首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine rhodopsin was bleached and regenerated with 7,9-dicis-retinal to form 7,9-dicis-rhodopsin, which was purified on a concanavalin A affinity column. The absorption maximum of the 7,9-dicis pigment is 453 nm, giving an opsin shift of 1600 cm-1 compared to 2500 cm-1 for 11-cis-rhodopsin and 2400 cm-1 for 9-cis-rhodopsin. Rapid-flow resonance Raman spectra have been obtained of 7,9-dicis-rhodopsin in H2O and D2O at room temperature. The shift of the 1654-cm-1 C = N stretch to 1627 cm-1 in D2O demonstrates that the Schiff base nitrogen is protonated. The absence of any shift in the 1201-cm-1 mode, which is assigned as the C14-C15 stretch, or of any other C-C stretching modes in D2O indicates that the Schiff base C = N configuration is trans (anti). Assuming that the cyclohexenyl ring binds with the same orientation in 7,9-dicis-, 9-cis-, and 11-cis-rhodopsins, the presence of two cis bonds requires that the N-H bond of the 7,9-dicis chromophore points in the opposite direction from that in the 9-cis or 11-cis pigment. However, the Schiff base C = NH+ stretching frequency and its D2O shift in 7,9-dicis-rhodopsin are very similar to those in 11-cis- and 9-cis-rhodopsin, indicating that the Schiff base electrostatic/hydrogen-bonding environments are effectively the same. The C = N trans (anti) Schiff base geometry of 7,9-dicis-rhodopsin and the insensitivity of its Schiff base vibrational properties to orientation are rationalized by examining the binding site specificity with molecular modeling.  相似文献   

2.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

3.
The first step of the bacteriorhodopsin (bR) photocycle involves the formation of a red-shifted product, K. Fourier transform infrared difference spectra of the bR570 to K630 transition at 81 K has been measured for bR containing different isotopic substitutions at the retinal Schiff base. In the case of bacteriorhodopsin containing a deuterium substitution at the Schiff base nitrogen, carbon 15, or both, we find spectral changes in the 1600-1610- and 1570-1580-cm-1 region consistent with the hypothesis that the K630 C=N stretching mode of a protonated Schiff base is located near 1609 cm-1. A similar set of Schiff base deuterium substitutions for retinal containing a 13C at the carbon 10 position strongly supports this conclusion. This assignment of the K630 C=N stretching vibration provides evidence that the bR Schiff base proton undergoes a substantial environmental change most likely due to separation from a counterion. In addition, a correlation is found between the C=N stretching frequency and the maximum wavelength of visible absorption, suggesting that movement of a counterion relative to the Schiff base proton is the main source of absorption changes in the early stages of the photocycle. Such a movement is a key prediction of several models of proton transport and energy transduction. Evidence is also presented that one or more COOH groups are involved in the formation of the K intermediate.  相似文献   

4.
Resonance Raman spectra have been recorded for heme a derivatives in which the oxygen atom of the formyl group has been isotopically labeled and for Schiff base derivatives of heme a in which the Schiff base nitrogen has been isotopically labeled. The 14N-15N isotope shift in the C = N stretching mode of the Schiff base is close to the theoretically predicted shift for an isolated C = N group for both the ferric and ferrous oxidation states and in both aqueous and nonaqueous solutions. In contrast, the 16O-18O isotope shift of the C = O stretching mode of the formyl group is significantly smaller than that predicted for an isolated C = O group and is also dependent on whether the environment is aqueous or nonaqueous. This differences between the theoretically predicted shifts and the observed shifts are attributed to coupling of the C = O stretching mode to as yet unidentified modes of the heme. The complex behavior of the C = O stretching vibration precludes the possibility of making simple interpretations of frequency shifts of this mode in cytochrome c oxidase.  相似文献   

5.
By elevating the pH to 9.5 in 3 M KCl, the concentration of the N intermediate in the bacteriorhodopsin photocycle has been enhanced, and time-resolved resonance Raman spectra of this intermediate have been obtained. Kinetic Raman measurements show that N appears with a half-time of 4 +/- 2 ms, which agrees satisfactorily with our measured decay time of the M412 intermediate (2 +/- 1 ms). This argues that M412 decays directly to N in the light-adapted photocycle. The configuration of the chromophore about the C13 = C14 bond was examined by regenerating the protein with [12,14-2H]retinal. The coupled C12-2H + C14-2H rock at 946 cm-1 demonstrates that the chromophore in N is 13-cis. The shift of the 1642-cm-1 Schiff base stretching mode to 1618 cm-1 in D2O indicates that the Schiff base linkage to the protein is protonated. The insensitivity of the 1168-cm-1 C14-C15 stretching mode to N-deuteriation establishes a C = N anti (trans) Schiff base configuration. The high frequency of the C14-C15 stretching mode as well as the frequency of the 966-cm-1 C14-2H-C15-2H rocking mode shows that the chromophore is 14-s-trans. Thus, N contains a 13-cis, 14-s-trans, 15-anti protonated retinal Schiff base.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have obtained Raman spectra of a series of all-trans retinal protonated Schiff-base isotopic derivatives. 13C-substitutions were made at the 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 positions while deuteration was performed at position 15. Based on the isotopic shifts, the observed C--C stretching vibrations in the 1,100-1,400 cm-1 fingerprint region are assigned. Normal mode calculations using a modified Urey-Bradley force field have been refined to reproduce the observed frequencies and isotopic shifts. Comparison with fingerprint assignments of all-trans retinal and its unprotonated Schiff base shows that the major effect of Schiff-base formation is a shift of the C14--C15 stretch from 1,111 cm-1 in the aldehyde to approximately 1,163 cm-1 in the Shiff base. This shift is attributed to the increased C14--C15 bond order that results from the reduced electronegativity of the Schiff-base nitrogen compared with the aldehyde oxygen. Protonation of the Schiff base increases pi-electron delocalization, causing a 6 to 16 cm-1 frequency increase of the normal modes involving the C8--C9, C10--C11, C12--C13, and C14--C15 stretches. Comparison of the protonated Schiff base Raman spectrum with that of light-adapted bacteriorhodopsin (BR568) shows that incorporation of the all-trans protonated Schiff base into bacterio-opsin produces an additional approximately 10 cm-1 increase of each C--C stretching frequency as a result of protein-induced pi-electron delocalization. Importantly, the frequency ordering and spacing of the C--C stretches in BR568 is the same as that found in the protonated Schiff base.  相似文献   

7.
A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin   总被引:3,自引:0,他引:3  
H Deng  R H Callender 《Biochemistry》1987,26(23):7418-7426
We have obtained the resonance Raman spectra of bovine rhodopsin, bathorhodopsin, and isorhodopsin for a series of isotopically labeled retinal chromophores. The specific substitutions are at retinal's protonated Schiff base moiety and include -HC = NH+-, -HC = ND+-, -H13C = NH+-, and -H13C = ND+-. Apart from the doubly labeled retinal, we find that the protonated Schiff base frequency is the same, within experimental error, for both rhodopsin and bathorhodopsin for all the substitutions measured here and elsewhere. We develop a force field that accurately fits the observed ethylenic (C = C) and protonated Schiff base stretching frequencies of rhodopsin and labeled derivatives. Using MINDO/3 quantum mechanical procedures, we investigate the response of this force field, and the ethylenic and Schiff base stretching frequencies, to the placement of charges close to retinal's Schiff base moiety. Specifically, we find that the Schiff base frequency should be measurably affected by a 3.0-4.5-A movement of a negatively charged counterion from the positively charged protonated Schiff base moiety. That there is no experimentally discernible difference in the Schiff base frequency between rhodopsin and bathorhodopsin suggests that models for the efficient conversion of light to chemical energy in the rhodopsin to bathorhodopsin photoconversion based solely on salt bridge separation of the protonated Schiff base and its counterion are probably incorrect. We discuss various alternative models and the role of electrostatics in the rhodopsin to bathorhodopsin primary process.  相似文献   

8.
Sensory rhodopsin I (SR-I) is a retinal-containing pigment which functions as a phototaxis receptor in Halobacterium halobium. We have obtained resonance Raman vibrational spectra of the native membrane-bound form of SR587 and used these data to determine the structure of its retinal prosthetic group. The similar frequencies and intensities of the skeletal fingerprint modes in SR587, bacteriorhodopsin (BR568), and halorhodopsin (HR578) as well as the position of the dideuterio rocking mode when SR-I is regenerated with 12,14-D2 retinal (915 cm-1) demonstrate that the retinal chromophore has an all-trans configuration. The shift of the C = N stretching mode from 1628 cm-1 in H2O to 1620 cm-1 in D2O demonstrates that the chromophore in SR587 is bound to the protein by a protonated Schiff base linkage. The small shift of the 1195 cm-1 C14-C15 stretching mode in D2O establishes that the protonated Schiff base bond has an anti configuration. The low value of the Schiff base stretching frequency together with its small 8 cm-1 shift in D2O indicates that the Schiff base proton is weakly hydrogen bonded to its protein counterion. This suggests that the red shift in the absorption maximum of SR-I (587 nm) compared with HR (578 nm) and BR (568 nm) is due to a reduction of the electrostatic interaction between the protonated Schiff base group and its protein counterion.  相似文献   

9.
In this study quantum mechanical calculations of force constants and normal mode analysis are used to elucidate the factors that influence the C=C and C=N stretching frequencies in polyenes and in protonated Schiff bases. The C=N stretching frequency is found to depend on both the C=N stretching force constant and the C=N-H bending force constant. Due to the contributions of these two modes, the C=N stretching frequency is particularly sensitive to the magnitude of the Schiff base counterion interactions and to the hydrogen bonding environment of the Schiff base nitrogen. Models for chromophore-protein interactions in the retinal binding site and for the photochemical transformations of bacteriorhodopsin and rhodopsin are evaluated in light of these results.  相似文献   

10.
Resonance Raman (RR) spectra were obtained in H2O or D2O solution for the purple intermediates of D-amino acid oxidase (DAO) with isotopically labeled substrates, i.e., [1-13C]-, [2-13C]-, [3-13C]-, [15N]-, and [3,3,3-D3]alanine; [carboxyl-13C]- and [15N]proline. RR spectra were also measured for the intermediates of DAO reconstituted with isotopically labeled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]FAD in D2O. The isotopic shift of the 1692 cm-1 band upon [15N]- or [2-13C]-substitution of alanine indicates that the band is due to the C = N stretching mode of an imino acid derived from D-alanine, i.e., alpha-iminopropionate. The 1658 cm-1 band with D-proline was also assigned to the C = N stretching mode of an imino acid derived from D-proline, i.e., delta 1-pyrrolidine-2-carboxylate, since the band shifts to 1633 cm-1 upon [15N]-substitution and its stretching frequency is generally found in this frequency region. Since the band shifts to low frequency in D2O, the imino acid should have a protonated imino group such as the C = N+1H form. The intense band at 1363 cm-1 with D-alanine was assigned to a mixing of the CO2- symmetric stretching and CH3 symmetric deformation modes in alpha-iminopropionate, based on the isotope effects. The 1359 cm-1 band with D-proline has probably contributions of CO2- symmetric stretching and CH2 wagging, considering the isotope effects with [carboxyl-13C]proline. The 1359 cm-1 band with D-proline was split into 1371 cm-1 and 1334 cm-1 bands in D2O. As this splitting of the 1359 cm-1 band with D-proline in D2O can not be interpreted only by the replacement of the C = N+1-H proton by deuterium, the carboxylate of the imino acid probably interacts with the enzyme through some proton(s) exchangeable by deuterium(s) in D2O. The bands around 1605 cm-1 which shift upon [4a-13C]- and [4,10a-13C2]-labeling of FAD are derived from a fully reduced flavin, because the isotopic shifts of the band are very different from those of the bands of oxidized or semiquinoid flavin observed near 1605 cm-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
U M Ganter  W G?rtner  F Siebert 《Biochemistry》1988,27(19):7480-7488
The rhodopsin-lumirhodopsin transition has been investigated by Fourier transform infrared difference spectroscopy using isotope-labeled retinals. In the transition, two protonated carboxyl groups are involved. Another carbonyl band, located at 1725 cm-1 in rhodopsin, is shifted to 1731.5 cm-1 in lumirhodopsin. This line is tentatively assigned to a carbonyl stretching vibration of a peptide bond adjacent to the nitrogen of a proline residue. The C=N stretching vibration of rhodopsin could unequivocally be assigned to a band at 1659 cm-1. In contrast to rhodopsin and bathorhodopsin, the C=N stretching vibration of lumirhodopsin is at a low position, i.e., at 1635 cm-1, and exhibits only a downshift of 4 cm-1 upon deuteriation of the nitrogen. The C15-H rocking vibration of rhodopsin is assigned to the unusual high position of 1456 cm-1 and shifts into the normal region upon formation of lumirhodopsin. From these results, it is concluded that, whereas the environment of the Schiff base in rhodopsin, bathorhodopsin, and isorhodopsin is approximately the same, large changes occur with the formation of lumirhodopsin. From the assignment of the C10-C11 stretching vibration in bathorhodopsin and lumirhodopsin, a 10-s-cis geometry of lumirhodopsin can be excluded.  相似文献   

12.
The secondary structure of bacteriorhodopsin has been investigated by polarized Fourier transform infrared spectroscopy combined with hydrogen/deuterium exchange, isotope labeling and resolution enhancement methods. Oriented films of purple membrane were measured at low temperature after exposure to H2O or D2O. Resolution enhancement techniques and isotopic labeling of the Schiff base were used to assign peaks in the amide I region of the spectrum. alpha-helical structure, which exhibits strong infrared dichroism, undergoes little H/D exchange, even after 48 h of D2O exposure. In contrast, non-alpha-helical structure, which exhibits little dichroism, undergoes rapid H/D exchange. A band at 1,640 cm-1, which has previously been assigned to beta-sheet structure, is found to be due in part to the C = N stretching vibration of protonated Schiff base of the retinylidene chromophore. We conclude that the membrane spanning regions of bR consist predominantly of alpha-helical structure whereas most beta-type structure is located in surface regions directly accessible to water.  相似文献   

13.
L M Abell  M H O'Leary 《Biochemistry》1988,27(16):5927-5933
The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k14/k15 = 0.9770 +/- 0.0021, a carbon isotope effect k12/k13 = 1.0308 +/- 0.0006, and a carbon isotope effect for L-[alpha-2H]histidine of 1.0333 +/- 0.0001 at pH 6.3, 37 degrees C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli [Abell, L. M., & O'Leary, M. H. (1988) Biochemistry 27, 3325], the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.  相似文献   

14.
The structure of the retinal chromophore about the C = N and C14-C15 bonds in bacteriorhodopsin's M412 intermediate has been determined by analyzing resonance Raman spectra of 2H and 13C isotopic derivatives. Normal mode calculations on 13-cis-retinal Schiff bases demonstrate that the C15-D rock and N-CLys stretch are strongly coupled for C = N-syn chromophores and weakly coupled for C = N-anti chromophores. When the Schiff base geometry is anti, the C15-D rock appears as a localized resonance Raman active mode at approximately 980 cm-1, which is moderately sensitive to 13C substitution at positions 14 and 15 (approximately 7 cm-1) and insensitive to 13C substitution at the epsilon position of lysine. When the Schiff base geometry is syn, in-phase and out-of-phase combinations of the C15-D rock and N-CLys stretch are predicted at approximately 1060 and approximately 910 cm-1, respectively. The in-phase mode is more sensitive to 13C substitution at positions 14 and 15 (approximately 15 cm-1) and at the epsilon position of lysine (approximately 4 cm-1). Calculations and comparison with experimental data on dark-adapted bacteriorhodopsin indicate that the in-phase mode at approximately 1060 cm-1 carries the majority of the resonance Raman intensity. M412 exhibits a C15-D rock at 968 cm-1 that shifts 8 cm-1 when 13C is added at positions 14 and 15 and is insensitive to 13C substitution at the epsilon-position of lysine. This demonstrates that M412 contains a C = N-anti Schiff base.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Resonance Raman (RR) spectra are reported for amino acid and amine adducts of pyridoxal 5'-phosphate (PLP) and 5'-deoxypyridoxal (5'-dPL) in aqueous solution. For the valine adducts, a detailed study has been carried out on solutions at pH and pD 5, 9, and 13, values at which the pyridine and imine protons are successively ionized, and on the adducts formed from 15N-valine, alpha-deuterovaline, and N-methyl-PLP. Good quality spectra were obtained, despite the strong fluorescence of pyridoxal Schiff bases, by adding KI as a quencher, and by exciting the molecules on the blue side of their absorption bands: 406.7 nm (cw Kr+ laser) for the pH 5 and 9 species (lambda max = 409 and 414 nm), and 354.7 nm (pulsed YAG laser, third harmonic) for the pH 13 species (lambda max = 360 nm). A prominent band at 1646 cm-1 is assigned to the imine C=N stretch via its 13 cm-1 15N shift. A 12 cm-1 down-shift of the band in D2O confirms that the Schiff base linkage is protonated at pH 9. Deprotonation at pH 13 shifts VC = N from 1646 to 1629 cm-1, values typical of conjugated Schiff bases. The strongest band in the spectrum, at 1338 cm-1, shifts to 1347 cm-1 upon pyridine protonation at pH 5, and is assigned to a ring mode with a large component of phenolate C-O stretch. A shoulder on its low-frequency side is assigned to the C4-C4' stretch. Large enhancements of these modes can be understood qualitatively in terms of the dominant resonance structures contributing to the ground and resonant excited states. A number of weaker bands are observed, and assigned to pyridine ring modes. These modes gain significantly in intensity, while the exocyclic modes diminish, when the spectra are excited at 266 nm (YAG laser, fourth harmonic) in resonance with ring-localized electronic transitions.  相似文献   

16.
13C- and 2H-labeled retinal derivatives have been used to assign normal modes in the 1100-1300-cm-1 fingerprint region of the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin. On the basis of the 13C shifts, C8-C9 stretching character is assigned at 1217 cm-1 in rhodopsin, at 1206 cm-1 in isorhodopsin, and at 1214 cm-1 in bathorhodopsin. C10-C11 stretching character is localized at 1098 cm-1 in rhodopsin, at 1154 cm-1 in isorhodopsin, and at 1166 cm-1 in bathorhodopsin. C14-C15 stretching character is found at 1190 cm-1 in rhodopsin, at 1206 cm-1 in isorhodopsin, and at 1210 cm-1 in bathorhodopsin. C12-C13 stretching character is much more delocalized, but the characteristic coupling with the C14H rock allows us to assign the "C12-C13 stretch" at approximately 1240 cm-1 in rhodopsin, isorhodopsin, and bathorhodopsin. The insensitivity of the C14-C15 stretching mode to N-deuteriation in all three pigments demonstrates that each contains a trans (anti) protonated Schiff base bond. The relatively high frequency of the C10-C11 mode of bathorhodopsin demonstrates that bathorhodopsin is s-trans about the C10-C11 single bond. This provides strong evidence against the model of bathorhodopsin proposed by Liu and Asato [Liu, R., & Asato, A. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 259], which suggests a C10-C11 s-cis structure. Comparison of the fingerprint modes of rhodopsin (1098, 1190, 1217, and 1239 cm-1) with those of the 11-cis-retinal protonated Schiff base in methanol (1093, 1190, 1217, and 1237 cm-1) shows that the frequencies of the C-C stretching modes are largely unperturbed by protein binding. In particular, the invariance of the C14-C15 stretching mode at 1190 cm-1 does not support the presence of a negative protein charge near C13 in rhodopsin. In contrast, the frequencies of the C8-C9 and C14-C15 stretches of bathorhodopsin and the C10-C11 and C14-C15 stretches of isorhodopsin are significantly altered by protein binding. The implications of these observations for the mechanism of wavelength regulation in visual pigments and energy storage in bathorhodopsin are discussed.  相似文献   

17.
L M Abell  M H O'Leary 《Biochemistry》1988,27(9):3325-3330
The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product gamma-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 degrees C, the isotope effect is k14/k15 = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is k14/k15 = 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction [O'Leary, M.H., Yamada, H., & Yapp, C.J. (1981) Biochemistry 20, 1476] shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.  相似文献   

18.
Time-resolved resonance Raman spectra of the hRL intermediate of halorhodopsin have been obtained. The structurally sensitive fingerprint region of the hRL spectrum is very similar to that of bacteriorhodopsin's L550 intermediate, which is known to have a 13-cis configuration. This indicates that hRL contains a 13-cis chromophore and that an all-trans----13-cis isomerization occurs in the halorhodopsin photocycle. hRL exhibits a Schiff base stretching mode at 1644 cm-1, which shifts to 1620 cm-1 in D2O. This demonstrates that the Schiff base linkage to the protein is protonated. The insensitivity of the C-C stretching mode frequencies to N-deuteriation suggests that the Schiff base configuration is anti. The 24 cm-1 shift of the Schiff base mode in D2O indicates that the Schiff base proton in hRL has a stronger hydrogen-bonding interaction with the protein than does hR578.  相似文献   

19.
Structure of the retinal chromophore in the hR578 form of halorhodopsin   总被引:1,自引:0,他引:1  
Halorhodopsin is a retinal-containing pigment that is thought to function as a light-driven chloride ion pump in the cell membrane of Halobacterium halobium. To address the role of the retinal chromophore in chloride ion transport, resonance Raman spectra have been obtained of the hR578 form of chromatographically purified halorhodopsin (hR). The close similarity of the frequencies and intensities of the hR578 Raman bands with those of light-adapted bacteriorhodopsin (bR568) shows that the chromophore in hR578 has an all-trans configuration and that the protein environment around the chromophore in these two pigments is very similar. In addition, hR578 exhibits a Raman line at 1633 cm-1 which is assigned as the stretching vibration of a protonated Schiff base linkage to the protein based on its shift to 1627 cm-1 in D2O. The reduced frequency of the Schiff base stretching vibration compared with bR568 (1640 cm-1) is shown to result from a reduction of its coupling with the NH in-plane rock. This may be due to a reduction in hydrogen-bonding between the Schiff base proton and an electronegative counterion in halorhodopsin.  相似文献   

20.
Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These vibrational data can be primarily interpreted in terms of the degree of twisting of the C14-C15 retinal bond. Such twisting may be accompanied by changes in the adjacent protein. Other smaller, but nonetheless clear, spectral changes indicate that alterations along the retinal polyene chain also occur. The changes in the retinal structure are preliminary to the deprotonation of the Schiff base nitrogen during the formation of M-412. The time constant for the ps/ns K-590 transformation is estimated from the amplitude change of four vibrational bands in the HOOP region to be 40-70 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号