Taken together, these data provide additional evidence demonstrating the interdependent relationship between amphetamine-elicited locomotor activity and stereotypy, and were discussed in terms of a functional interaction between mesolimbic and nigrostriatal systems in determining the behavioral profile of amphetamine administration.  相似文献   

11.
The generation of free radicals in rat liver following the acute oral administration of ethanol was studied with the spin-trapping method, using a deuterated derivative of phenyl-N-tert-butylnitrone (PBN-d14) as the spin-trapping agent. After administration of ethanol and PBN-d14 to rats, organic extracts of the liver were prepared and subjected to ESR spectroscopy. In the case of ethanol-treated rats, the ESR spectra indicated that mixtures of radicals had been trapped, while spectra from control rats were essentially negative. The predominant spin adduct detected after ethanol treatment is proposed to be from a carbon-centered, primary alkyl radical, based on gamma-hydrogen hyperfine splitting patterns observed with PBN-d14. Oxygen-centered radicals also contributed to the ESR spectra. Liver extracts also contained low concentrations of the 1-hydroxyethyl radical spin adduct, which was indicated by weak spectral lines corresponding to those of the 1-13C-ethanol adduct. These data confirm previous suggestions that ethanol is metabolized to a free radical metabolite in rat liver. In addition, some information on types of lipid radicals generated during alcohol intoxication has been obtained.  相似文献   

12.
The effects of chronic ethanol treatment on the membrane order of synaptosomes from the cerebral cortex, striatum, cerebellum, brainstem, and hippocampus of rats were determined by measuring the fluorescence polarization of diphenylhexatriene (DPH) that had been incorporated into the synaptosomal membranes. Fischer-344 rats either were fed a nutritionally complete ethanol-containing liquid diet for 5 months or pair-fed with a diet that contained sucrose substituted isocalorically for ethanol. Polarization values for synaptosomes from all the brain regions studied were similar except for those from cerebral cortical synaptosomal membranes, which were significantly less ordered. Ethanol in vitro (30-500 mM) decreased the polarization values in synaptosomes from sucrose-control rats for all brain regions, although the sensitivity of cerebellar synaptosomes to the membrane disordering effects of ethanol in vitro was significantly greater that of synaptosomes from other brain regions. Chronic ethanol treatment did not alter baseline polarization for any brain region. Cerebellar and brainstem synaptosomes from the ethanol-fed rats were significantly less susceptible to the membrane disordering effects of ethanol in vitro compared to their sucrose controls, suggesting that chronic ethanol administration results in tolerance to ethanol's membrane effects. Striatal synaptosomes exhibited intermediate tolerance, whereas the sensitivities of cortical and hippocampal synaptosomes to membrane disordering by ethanol in vitro were not significantly affected by the chronic ethanol treatment. These results suggest that synaptosomal membranes have different membrane order requirements depending on the brain region from which they are prepared. Variations in brain regional neuronal membrane sensitivity to ethanol and differential tolerance development may contribute to some of the acute and chronic behavioral effects of ethanol.  相似文献   

13.
It was found that acute ethanol intoxication caused an imbalance of the neurotransmitters in the CNS: accumulation of GABA and serotonin and depletion of catecholamines. Alcohol depression was characterized by suppression of the evoked potentials of the various rat brain structures. Under chronic ethanol intoxication of animals, relative stabilization of the electrophysiological indices of the rat brain activity was observed. This reflects the CNS adaptation to the constant ethanol presence in the blood. This state was also characterized by the relative stabilization of the serotonin system and by the increase of the catecholamine level. Withdrawal of ethanol after prolonged consumption caused accumulation of catecholamines in rat brain, depletion of serotonin and GABA, and increased excitability of the nervous structures. The changes of activity of the GABA- and monoaminergic systems are coupled to manifestation of symptoms of alcohol depression and convulsive reactions during ethanol withdrawal.  相似文献   

14.
Acetaldehyde alone and in combination with acute and chronic ethanol intoxication has been studied for its effect on the concentration of epinephrine and norepinephrine in different brain areas, in the heart muscle, in adrenals and blood plasma of rats. Acetaldehyde is shown to enhance the epinephrine and norepinephrine levels in the brain areas which are non-specific for neuromediation of the mentioned catecholamines. The joint administration of acetaldehyde and ethanol increased the epinephrine concentration in adrenals probably due to the effect of acetaldehyde. On the contrary, the norepinephrine concentration in the heart decreased because of the action of ethanol. The authors' data show that acetaldehyde becomes an inductor of the mechanisms of hormone-mediator dissociation, thus altering the functions of vegetative-adrenal system. The results of the investigation support the hypothesis that acetaldehyde plays a significant role among pathogenic factors of ethanol intoxication, since it changes in a special way the catecholamine concentration in the brain and in peripheral tissues.  相似文献   

15.
The activity of gamma-glutamyltransferase localized in isolated brain synaptic membranes- and microvessels-enriched fractions was assayed after treatment of rats with either phenobarbital or ethanol. Phenobarbital increased the activity of gamma-glutamyltransferase in microvessels, without alteration of synaptic membranes activity. An increase of enzyme activity was also obtained after a chronic intoxication with ethanol. These results suggest that the isoform of gamma-glutamyltransferase localized in brain microvessels may respond to exogenous inducers.  相似文献   

16.
The effect of single and chronic ethanol (Eth) administration (25 % solution, 3.5 g/kg) on functional activity of the hypophyseal-adrenal system in rats with different sensitivity to the hypnotic action of ethanol (short-sleep - SS; non-sleep--NS, long-sleep--LS, intermediate group--IG), was studied. It has been shown that, after a single Eth administration, the concentration of corticosterone (K) in LS rat plasma was 1.5-fold higher than that in the NS animals although it did not differ from the K level in SS and Ig those. After repeated ethanol load, the corticosterone contents in the NS rat blood plasma was 3.5-fold and 4.9-fold lower compared to the control and LS groups, respectively. The data obtained indicate that the SS and LS animals had initially different basal blood plasma glucocorticoid level. The SS animals showed a decreased blood plasma K, whereas the LS ones--an increased one. The features of the glucocorticoid status are suggested to be a factor determining the sensitivity of rats to the ethanol hypnotic effect.  相似文献   

17.
Extracellular signal-regulated kinases, protein kinase B/Akt and cyclase response element-binding protein play important roles in drug-induced neuroadaptations. Acute psychostimulant exposure rapidly alters the phosphorylation of these proteins in the striatum but less is known about their responses to repeated stimulant administration. In this study the phosphorylated state of these proteins in rat striatum was analyzed by immunoblotting 15 min and 2 h after amphetamine (AMPH)-induced behavioral sensitization. Two weeks after the last dose of 5 mg/kg, i.p. AMPH once daily for 5 days, rats were challenged with 1 mg/kg, i.p. AMPH or saline and sacrificed 15 min or 2 h later. Sensitization to AMPH-induced behavioral activity was observed in AMPH pre-treated rats after AMPH on the challenge day. Phosphorylation of all three proteins was significantly greater 15 min after AMPH in AMPH-pre-treated than in saline-pre-treated rats. Two hours after AMPH challenge in AMPH-pre-treated rats, phospho-extracellular signal-regulated kinase and phospho-cAMP response element-binding protein immunoreactivity was still significantly elevated but not after AMPH injection in saline-pre-treated rats. In contrast, phospho-Akt was down-regulated to the same extent 2 h after acute AMPH or repeated AMPH with an AMPH challenge. These data implicate differential regulation of phospho-extracellular signal-regulated kinase, phospho-cAMP response element-binding protein versus phospho-Akt in sensitized responses to AMPH.  相似文献   

18.
Cerebral Metabolic State During the Ethanol Withdrawal Reaction in the Rat   总被引:2,自引:0,他引:2  
Abstract: A severe ethanol withdrawal reaction was induced in rats by means of repeated intragastric intubation during a 4-day period. At the peak of the withdrawal reaction cerebral cortical tissue was frozen in situ for analysis of glycogen, glucose, phosphocreatine, creatine, ATP, ADP, AMP, lactate, pyruvate, GAB A, β-hydroxybutyrate, acetoacetate, cAMP and cGMP. Blood glucose concentration was also measured. The level of brain glycogen was decreased during ethanol withdrawal. Brain glucose concentration was increased, probably secondary to the increase in blood glucose concentration. The calculated NADH/NAD+ ratio was slightly increased during the withdrawal and brain ATP concentration and adenine nucleotide pool size were decreased. The adenylate energy charge remained unchanged. The overall changes in the metabolites were in agreement with the previously shown metabolic activation during ethanol withdrawal. The brain concentrations of ketone bodies (β-hydroxybutyrate and acetoacetate) during withdrawal did not deviate from controls, indicating that no abnormal ketone metabolism had developed as a consequence of the long-lasting ethanol intoxication. No changes were observed in the concentrations of GABA, cAMP, or cGMP in the rat cerebral cortex during ethanol withdrawal.  相似文献   

19.
Previous research using outbred rats indicates that individual differences in activity in a novel environment predict sensitivity to the reinforcing effect of psychostimulant drugs. The current study examined if the link between responses related to novelty and amphetamine self‐administration is heritable. Twelve inbred rat strains were assessed for locomotor activity in a novel environment, preference for a novel environment, and intravenous amphetamine self‐administration (acquisition, extinction and amphetamine‐induced reinstatement). Strain differences were observed in activity in a novel environment, novelty preference and amphetamine self‐administration, indicating a genetic influence for each of these behaviors. While there was no relation between activity in an inescapable novel environment and amphetamine self‐administration, strain‐dependent differences in novelty preference were positively correlated with the amount of amphetamine self‐administered. There was also a positive correlation between the dose‐dependent rate of amphetamine self‐administration and magnitude of reinstatement. These results show that the activity in an inescapable novel environment and the preference for a novel environment are different genetically, and thus likely to reflect different behavioral constructs. Moreover, these results implicate a genetic influence on the relation between novelty seeking and stimulant self‐administration, as well as on the relation between stimulant reward and reinstatement.  相似文献   

20.
Intermittent hypoxia (IH) has been found to protect brain from ischemic injury. We investigated whether IH mitigates brain oxidative stress and behavioral deficits in rats subjected to ethanol intoxication and abrupt ethanol withdrawal (EW). The effects of IH on overt EW behavioral signs, superoxide generation, protein oxidation, and mitochondrial permeability transition pore (PTP) opening were examined. Male rats consumed dextrin or 6.5% (wt/vol) ethanol for 35 days. During the last 20 days, rats were treated with repetitive (5-8 per day), brief (5-10 min) cycles of hypoxia (9.5-10% inspired O2) separated by 4-min normoxia exposures. Cerebellum, cortex, and hippocampus were biopsied on day 35 of the diet or at 24 h of EW. Superoxide and protein carbonyl contents in tissue homogenates and absorbance decline at 540 nm in mitochondrial suspensions served as indicators of oxidative stress, protein oxidation, and PTP opening, respectively. Although IH altered neither ethanol consumption nor blood ethanol concentration, it sharply lowered the severity of EW signs including tremor, tail rigidity, and startle response. Compared with dextrin and ethanol per se, in the three brain regions, EW increased superoxide and protein carbonyl contents and accelerated PTP opening in a manner ameliorated by IH. Administration of antioxidant N-acetylcysteine throughout the IH program abrogated the reductions in EW signs and superoxide content, implicating IH-induced ROS as mediators of the salutary adaptations. We conclude that IH conditioning during chronic ethanol consumption attenuates oxidative damage to the brain and mitigates behavioral abnormalities during subsequent EW. IH-induced ROS may evoke this powerful protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号