首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
DNAase I sensitivity of genes expressed during myogenesis.   总被引:17,自引:5,他引:12       下载免费PDF全文
Y Carmon  H Czosnek  U Nudel  M Shani    D Yaffe 《Nucleic acids research》1982,10(10):3085-3098
Cultures of a rat myogenic cell line were used to examine the question of whether in proliferating precursor cells genes which are programmed to be expressed later in development, in the same cell lineage, differ in DNAase I sensitivity from genes which are never expressed in these cells. Nuclei isolated from proliferating mononucleated myoblasts, differentiated cultures containing multinucleaged fibers, and rat brain, were treated with DNAase I. The sensitivity of the genes coding for the muscle-specific alpha-actin, myosin light chain 2 and the nonmuscle beta-actin was measured by blot hybridization of nuclear DNA with the corresponding cloned cDNA and genomic DNA probes. The sensitivity of these genes was compared to that of a gene not expressed in the muscle tissue. The results showed that in the muscle precursor cells, the potentiality of tissue-specific genes to be expressed is not reflected in DNAase I sensitivity. The changes which render these genes preferentially sensitive to DNAase I take place during the transition to terminal differentiation. The results showed also that the region of DNAase I sensitivity of the alpha-actin gene in the differentiated cells ends between 40 to 700 bp 5' to the structural gene. No DNAase I hypersensitive site was detected 5' to the alpha-actin gene.  相似文献   

7.
8.
Satellite cells are committed myogenic progenitors that give rise to proliferating myoblasts during postnatal growth and repair of skeletal muscle. To identify genes expressed at different developmental stages in the satellite cell myogenic program, representational difference analysis of cDNAs was employed to identify more than 50 unique mRNAs expressed in wild-type myoblasts and MyoD-/- myogenic cells. Novel expression patterns for several genes, such as Pax7, Asb5, IgSF4, and Hoxc10, were identified that were expressed in both quiescent and activated satellite cells. Several previously uncharacterized genes that represent putative MyoD target genes were also identified, including Pw1, Dapk2, Sytl2, and NLRR1. Importantly, many genes such as IgSF4, Neuritin, and Klra18 that were expressed exclusively in MyoD-/- myoblasts were also expressed by satellite cells in undamaged muscle in vivo but were not expressed by primary myoblasts. These data are consistent with a biological role for activated satellite cells that induce Myf5 but not MyoD. Lastly, additional endothelial and hematopoietic markers were identified supporting a nonsomitic developmental origin of the satellite cell myogenic lineage.  相似文献   

9.
10.
Induction of muscle genes in neural cells   总被引:8,自引:4,他引:4       下载免费PDF全文
The regulation of skeletal muscle genes was examined in heterokaryons formed by fusing differentiated chick skeletal myocytes to four different rat neural cell lines. Highly enriched populations of heterokaryons isolated using irreversible biochemical inhibitors were labeled with [35S]methionine and analyzed on two-dimensional gels. Rat skeletal myosin light chains were induced in three of the four cell combinations. The one exception, the S-20 cholinergic cell line, not only failed to synthesize rat muscle proteins but also suppressed chick myogenic functions. Experiments with heterokaryons between chick myocytes and cells from whole embryonic rat brain cultures demonstrated that rat skeletal myosin light chains are inducible in normal diploid neural cells as well as in established neural cell lines. In contrast, dividing cell hybrids between rat myoblasts and rat glial cells were nonmyogenic. These results demonstrate that although neural cells may contain factors that prevent the decision to differentiate along myogenic lines in cell hybrids, most neural cell lines do not dominantly suppress the expression of muscle structural genes in heterokaryons. Furthermore, the skeletal myosin light chain genes in most neural cell lines are regulated by a mechanism that permits them to respond to putative chick skeletal myocyte-inducing factors. The "open" state of these myogenic genes may explain many of the reports of apparent "transdifferentiation" to muscle in neural cultures and neural tumors.  相似文献   

11.
12.
13.
To determine whether mitogen-regulated expression of skeletal muscle genes is independent of cell type, muscle and nonmuscle cells were transfected with cloned 5'-flanking sequences of muscle creatine kinase (MCK) fused to a heterologous reporter gene and tested for expression in high and low mitogen culture conditions. Consistent with the behavior of endogenous MCK, a -3300MCK-CAT gene is expressed at high levels in differentiated muscle cells but at low to undetectable levels in proliferating myoblasts and in either mitogen-deprived or stimulated nonmuscle cells of mesodermal, ectodermal, or endodermal origin. A -776MCK-CAT gene behaves similarly with respect to its cell type specificity but it supports only an intermediate expression level in response to mitogen deprivation in skeletal muscle cells. These data suggest that the -3300 to +7 nucleotide region of mouse MCK contains one or more elements which are activable by mitogen deprivation only in myogenic cells.  相似文献   

14.
Muscle-specific activation of a methylated chimeric actin gene   总被引:19,自引:0,他引:19  
To understand how DNA methylation affects tissue-specific activation of genes, we have transfected in vitro methylated alpha-actin (skeletal) constructs into fibroblasts, which do not produce endogenous alpha-actin, and into a myogenic line, which is inducible for alpha-actin expression. Although methylation significantly inhibits the expression of these constructs in fibroblasts, it does not in myoblasts. The methylation pattern of the introduced methylated genes reveals specific demethylations in the transfected molecules in myoblasts but not in fibroblasts, and it precisely mimics the methylation pattern found in myoblasts in vivo.  相似文献   

15.
We have studied expression and function of neurotrophins and their receptors during myogenic differentiation of C2C12 cells, a clonal cell line derived from mouse muscle that is capable of in vitro differentiation. The genes coding for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and their common low-affinity receptor p75neurotrophin receptor (p75NTR) were shown to be expressed in C2C12 myoblasts and downregulated during myogenic differentiation and fusion into myotubes. Cocultures with dorsal root ganglia from day 8 chick embryos revealed neurite-promoting activities of C2C12 cells that ceased with myogenic differentiation. These data suggest a temporal and developmental window for the effect of myogenic cell-derived neurotrophins on neuronal as well as on myogenic cell populations. NGF was shown to increase DNA synthesis and cell growth of C2C12 myoblasts and to enhance myogenic differentiation in this cell line. We present evidence that NGF-mediated processes take place at stages preceding myogenic differentiation. Enhanced muscle differentiation was also seen in p75NTR-overexpressing C2C12 myoblasts which maintained high levels of receptors but ceased to produce NGF during differentiation. In contrast, when exogenous NGF was present at the onset of myogenic differentiation of receptor-overexpressing cells, muscle cell development was strongly repressed. This indicates that downregulation of p75NTR is necessary for guiding myogenic cells towards terminal differentiation. Since none of the trk high-affinity neurotrophin receptors could be demonstrated in C2C12 cells, we conclude that NGF mediates its nonneurotrophic effect via its low-affinity receptor in an autocrine fashion. J. Cell. Physiol. 176:10–21, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Satellite cells represent a heterogeneous population of stem and progenitor cells responsible for muscle growth, repair and regeneration. We investigated whether c-Myb could play a role in satellite cell biology because our previous results using satellite cell-derived mouse myoblast cell line C2C12 showed that c-Myb was expressed in growing cells and downregulated during differentiation. We detected c-Myb expression in activated satellite cells of regenerating muscle. c-Myb was also discovered in activated satellite cells associated with isolated viable myofiber and in descendants of activated satellite cells, proliferating myoblasts. However, no c-Myb expression was detected in multinucleated myotubes originated from fusing myoblasts. The constitutive expression of c-Myb lacking the 3′ untranslated region (3′ UTR) strongly inhibited the ability of myoblasts to fuse. The inhibition was dependent on intact c-Myb transactivation domain as myoblasts expressing mutated c-Myb in transactivation domain were able to fuse. The absence of 3′ UTR of c-Myb was also important because the expression of c-Myb coding region with its 3′ UTR did not inhibit myoblast fusion. The same results were repeated in C2C12 cells as well. Moreover, it was documented that 3′ UTR of c-Myb was responsible for downregulation of c-Myb protein levels in differentiating C2C12 cells. DNA microarray analysis of C2C12 cells revealed that the expression of several muscle-specific genes was downregulated during differentiation of c-Myb-expressing cells, namely: ACTN2, MYH8, TNNC2, MYOG, CKM and LRRN1. A detailed qRT-PCR analysis of MYOG, TNNC2 and LRRN1 is presented. Our findings thus indicate that c-Myb is involved in regulating the differentiation program of myogenic progenitor cells as its expression blocks myoblast fusion.  相似文献   

17.
18.
We previously used mice bearing a myosin light chain-chloramphenicol acetyltransferase (MLC1-CAT) transgene to show that adult muscle cells bear a heritable, cell autonomous memory of their rostrocaudal position. CAT mRNA and protein are expressed in a > 100-fold rostrocaudal gradient in skeletal muscles of developing and adult MLC1-CAT mice (Donoghue, M. J., Merlie, J. P., Rosenthal, N. and Sanes, J. R. (1991). Proc. Natl. Acad. Sci. USA 88, 5847-5851; Donoghue, M. J., Alvarez, J. D., Merlie, J. P. and Sanes, J. R. (1991). J. Cell Biol. 115, 423-434). Moreover, both in primary cultures and in myogenic cell lines prepared from individual muscles of these mice, CAT levels reflect the body position from which the myoblasts were derived (Donoghue, M.J., Morris-Valero, R., Johnson, Y.R., Merlie, J.P. and Sanes, J. R. (1992). Cell 69, 67-77). Here, we show that the methylation state of the MLC1-CAT transgene in skeletal muscles is also graded along the rostrocaudal axis: methylation levels decrease and expression levels increase in the order, jaw-->neck-->chest and forelimb-->hindlimb. Methylation levels are also approx. 10-fold higher in rostrally derived than in caudally derived myogenic cell lines, which express low and high levels of CAT, respectively. Within each cell line, undifferentiated cells (myoblasts), which do not express the transgene, and differentiated cells (myotubes), which do, are indistinguishable in methylation state. Thus, differentiation-related changes in transgene expression do not affect position-related levels of transgene methylation. On the other hand, treatment of rostrally derived lines with the demethylating agent, 5-azacytidine, decreases methylation and increases expression of the transgene. Thus, perturbation of methylation affects expression. Taken together, these results suggest that methylation provides a genomic imprint of rostrocaudal body position that may serve as a component of the positional memory that mammalian cells retain into adulthood.  相似文献   

19.
20.
We have shown previously (A. Sobel and A. H. Tashjian, Jr. (1983). J. Biol. Chem. 258, 10,312-10,324;A. Sobel and M.C. Boutterin (1985). Neurochem. Int. 7, 995-1006) that, in the pituitary-derived GH4C1 cells, thyrotropin-releasing hormone or the tumor promoter TPA (12-O-tetradecanoylphorbol-13-acetate) stimulates the phosphorylation of two sets of cytoplasmic proteins related to the regulation of prolactin synthesis and release, respectively. Interestingly, phosphoproteins with identical electrophoretic migration properties on two-dimensional gels were detected in cultured neonate or adult mouse muscle cells and in the L6 and C2 myogenic cell lines. In addition TPA, which is known to have many actions on muscle cell functions, proliferation, and differentiation, stimulated the phosphorylation of these same proteins in myoblasts in culture. After fusion of the proliferating myoblasts into differentiated myotubes, this TPA-induced stimulation was strongly reduced in normal muscle cell cultures where some mononucleate muscle and non-muscle cells remained present. It was totally abolished in the homogeneous L6 and C2 cell lines. These observations suggest that the same phosphoproteins may be related to the intracellular mechanisms involved in the transduction of extracellular regulatory signals in such distinct differentiated environments as those of pituitary and muscle cells. In muscle cells themselves, the regulation of the phosphorylation of these proteins is function of the cell's state of differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号