首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports the solid-state NMR spectroscopic characterization of a long chain phospholipid bilayer system which spontaneously aligns in a static magnetic field. Magnetically aligned phospholipid bilayers or bicelles are model systems which mimic biological membranes for magnetic resonance studies. The oriented membrane system is composed of a mixture of the bilayer forming phospholipid palmitoylstearoylphosphatidylcholine (PSPC) and the short chain phospholipid dihexanoylphosphatidylcholine (DHPC) that breaks up the extended bilayers into bilayered micelles or bicelles that are highly hydrated (approx. 75% aqueous). Traditionally, the shorter 14 carbon chain phospholipid dimyristoylphosphatidylcholine (DMPC) has been utilized as the bilayer forming phospholipid in bicelle studies. Alignment (perpendicular) was observed with a PSPC/DHPC q ratio between 1.6 and 2.0 slightly above T(m) at 50 degrees C with (2)H and (31)P NMR spectroscopy. Paramagnetic lanthanide ions (Yb(3+)) were added to flip the bilayer discs such that the bilayer normal was parallel with the static magnetic field. The approx. 1.8 (PSPC/DHPC) molar ratio yields a thicker membrane due to the differences in the chain lengths of the DMPC and PSPC phospholipids. The phosphate-to-phosphate thickness of magnetically aligned PSPC/DHPC phospholipid bilayers in the L(alpha) phase may enhance the activity and/or incorporation of different types of integral membrane proteins for solid-state NMR spectroscopic studies.  相似文献   

2.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (T(m)=24 degrees C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at T(m) but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at T(m). These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above T(m) in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above T(m), because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   

3.
Yong Jiang 《Biophysical journal》2010,98(12):2895-2903
Mixtures of long- and short-tail phosphatidylcholine lipids are known to self-assemble into a variety of aggregates combining flat bilayerlike and curved micellelike features, commonly called bicelles. Atomistic simulations of bilayer ribbons and perforated bilayers containing dimyristoylphosphatidylcholine (DMPC, di-C14 tails) and dihexanoylphosphatidylcholine (DHPC, di-C6 tails) have been carried out to investigate the partitioning of these components between flat and curved microenvironments and the stabilization of the bilayer edge by DHPC. To approach equilibrium partitioning of lipids on an achievable simulation timescale, configuration-bias Monte Carlo mutation moves were used to allow individual lipids to change tail length within a semigrand-canonical ensemble. Since acceptance probabilities for direct transitions between DMPC and DHPC were negligible, a third component with intermediate tail length (didecanoylphosphatidylcholine, di-C10 tails) was included at a low concentration to serve as an intermediate for transitions between DMPC and DHPC. Strong enrichment of DHPC is seen at ribbon and pore edges, with an excess linear density of ∼3 nm−1. The simulation model yields estimates for the onset of edge stability with increasing bilayer DHPC content between 5% and 15% DHPC at 300 K and between 7% and 17% DHPC at 323 K, higher than experimental estimates. Local structure and composition at points of close contact between pores suggest a possible mechanism for effective attractions between pores, providing a rationalization for the tendency of bicelle mixtures to aggregate into perforated vesicles and perforated sheets.  相似文献   

4.
W C Wimley  T E Thompson 《Biochemistry》1991,30(17):4200-4204
It has previously been demonstrated that lipid exchange between phosphatidylcholine vesicles, at higher concentrations, is characterized by a second-order concentration-dependent exchange process in addition to the first-order process operative at lower concentrations (Jones, J. D., & Thompson, T. E. (1989) Biochemistry 28, 129-134). Furthermore, it was demonstrated that the second-order process occurs as a result of an enhancement of the first-order desorption process, possibly resulting from attractive interactions between a potentially desorbing lipid molecule and a transiently apposed bilayer (Jones, J. D., & Thompson, T. E. (1990) Biochemistry 29, 1593-1600). In this work we have studied the exchange of [3H]dimyristoylphosphatidylcholine (DMPC) between large vesicles of the compositions 100% DMPC, 70/30 (mol/mol) DMPC/dimyristoylphosphatidylethanolamine (DMPE), and 68.25/30/1.75 (mol/mol/mol) DMPC/DMPE/dimyristoylphosphatidylglycerol (DMPG). The second-order exchange process is enhanced by 100-fold or more in vesicles containing 30 mol % DMPE relative to 100% DMPC and is reduced or eliminated by the addition of 1.75% of the anionic lipid DMPG. These effects can be achieved by alterations in the equilibrium bilayer separation of 5 A or less. The results are in accord with the model of Jones and Thompson and indicate that relatively low concentrations of PE in a PC bilayer can have significant effects on bilayer surface properties and on potential interactions between bilayers.  相似文献   

5.
Opsin stability and folding: modulation by phospholipid bicelles   总被引:1,自引:0,他引:1  
Integral membrane proteins do not fare well when extracted from biological membranes and are unstable or lose activity in detergents commonly used for structure and function investigations. We show that phospholipid bicelles provide a valuable means of preserving alpha-helical membrane proteins in vitro by supplying a soluble lipid bilayer fragment. Both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/3-[(cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (Chaps) and DMPC/l-α-1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles dramatically increase the stability of the mammalian vision receptor rhodopsin as well as its apoprotein, opsin. Opsin is particularly unstable in detergent solution but can be directly purified into DMPC/Chaps. We show that opsin can also be directly purified in DMPC/DHPC bicelles to give correctly folded functional opsin, as shown by the ability to regenerate rhodopsin to  70% yield. These well-characterised DMPC/DHPC bicelles enable us to probe the influence of bicelle properties on opsin stability. These bicelles are thought to provide DMPC bilayer fragments with most DHPC capping the bilayer edge, giving a soluble bilayer disc. Opsin stability is shown to be modulated by the q value, the ratio of DMPC to DHPC, which reflects changes in the bicelle size and, thus, proportion of DMPC bilayer present. The observed changes in stability also correlate with loss of opsin secondary structure as determined by synchrotron far-UV circular dichroism spectroscopy; the most stable bicelle results in the least helix loss. The inclusion of Chaps rather than DHPC in the DMPC/Chaps bicelles, however, imparts the greatest stability. This suggests that it is not just the DMPC bilayer fragment in the bicelles that stabilises the protein, but that Chaps provides additional stability either through direct interaction with the protein or by altering the DMPC/Chaps bilayer properties within the bicelle. The significant stability enhancements and preservation of secondary structure reported here in bicelles are pertinent to other membrane proteins, notably G-protein-coupled receptors, which are unstable in detergent solution.  相似文献   

6.
Structural data can be obtained on proteins inserted in magnetically oriented phospholipid membranes such as bicelles, which are most often made of a mixture of long and short chain phosphatidylcholine. Possible shapes for these magnetically oriented membranes have been postulated in the literature, such as discoidal structures with a thickness of one bilayer and with the short acyl chain phosphatidylcholine on the edges. In the present paper, a geometrical study of these oriented structures is done to determine the validity of this model. The method used is based on the determination of the first spectral moment of solid-state (31)P nuclear magnetic resonance spectra. From this first moment, an order parameter is defined that allows a quantitative analysis of partially oriented spectra. The validity of this method is demonstrated in the present study for oriented samples made of DMPC, DMPC:DHPC, DMPC:DHPC:gramicidin A and adriamycin:cardiolipin.  相似文献   

7.
Using a heat conduction calorimeter with very high resolution (+/- 0.00005 J/degrees C.cm3), we have measured the specific heat CpL between 25 and 35 degrees C of dimyristoylphosphatidylcholine (DMPC) in aqueous dispersions. Previous studies of the temperature dependence of the chemical potential of DMPC in the L alpha phase (lamellar, liquid crystalline) indicated that a dispersion consisting only of unilamellar vesicles forms spontaneously at a critical temperature T* of 29.0 degrees C. Our present measurements show an anomaly in CpL between 28.70 and 29.50 degrees C: the curve for CpL versus T first decreases and then exhibits an inflection point at 28.96 degrees C before it flattens. This anomaly is attributed to the transformation from multilamellar dispersion to unilamellar vesicles at T* = 28.96 degrees C. Two independent properties of the CpL data also indicate T* is a critical point for the formation of unilamellar vesicles: (a) the time to reach equilibrium upon changing temperature increased dramatically between 28.7 and 28.96 degrees C, increasing as (T* - T)-1; at T > T* the dramatic "slowing-down" phenomenon was not observed. This slowing-down near T* is a general characteristic of critical phenomena. (b) The free energy change for the multilamellar-unilamellar transformation was obtained from the CpL-T data over this temperature interval and found to be 3.2 J/mol or 0.016 ergs/cm2 of bilayer, in agreement with other estimates of the interaction energy between neutral bilayers. We conclude with a discussion of the implications for membrane bilayer stability of these newly identified dynamic properties of the transformation.  相似文献   

8.
Deuterium solid-state NMR spectroscopy was used to qualitatively study the effects of both 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLiPC) and cholesterol on magnetically aligned phospholipid bilayers (bicelles) as a function of temperature utilizing the chain-perdeuterated probe 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC-d54) in DMPC/dihexanoylPC (DHPC) phospholipid bilayers. The results demonstrate that polyunsaturated PC and cholesterol were successfully incorporated into DMPC/DHPC phospholipid bilayers, leading to a bicelle that will be useful for investigations of eukaryotic membrane protein-lipid interactions. The data indicate that polyunsaturated PC increases membrane fluidity and decreases the minimum magnetic alignment temperature for DMPC/DHPC bicelles. Conversely, the introduction of cholesterol into aligned DMPC/DHPC bilayers decreases fluidity in the membrane and increases the minimum temperature necessary to magnetically align the phospholipid bilayers. Finally, the addition of Tm3+ to magnetically aligned DMPC/DMPC-d54/PLiPC/DHPC bilayers doubles the quadrupolar splittings, indicating that this unique bicelle system can be aligned with the bilayer normal parallel to the static magnetic field.  相似文献   

9.
Macroscopic consequences of the formation of diacylglycerol by phospholipase C (PC-PLC) in giant 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) unilamellar vesicles (GUVs, diameter 10-100 microm) were studied by phase contrast and fluorescence microscopy. PC-PLC caused a series of fast stepwise shrinkages of fluid SOPC GUVs, continuing until the vesicle disappeared beyond the optical resolution of the microscope. The presence of N-palmitoyl-sphingomyelin (mole fraction X = 0.25) in the GUVs did not affect the outcome of the PC-PLC reaction. In addition to hydrolysis, PC-PLC induced adhesion of vicinal vesicles. When multilamellar SOPC vesicles were used only a minor decrease in their diameter was evident suggesting that PC-PLC can exert its hydrolytic activity only in the outer monolayer. A series of stepwise shrinkages was observed also for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) GUVs above their main phase transition temperature, T(m), i.e., when the bilayer is in the liquid crystalline state. However, this process was not observed for DMPC GUVs in the gel state, below T(m). These results are supported by the enhanced activity of PC-PLC upon exceeding T(m) of DMPC large unilamellar vesicles (diameter approximately 0.1 microm) used as a substrate. Studies on SOPC monolayers revealed that PC-PLC can exert its hydrolytic activity only at surface pressures below approximately 30 mN/m. Accordingly, the lack of changes in the gel state DMPC GUVs could be explained by the equilibrium lateral pressure in these vesicles exceeding this critical value.  相似文献   

10.
Several complementary physical techniques have been used to characterize the aggregate structures formed in solutions containing dimyristoylphosphatidylcholine (DMPC)/dihexanoylphosphatidylcholine (DHPC) at ratios of < or =0.5 and to establish their morphology and lipid organization as that of bicelles. (31)P NMR studies showed that the DMPC and DHPC components were highly segregated over a wide range of DMPC/DHPC ratios (q = 0.05-0.5) and temperatures (15 degrees C and 37 degrees C). Only at phospholipid concentrations below 130 mM did the bicelles appear to undergo a change in morphology. These results were corroborated by fluorescence data, which demonstrated the inverse dependence of bicelle size on phospholipid concentration as well as a distinctive change in phospholipid arrangement at low concentrations. In addition, dynamic light scattering and electron microscopy studies supported the hypothesis that the bicellar phospholipid aggregates are disk-shaped. The radius of the planar domain of the disk was found to be directly proportional to the ratio of DMPC/DHPC and inversely proportional to the total phospholipid concentration when the DMPC/DHPC ratio was held constant at 0.5. Taken together, these results suggest that bicelles with low q retain the morphology and bilayer organization typical of their liquid-crystalline counterparts, making them useful membrane mimetics.  相似文献   

11.
Lateral diffusion measurements of PEG-lipid incorporated into magnetically aligned bicelles are demonstrated using stimulated echo (STE) pulsed field gradient (PFG) proton (1H) nuclear magnetic resonance (NMR) spectroscopy. Bicelles were composed of dimyristoyl phosphatidylcholine (DMPC) plus dihexanoyl phosphatidylcholine (DHPC) (q = DMPC/DHPC molar ratio = 4.5) plus 1 mol % (relative to DMPC) dimyristoyl phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000] (DMPE-PEG 2000) at 25 wt % lipid. 1H NMR STE spectra of perpendicular aligned bicelles contained only resonances assigned to residual HDO and to overlapping contributions from a DMPE-PEG 2000 ethoxy headgroup plus DHPC choline methyl protons. Decay of the latter's STE intensity in the STE PFG 1H NMR experiment (g(z) = 244 G cm(-1)) yielded a DMPE-PEG 2000 (1 mol %, 35 degrees C) lateral diffusion coefficient D = 1.35 x 10(-11) m2 s(-1). Hence, below the "mushroom-to-brush" transition, DMPE-PEG 2000 lateral diffusion is dictated by its DMPE hydrophobic anchor. D was independent of the diffusion time, indicating unrestricted lateral diffusion over root mean-square diffusion distances of microns, supporting the "perforated lamellae" model of bicelle structure under these conditions. Overall, the results demonstrate the feasibility of lateral diffusion measurements in magnetically aligned bicelles using the STE PFG NMR technique.  相似文献   

12.
Fang N  Lai AC  Wan KT  Chan V 《Biophysical chemistry》2003,104(1):141-153
It has been recently demonstrated that acyl chain mismatch of phospholipid bilayer composed of a binary lipid mixture induces component formation on the lateral plane of the bilayer [Biophys. J. 83 (2002) 1820-1883]. In this report, the contact mechanics of unilamellar vesicles composed of binary dimyristoyl-phosphatidylcholine (DMPC)/dipalmitoyl-phosphocholine (DPPC) mixtures on fused silica and amino-modified substrates is simultaneously probed by confocal-reflectance interference contrast microscopy (C-RICM) and cross-polarized light microscopy during gel to liquid crystalline transition of the lipid bilayer. C-RICM results indicate that the average degree of vesicle deformation for DMPC-rich and DPPC-rich vesicles adhering on fused silica substrate is increased by 30% and 14%, respectively, in comparison with that in pure DMPC and DPPC vesicles. Also, lateral heterogeneity induced by acyl chain mismatch increases the average magnitude of adhesion energy in DMPC-rich and DPPC-rich vesicles of all sizes by 6.4 times and 2.3 times, respectively. Similar modulation of adhesion mechanics induced by carbon chain difference is obtained on amino-modified substrate. Most importantly, the thermotropic transition of the mixed bilayer from gel (below T(m)) to fluid phase (above T(m)) further exemplifies the effect of acyl chain mismatch on the increases of degree of vesicle deformation and adhesion energy.  相似文献   

13.
It has long been suggested that pore formation is responsible for the increase in membrane permeability by antimicrobial peptides (AMPs). To better understand the mechanism of AMP activity, the disruption of model membrane by protegrin-1 (PG-1), a cationic antimicrobial peptide, was studied using atomic force microscopy. We present here the direct visualization of the full range of structural transformations in supported lipid bilayer patches induced by PG-1 on zwitterionic 1,2-dimyristoyl-snglycero-phospho-choline (DMPC) membranes. When PG-1 is added to DMPC, the peptide first induces edge instability at low concentrations, then pore-like surface defects at intermediate concentrations, and finally wormlike structures with a specific length scale at high concentrations. The formation of these structures can be understood using a mesophase framework of a binary mixture of lipids and peptides, where PG-1 acts as a line-active agent. Atomistic molecular dynamics simulations on lipid bilayer ribbons with PG-1 molecules placed at the edge or interior positions are carried out to calculate the effect of PG-1 in reducing line tension. Further investigation of the placement of PG-1 and its association with defects in the bilayer is carried out using unbiased assembly of a PG-1 containing bilayer from a random mixture of PG-1, DMPC, and water. A generalized model of AMP induced structural transformations is also presented in this work. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

14.
NMR, calorimetric, and optical spectroscopic studies have been performed on a trifluoromethyl-substituted styryl molecular probe bound to vesicles and multilamellar suspensions formed from dimyristoylphosphatidylcholine (DMPC). In the fluorine NMR spectrum at 35 degrees C there are two partially resolved resonances, but these collapse to an apparently single resonance at temperatures above 60 degrees C. However, a line-shape analysis is not consistent with exchange between two sites on an NMR time scale, and the two resonances are assumed to be due to probe sites in the inner and outer leaflets of the vesicles. Two fluorescence lifetimes, each associated with one of these sites, characterize the decay curves for the molecular probe bound to DMPC vesicles. The shift reagent Eu(FOD)3 and several nitroxide spin labels covalently bound to lipophilic structures strongly attenuate the lower frequency component of the fluorine NMR spectrum and also shift the other resonance to higher frequencies. The effect of two spin labels on the probe fluorine T2 relaxation time has been used to estimate the distance between the spin label unpaired electron and the trifluoromethyl group. The location of the spin label site in the membrane was determined from the effect of the unpaired electron on the lipid 13C linewidths. A model for the location of the probe in the bilayer was developed from the above information and refined using molecular mechanics calculations on a probe-DMPC lipid complex. The long axis of the probe parallels the bilayer normal; the styryl-group portion of the optical chromophore is located slightly below the glycerol backbone, and the remainder of the chromophore extends well into the hydrophobic region of the bilayer. Therefore, the optical properties of the probe should not be significantly influenced by alterations of the membrane surface charge density. Parameters derived from DSC studies in the gel-to-lipid crystal phase transition of DMPC are extremely sensitive to the probe. Even at 0.0001 mol fraction of probe, the transition is substantially broadened, and the delta H for the transition has increased, just as one predicts for the formation of a tight complex described above.  相似文献   

15.
Formation of discoidal high density lipoproteins (rHDL) by apolipoprotein A-I (apoA-I) mediated solubilization of dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles (MLV) was dramatically affected by bilayer cholesterol concentration. At a low ratio of DMPC/apoA-I (2 mg DMPC/mg apoA-I, 84/1 mol/mol), sterols (cholesterol, lathosterol, and beta-sitosterol) that form ordered lipid phases increase the rate of solubilization similarly, yielding rHDL with similar structures. By changing the temperature and sterol concentration, the rates of solubilization varied almost 3 orders of magnitude; however, the sizes of the rHDL were independent of the rate of their formation and dependent upon the bilayer sterol concentration. At a high ratio of DMPC/apoA-I (10/1 mg DMPC/mg apoA-I, 420/1 mol/mol), changing the temperature and cholesterol concentration yielded rHDL that varied greatly in size, phospholipid/protein ratio, mol% cholesterol, and number of apoA-I molecules per particle. rHDL were isolated that had 2, 4, 6, and 8 molecules of apoA-I per particle, mean diameters of 117, 200, 303, and 396 A, and a mol% cholesterol that was similar to the original MLV. Kinetic studies demonstrated that the different sized rHDL are formed independently and concurrently. The rate of formation, lipid composition, and three-dimensional structures of cholesterol-rich rHDL is dictated primarily by the original membrane phase properties and cholesterol content. The size speciation of rHDL and probably nascent HDL formed via the activity of the ABCA1 lipid transporter is mechanistically linked to the cholesterol content of the membranes from which they were formed.  相似文献   

16.
The effects of solid-fluid phase separations on the kinetics of association of a single-chain fluorescent amphiphile were investigated in two different systems: pure DMPC (dimyristoylphosphatidylcholine) and a 1:1 mixture of DMPC and DSPC (distearoylphosphatidylcholine). In pure DMPC vesicles, solid (s) and fluid (l(d)) phases coexist at the phase transition temperature, T(m), whereas a 1:1 mixture of DMPC and DSPC shows a stable s-l(d) phase separation over a large temperature interval. We found that in single-component bilayers, within the main phase transition, the experimental kinetics of association are clearly not single-exponential, the deviation from that function becoming maximal at the T(m). This observation can be accounted for by a rate of desorption that is slower than desorption from either fluid or solid phases, leaving the rates of insertion unchanged, but a treatment in terms of stable fluid and solid domains may not be adequate for the analysis of the association of an amphiphile with pure DMPC vesicles at the T(m). In DMPC/DSPC mixtures with solid-fluid phase coexistence, association occurs overall faster than expected based on phase composition. The observed kinetics can be described by an increase in the rate of insertion, leaving the desorption rates unchanged. The fast kinetics of insertion of the amphiphile into two-phase bilayers in two-component vesicles is attributed to a more rapid insertion into defect-rich regions, which are most likely phase boundaries between solid and fluid domains. A two-component mixture of lipids that shows a stable phase separation between l(d)-s phases over a large temperature interval thus behaves very differently from a single-component bilayer at the T(m), with respect to insertion of amphiphiles.  相似文献   

17.
We have created phospholipid bilayers supported on soft polymer "cushions" which act as deformable substrates (see accompanying paper, Wong, J. Y., J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith. 1999. Biophys. J. 77:1445-1457). In contrast to "solid-supported" membranes, such "soft-supported" membranes can exhibit more natural (higher) fluidity. Our bilayer system was constructed by adsorption of small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles onto polyethylenimine (PEI)-supported Langmuir-Blodgett lipid monolayers on mica. We used the surface forces apparatus (SFA) to investigate the long-range forces, adhesion, and fusion of two DMPC bilayers both above and below their main transition temperature (T(m) approximately 24 degrees C). Above T(m), hemi-fusion activation pressures of apposing bilayers were considerably smaller than for solid-supported bilayers, e.g., directly supported on mica. After separation, the bilayers naturally re-formed after short healing times. Also, for the first time, complete fusion of two fluid (liquid crystalline) phospholipid bilayers was observed in the SFA. Below T(m) (gel state), very high pressures were needed for hemi-fusion and the healing process became very slow. The presence of the polymer cushion significantly alters the interaction potential, e.g., long-range forces as well as fusion pressures, when compared to solid-supported systems. These fluid model membranes should allow the future study of integral membrane proteins under more physiological conditions.  相似文献   

18.
The physiochemical properties of phospholipid vesicle, e.g. permeability, elasticity, etc., are directly modulated by the chain-melting transition of the lipid bilayer. Currently, there is a lack of understanding in the relationship between thermotropic transition, mechanical deformation and adhesion strength for an adherent vesicle at temperature close to main phase transition temperature T(m). In this study, the contact mechanics of dimyristoyl-phosphatidylcholine (DMPC) vesicle at the main phase transition are probed by confocal reflectance interference contrast microscopy in combination with phase contrast microscopy. It is shown that DMPC vesicles strongly adhere on pure fused silica substrate at T(m) and the degree of deformation as well as the adhesion energy is a decreasing function against the mid-plane diameter of the vesicles. Furthermore, an increase of osmotic pressure at the gel/liquid crystalline phase co-existence imposes insignificant changes in both the degree of deformation and adhesion energy of adherent vesicles when the lipid bilayer permeability is maximized. With the reverse of substrate charge, the mechanical deformation and adhesion strength for larger vesicles (mid-plane diameter >18 microm) are significantly reduced. By monitoring the parametric response of substrate-induced vesicle adhesion during main phase transition, it is shown that the degree of deformation and adhesion energy of adhering vesicle is increased and unchanged, respectively, against the increase of temperature.  相似文献   

19.
The membrane location of two fragments in two different K+-channels, the KvAP (from Aeropyrum pernix) and the HsapBK (human) corresponding to the putative “paddle” domains, has been investigated by CD, fluorescence and NMR spectroscopy. Both domains interact with q = 0.5 phospholipid bicelles, DHPC micelles and with POPC vesicles. CD spectra demonstrate that both peptides become largely helical in the presence of phospholipid bicelles. Fluorescence quenching studies using soluble acrylamide or lipid-attached doxyl-groups show that the arginine-rich domains are located within the bilayered region in phospholipid bicelles. Nuclear magnetic relaxation parameters, T1 and 13C-1H NOE, for DMPC in DMPC/DHPC bicelles and for DHPC in micelles showed that the lipid acyl chains in the bicelles become less flexible in the presence of either of the fragments. An even more pronounced effect is seen on the glycerol carbons. 2H NMR spectra of magnetically aligned bicelles showed that the peptide derived from KvAP had no or little effect on bilayer order, while the peptide derived from HsapBK had the effect of lowering the order of the bilayer. The present study demonstrates that the fragments derived from the full-length proteins interact with the bilayered interior of model membranes, and that they affect both the local mobility and lipid order of model membrane systems.  相似文献   

20.
J T Kim  J Mattai  G G Shipley 《Biochemistry》1987,26(21):6599-6603
Mixed phospholipid systems of ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) and ester-linked 1,2-dipalmitoylphosphatidylcholine (DPPC) have been studied by differential scanning calorimetry and X-ray diffraction. At maximum hydration (60 wt % water), DHPC shows three reversible transitions: a main (chain melting) transition, TM = 44.2 degrees C; a pretransition, TP = 36.2 degrees C; and a subtransition, TS = 5.5 degrees C. DPPC shows two reversible transitions: TM = 41.3 degrees C and TP = 36.5 degrees C. TM decreases linearly from 44.2 to 41.3 degrees C as DPPC is incorporated into DHPC bilayers; TP exhibits eutectic behavior, decreasing sharply to reach 23.3 degrees C at 40.4 mol % DPPC and then increasing over the range 40-100 mol % DPPC; TS remains constant at 4-5 degrees C and is not observed at greater than 20 mol % DPPC. At 50 degrees C, X-ray diffraction shows a liquid-crystalline bilayer L alpha phase at all DHPC:DPPC mole ratios. At 22 degrees C, DHPC shows an interdigitated bilayer gel L beta phase (bilayer periodicity d = 47.0 A) into which approximately 30 mol % DPPC can be incorporated. Above 30 mol % DPPC, a noninterdigitated gel L beta' phase (d = 64-66 A) is observed. Thus, at T greater than TM, DHPC and DPPC are miscible in all proportions in an L alpha bilayer phase. In contrast, a composition-dependent gel----gel transition between interdigitated and noninterdigitated bilayers is observed at T less than TP, and this leads to eutectic behavior of the DHPC/DPPC system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号