首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the gene MCOLN1 coding for the TRP (transient receptor potential) family ion channel TRP-ML1 lead to the lipid storage disorder mucolipidosis type IV (MLIV). The function and role of TRP-ML1 are not well understood. We report here that TRP-ML1 is a lysosomal monovalent cation channel. Both native and recombinant TRP-ML1 are cleaved resulting in two products. Recombinant TRP-ML1 is detected as the full-length form and as short N- and C-terminal forms, whereas in native cells mainly the cleaved N and C termini are detected. The N- and C-terminal fragments of TRP-ML1 were co-immunoprecipitated from cell lysates and co-eluted from a Ni2+ column. TRP-ML1 undergoes proteolytic cleavage that is inhibited by inhibitors of cathepsin B (CatB) and is altered when TRP-ML1 is expressed in CatB-/- cells. N-terminal sequencing of purified C-terminal fragment of TRP-ML1 expressed in Sf9 cells indicates a cleavage site at Arg200 downward arrow Pro201. Consequently, the conserved R200H mutation changed the cleavage pattern of TRP-ML1. The cleavage inhibited TRP-ML1 channel activity. This work provides the first example of inactivation by cleavage of a TRP channel. The significance of the cleavage to the function of TRP-ML1 is under investigation.  相似文献   

2.
It is well known that the mutation of TRP-ML1 (transient receptor potential-mucolipin-1) causes mucolipidosis IV, a lysosomal storage disease. Given that lysosomal nicotinic acid adenine dinucleotide phosphate (NAADP)-Ca(2+) release channel activity is associated with TRP-ML1, the present study was designed to test the hypothesis that NAADP regulates lysosome function via activation of TRP-ML1 channel activity. Using lysosomal preparations from wild-type (TRP-ML1(+/+)) human fibroblasts, channel reconstitution experiments demonstrated that NAADP (0.01-1.0 μM) produced a concentration-dependent increase in TRP-ML1 channel activity. This NAADP-induced activation of TRP-ML1 channels could not be observed in lysosomes from TRP-ML1(-/-) cells, but was restored by introducing a TRP-ML1 transgene into these cells. Microscopic Ca(2+) fluorescence imaging showed that NAADP significantly increased intracellular Ca(2+) concentration to 302.4 ± 74.28 nM (vs. 180 ± 44.13 nM of the basal) in TRP-ML1(+/+) cells, but it had no effect in TRP-ML1(-/-) cells. If a TRP-ML1 gene was transfected into TRP-ML1(-/-) cells, the Ca(2+) response to NAADP was restored to the level comparable to TRP-ML1(+/+) cells. Functionally, confocal microscopy revealed that NAADP significantly enhanced the dynamic interaction of endosomes and lysosomes and the lipid delivery to lysosomes in TRP-ML1(+/+) cells. This functional action of NAADP was abolished in TRP-ML1(-/-) cells, but restored after TRP-ML1 gene was rescued in these cells. Our results suggest that NAADP increases lysosomal TRP-ML1 channel activity to release Ca(2+), which promotes the interaction of endosomes and lysosomes and thereby regulates lipid transport to lysosomes. Failure of NAADP-TRP-ML1 signaling may be one of the important mechanisms resulting in intracellular lipid trafficking disorder and consequent mucolipidosis.  相似文献   

3.
Mucolipin-1 is a membrane protein encoded by the gene MCOLN1, mutations in which result in the lysosomal storage disorder mucolipidosis type IV (MLIV). Efficient lysosomal targeting of mucolipin-1 requires di-leucine motifs in both the N-terminal and the C-terminal cytosolic tails. We have shown that aberrant lactosylceramide trafficking in MLIV cells may be rescued by wild-type mucolipin-1 expression but not by mucolipin-1 mistargeted to the plasma membrane or by lysosome-localized mucolipin-1 mutated in its predicted ion pore-selectivity region. Our data demonstrate that the correct localization of mucolipin-1 and the integrity of its ion pore are essential for its physiological function in the late endocytic pathway.  相似文献   

4.
Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the gene MCOLN1, which codes for the transient receptor potential family ion channel TRPML1. MLIV has an early onset and is characterized by developmental delays, motor and cognitive deficiencies, gastric abnormalities, retinal degeneration, and corneal cloudiness. The degenerative aspects of MLIV have been attributed to cell death, whose mechanisms remain to be delineated in MLIV and in most other storage diseases. Here we report that an acute siRNA-mediated loss of TRPML1 specifically causes a leak of lysosomal protease cathepsin B (CatB) into the cytoplasm. CatB leak is associated with apoptosis, which can be prevented by CatB inhibition. Inhibition of the proapoptotic protein Bax prevents TRPML1 KD-mediated apoptosis but does not prevent cytosolic release of CatB. This is the first evidence of a mechanistic link between acute TRPML1 loss and cell death.  相似文献   

5.
Most of the membrane trafficking phenomena including those involving the interactions between endosomes and lysosomes are regulated by changes in intracellular Ca2+ (Cai). These processes are disturbed in some types of mucolipidoses and other lysosomal storage disorders, such as mucolipidosis IV (MLIV), a neurological disorder that usually presents during the first year of life with blindness, cognitive impairment, and psychomotor delays. It is caused by mutations in MCOLN1, the gene encoding mucolipin-1 (MLN1), which we have recently established to represent a Ca2+-permeable cation channel that is transiently modulated by changes in Cai. The cells of MLIV patients contain enlarged lysosomes that are likely associated with abnormal sorting and trafficking of these and related organelles. We studied fibroblasts from MLIV patients and found disturbed Ca2+ signaling and large acidic organelles such as late endosomes and lysosomes (LEL) with altered cellular localization in these cells. The fusion between LEL vesicles in these cells was defective. This is a Ca2+-dependent process related to signaling pathways involved in regulation of Ca2+ homeostasis and trafficking. The MLN1 channels could play a key role in Ca2+ release from LEL vesicles, which triggers the fusion and trafficking of these organelles. The characterization of this MLN1-mediated Ca2+-dependent process should provide new insights into the pathophysiological mechanisms that lead to the development of MLIV and other mucolipidoses associated with similar disturbances in membrane trafficking.  相似文献   

6.
Loss of function mutations in mucolipin-1 (MCOLN1) have been linked to mucolipidosis type IV (MLIV), a recessive lysosomal storage disease characterized by severe neurological and ophthalmological abnormalities. MCOLN1 is an ion channel that regulates membrane transport along the endolysosomal pathway. It has been suggested that MCOLN1 participates in several Ca2+-dependent processes, including fusion of lysosomes with the plasma membrane, fusion of late endosomes and autophagosomes with lysosomes, and lysosomal biogenesis. Here, we searched for proteins that interact with MCOLN1 in a Ca2+-dependent manner. We found that the penta-EF-hand protein ALG-2 binds to the NH-terminal cytosolic tail of MCOLN1. The interaction is direct, strictly dependent on Ca2+, and mediated by a patch of charged and hydrophobic residues located between MCOLN1 residues 37 and 49. We further show that MCOLN1 and ALG-2 co-localize to enlarged endosomes induced by overexpression of an ATPase-defective dominant-negative form of Vps4B (Vps4BE235Q). In agreement with the proposed role of MCOLN1 in the regulation of fusion/fission events, we found that overexpression of MCOLN1 caused accumulation of enlarged, aberrant endosomes that contain both early and late endosome markers. Interestingly, aggregation of abnormal endosomes was greatly reduced when the ALG-2-binding domain in MCOLN1 was mutated, suggesting that ALG-2 regulates MCOLN1 function. Overall, our data provide new insight into the molecular mechanisms that regulate MCOLN1 activity. We propose that ALG-2 acts as a Ca2+ sensor that modulates the function of MCOLN1 along the late endosomal-lysosomal pathway.  相似文献   

7.
8.
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells’ functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re‐expression of TRPML1 in neurons. These features were not observed in Niemann–Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.  相似文献   

9.
Mucolipin-1 (MLN1) is a membrane protein with homology to the transient receptor potential channels and other non-selective cation channels. It is encoded by the MCOLN1 gene, which is mutated in patients with mucolipidosis type IV (MLIV), an autosomal recessive disease that is characterized by severe abnormalities in neurological development as well as by ophthalmologic defects. At the cellular level, MLIV is associated with abnormal lysosomal sorting and trafficking. Here we identify the channel function of human MLN1 and characterize its properties. MLN1 represents a novel Ca(2+)-permeable channel that is transiently modulated by changes in [Ca(2+)]. It is also permeable to Na(+) and K(+). Large unitary conductances were measured in the presence of these cations. With its Ca(2+) permeability and modulation by [Ca(2+)], MLN1 could play a major role in Ca(2+) transport regulating lysosomal exocytosis and potentially other phenomena related to the trafficking of late endosomes and lysosomes.  相似文献   

10.
Cathepsin E, an endolysosomal aspartic proteinase predominantly expressed in cells of the immune system, has an important role in immune responses. However, little is known about the precise roles of cathepsin E in this system. Here we report that cathepsin E deficiency (CatE(-/-)) leads to a novel form of lysosome storage disorder in macrophages, exhibiting the accumulation of the two major lysosomal membrane sialoglycoproteins LAMP-1 and LAMP-2 and the elevation of lysosomal pH. These striking features were also found in wild-type macrophages treated with pepstatin A and Ascaris inhibitor. Whereas there were no obvious differences in their expression, biosynthesis, and trafficking between wild-type and CatE(-/-) macrophages, the degradation rates of these two membrane proteins were apparently decreased as a result of cathepsin E deficiency. Because there was no difference in the vacuolar-type H(+)-ATPase activity in both cell types, the elevated lysosomal pH in CatE(-/-) macrophages is most likely due to the accumulation of these lysosomal membrane glycoproteins highly modified with acidic monosaccharides, thereby leading to the disruption of non-proton factors controlling lysosomal pH. Furthermore, the selective degradation of LAMP-1 and LAMP-2, as well as LIMP-2, was also observed by treatment of the lysosomal membrane fraction isolated from wild-type macrophages with purified cathepsin E at pH 5. Our results thus suggest that cathepsin E is important for preventing the accumulation of these lysosomal membrane sialoglycoproteins that can induce a new form of lysosomal storage disorder.  相似文献   

11.
Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder caused by mutations in the MCOLN1 gene, which encodes the 65-kDa protein mucolipin-1. The most common clinical features of patients with MLIV include severe mental retardation, delayed motor milestones, ophthalmologic abnormalities, constitutive achlorhydria, and elevated plasma gastrin levels. Here, we describe the first murine model for MLIV, which accurately replicates the phenotype of patients with MLIV. The Mcoln1(-/-) mice present with numerous dense inclusion bodies in all cell types in brain and particularly in neurons, elevated plasma gastrin, vacuolization in parietal cells, and retinal degeneration. Neurobehavioral assessments, including analysis of gait and clasping, confirm the presence of a neurological defect. Gait deficits progress to complete hind-limb paralysis and death at age ~8 mo. The Mcoln1(-/-) mice are born in Mendelian ratios, and both male and female Mcoln1(-/-) mice are fertile and can breed to produce progeny. The creation of the first murine model for human MLIV provides an excellent system for elucidating disease pathogenesis. In addition, this model provides an invaluable resource for testing treatment strategies and potential therapies aimed at preventing or ameliorating the abnormal lysosomal storage in this devastating neurological disorder.  相似文献   

12.
Loss-of-function mutations in TRPML1 (transient receptor potential mucolipin 1) cause the lysosomal storage disorder, mucolipidosis type IV (MLIV). Here, we report that flies lacking the TRPML1 homolog displayed incomplete autophagy and reduced viability during the pupal period-a phase when animals rely on autophagy for nutrients. We show that TRPML was required for fusion of amphisomes with lysosomes, and its absence led to accumulation of vesicles of significantly larger volume and higher luminal Ca(2+). We also found that trpml(1) mutant cells showed decreased TORC1 (target of rapamycin complex 1) signaling and a concomitant upregulation of autophagy induction. Both of these defects in the mutants were reversed by genetically activating TORC1 or by feeding the larvae a high-protein diet. The high-protein diet?also reduced the pupal lethality and the increased volume of acidic vesicles. Conversely, further inhibition of TORC1 activity by rapamycin exacerbated the mutant phenotypes. Finally, TORC1 exerted reciprocal control on TRPML function. A high-protein diet caused cortical localization of TRPML, and this effect was blocked by rapamycin. Our findings delineate the interrelationship between the TRPML and TORC1 pathways and raise the intriguing possibility that a high-protein diet might reduce the severity of MLIV.  相似文献   

13.
Mucolipidosis type IV (MLIV) is a lysosomal storage disorder caused by mutations in the MCOLN1 gene, a member of the transient receptor potential (TRP) cation channel gene family. The encoded protein, transient receptor potential mucolipin‐1 (TRPML1), has been localized to lysosomes and late endosomes but the pathogenic mechanism by which loss of TRPML1 leads to abnormal cellular storage and neuronal cell death is still poorly understood. Yeast two‐hybrid and co‐immunoprecipitation (coIP) experiments identified interactions between TRPML1 and Hsc70 as well as TRPML1 and Hsp40. Hsc70 and Hsp40 are members of a molecular chaperone complex required for protein transport into the lysosome during chaperone‐mediated autophagy (CMA). To determine the functional relevance of this interaction, we compared fibroblasts from MLIV patients to those from sex‐ and age‐matched controls and show a defect in CMA in response to serum withdrawal. This defect in CMA was subsequently confirmed in purified lysosomes isolated from control and MLIV fibroblasts. We further show that the amount of lysosomal‐associated membrane protein type 2A (LAMP‐2A) is reduced in lysosomal membranes of MLIV fibroblasts. As a result of decreased CMA, MLIV fibroblasts have increased levels of oxidized proteins compared to control fibroblasts. We hypothesize that TRPML1 may act as a docking site for intralysosomal Hsc70 (ly‐Hsc70) allowing it to more efficiently pull in substrates for CMA. It is also possible that TRPML1 channel activity may be required for CMA. Understanding the role of TRPML1 in CMA will undoubtedly help to characterize the pathogenesis of MLIV. J. Cell. Physiol. 219: 344–353, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
15.
Chelatable zinc is important in brain function, and its homeostasis is maintained to prevent cytotoxic overload. However, certain pathologic events result in intracellular zinc accumulation in lysosomes and mitochondria. Abnormal lysosomes and mitochondria are common features of the human lysosomal storage disorder known as mucolipidosis IV (MLIV). MLIV is caused by the loss of TRPML1 ion channel function. MLIV cells develop large hyperacidic lysosomes, membranous vacuoles, mitochondrial fragmentation, and autophagic dysfunction. Here, we observed that RNA interference of mucolipin-1 gene (TRPML1) in HEK-293 cells mimics the MLIV cell phenotype consisting of large lysosomes and membranous vacuoles that accumulate chelatable zinc. To show that abnormal chelatable zinc levels are indeed correlated with MLIV pathology, we quantified its concentration in cultured MLIV patient fibroblast and control cells with a spectrofluorometer using N-(6-methoxy-8-quinolyl)-p-toluene sulfonamide fluorochrome. We found a significant increase of chelatable zinc levels in MLIV cells but not in control cells. Furthermore, we quantified various metal isotopes in whole brain tissue of TRPML1−/− null mice and wild-type littermates using inductively coupled plasma mass spectrometry and observed that the zinc-66 isotope is markedly elevated in the brain of TRPML1−/− mice when compared with controls. In conclusion, we show for the first time that the loss of TRPML1 function results in intracellular chelatable zinc dyshomeostasis. We propose that chelatable zinc accumulation in large lysosomes and membranous vacuoles may contribute to the pathogenesis of the disease and progressive cell degeneration in MLIV patients.  相似文献   

16.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is capable of inducing global Ca2+ increases via a lysosome-associated mechanism, but the mechanism mediating NAADP-induced intracellular Ca2+ release remains unclear. The present study reconstituted and characterized a lysosomal NAADP-sensitive Ca2+ release channel using purified lysosomes from rat liver. Furthermore, the identity of lysosomal NAADP-sensitive Ca2+ release channels was also investigated. It was found that NAADP activates lysosomal Ca2+ release channels at concentrations of 1 nM to 1 microM, but this activating effect of NAADP was significantly reduced when the concentrations used increased to 10 or 100 microM. Either activators or blockers of Ca2+ release channels on the sarcoplasmic reticulum (SR) had no effect on the activity of these NAADP-activated Ca2+ release channels. Interestingly, the activity of this lysosomal NAADP-sensitive Ca2+ release channel increased when the pH in cis solution decreased, but it could not be inhibited by a lysosomal H+-ATPase antagonist, bafilomycin A1. However, the activity of this channel was significantly inhibited by plasma membrane L-type Ca2+ channel blockers such as verapamil, diltiazem, and nifedipine, or the nonselective Ca2+,Na+ channel blocker, amiloride. In addition, blockade of TRP-ML1 (transient receptor potential-mucolipin 1) protein by anti-TRP-ML1 antibody markedly attenuated NAADP-induced activation of these lysosomal Ca2+ channels. These results for the first time provide direct evidence that a NAADP-sensitive Ca2+ release channel is present in the lysosome of native liver cells and that this channel is associated with TRP-ML1, which is different from ER/SR Ca2+ release channels.  相似文献   

17.
The stereochemical specificity of lysosomal lipase of rat liver was investigated using enantiomeric triacylglycerol analogs, sn-1-alkyl-2,3-diacylglycerol and sn-3-alkyl-1,2-diacylglycerol as substrates. Lysosomal lipase utilized both substrates with equal rates. The dependence of the activity of lysosomal lipase on the stereoconfiguration of activating acidic phospholipid was also studied. Our results showed that both sn-3-phospholipids (diphosphatidylglycerol, phosphatidylserine) and sn-1-phospholipids (bis(monoacylglycero)phosphate (BMP) were efficient activators of this enzyme and thus the stereochemical configuration of the activating phospholipid is not important. Accordingly, the rat liver lysosomal lipase lacks stereospecificity with respect to both the triacylglycerol substrate and the acidic phospholipid activator.  相似文献   

18.
Phospholipase modulators have been shown to affect the topology of lipid bilayers and the formation of tubulo-vesicular structures, but the specific endogenous phospholipases involved have yet to be identified. Here we show that TRPML1 (MLN1), a Ca(2+)-permeable channel, contributes to membrane remodeling through a serine lipase consensus domain, and thus represents a novel type of bifunctional protein. Remarkably, this serine lipase active site determines the ability of MLN1 to generate tubulo-vesicular extensions in mucolipin-1-expressing oocytes, human fibroblasts and model membrane vesicles. Our demonstration that MLN1 is involved in membrane remodeling and the formation of extensions suggests that it may play a role in the formation of cellular processes linked to the late endosome/lysosome (LE/L) pathway. MLN1 is absent or mutated in patients with mucolipidosis IV (MLIV), a lysosomal disorder with devastating neurological and other consequences. This study provides potential insight into the pathophysiology of MLIV.  相似文献   

19.
Mucolipin-1 is a 65-kDa membrane protein encoded by the MCOLN1 gene, which is mutated in patients with mucolipidosis type IV (MLIV), a rare neurodegenerative lysosomal storage disorder. We studied the subcellular localization of wild-type and three different mutant forms (T232P, F408del and F465L) of mucolipin by expressing Myc-tagged proteins in HeLa cells. The overexpressed wild-type mucolipin colocalizes to late endocytic structures and induces an aberrant distribution of these compartments. F408del and F465L MLIV mutant proteins show a distribution similar to the wild-type protein, whereas T232P is retained in the endoplasmic reticulum. Among the mutants, only F408del induces a redistribution of the late endocytic compartment. These findings suggest that the overexpression of the mucolipin cation channel influences the dynamic equilibrium of late endocytic compartments.  相似文献   

20.
Lysosomal acid lipase (LAL) cleaves cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. LAL deficiency causes expansion of CD11b(+)Gr-1(+) immature myeloid cells, loss of T cells, and impairment of T cell function. To test how myeloid cell LAL controls myelopoiesis and lymphopoiesis, a myeloid-specific doxycycline-inducible transgenic system was used to reintroduce human lysosomal acid lipase (hLAL) expression into LAL gene knockout (lal(-/-)) mice. Expression of hLAL in myeloid cells of lal(-/-) mice reversed abnormal myelopoiesis in the bone marrow starting at the granulocyte-monocyte progenitor stage and reduced systemic expansion of myeloid-derived suppressor cells (MDSCs). Myeloid hLAL expression inhibited reactive oxygen species production and arginase expression in CD11b(+)Gr-1(+) cells of lal(-/-) mice. Structural organization of the thymus and spleen was partially restored in association with reduced infiltration of CD11b(+)Gr-1(+) cells in these mice. In the thymus, reconstitution of myeloid cell LAL restored development of thymocytes at the double-negative DN3 stage. Myeloid cell LAL expression improved the proliferation and function of peripheral T cells. In vitro coculture experiments showed that myeloid hLAL expression in lal(-/-) mice reversed CD11b(+)Gr-1(+) myeloid cell suppression of CD4(+) T cell proliferation, T cell signaling activation, and lymphokine secretion. Blocking stat3 and NF-κB p65 signaling by small-molecule inhibitors in MDSCs achieved a similar effect. Injection of anti-Gr-1 Ab into lal(-/-) mice to deplete MDSCs restored T cell proliferation. These studies demonstrate that LAL in myeloid cells plays a critical role in maintaining normal hematopoietic cell development and balancing immunosuppression and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号