首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene encoding malate dehydrogenase (MDH) was overexpressed in a pflB ldhA double mutant of Escherichia coli, NZN111, for succinic acid production. With MDH overexpression, NZN111/pTrc99A-mdh restored the ability to metabolize glucose anaerobically and 0.55 g/L of succinic acid was produced from 3 g/L of glucose in shake flask culture. When supplied with 10 g/L of sodium bicarbonate (NaHCO3), the succinic acid yield of NZN111/pTrc99A-mdh reached 1.14 mol/mol glucose. Supply of NaHCO3 also improved succinic acid production by the control strain, NZN111/pTrc99A. Measurement of key enzymes activities revealed that phosphoenolpyruvate (PEP) carboxykinase and PEP carboxylase in addition to MDH played important roles. Two-stage culture of NZN111/pTrc99A-mdh was carried out in a 5-L bioreactor and 12.2 g/L of succinic acid were produced from 15.6 g/L of glucose. Fed-batch culture was also performed, and the succinic acid concentration reached 31.9 g/L with a yield of 1.19 mol/mol glucose.  相似文献   

2.
We have isolated and characterized a gene, fdh, from Neurospora crassa which is developmentally regulated and which produces formate dehydrogenase activity when expressed in Escherichia coli. The gene is closely linked (less than 0.6 kb apart) to the leu-5 gene encoding mitochondrial leucyl-tRNA synthetase; the two genes are transcribed convergently from opposite strands. The expression patterns of these genes differ: fdh mRNA is found only during conidiation and early germination and is not detectable during mycelial growth, while leu-5 mRNA appears during germination and mycelial growth. The structure of the fdh gene was determined from the sequence of cDNA and genomic DNA clones and from mRNA mapping studies. The gene encodes a 375-amino-acid-long protein with sequence similarity to NAD-dependent dehydrogenases of the E. coli 3-phosphoglycerate dehydrogenase (serA gene product) subfamily. In particular, there is striking sequence similarity (52% identity) to formate dehydrogenase from Pseudomonas sp. strain 101. All of the residues thought to interact with NAD in the crystal structure of the Pseudomonas enzyme are conserved in the N. crassa enzyme. We have further shown that expression of the N. crassa gene in E. coli leads to the production of formate dehydrogenase activity, indicating that the N. crassa gene specifies a functional polypeptide.  相似文献   

3.
D-甘露醇广泛应用于食品、制药、化学品工业等领域。从野生型大肠杆菌出发,将来自假肠膜明串珠菌Leuconostoc pseudomesenteroides ATCC 12291菌株的甘露醇脱氢酶与果糖转运蛋白编码基因整合到大肠杆菌ATCC 8739的染色体中,并失活其他的发酵途径 (丙酮酸甲酸裂解酶、乳酸脱氢酶、富马酸还原酶、乙醇脱氢酶、甲基乙二醛合成酶和丙酮酸氧化酶) ,构建了一株遗传稳定的D-甘露醇生产菌株。使用无机盐培养基和葡萄糖果糖作为混合碳源,厌氧发酵6 d,D-甘露醇产量达1.2 mmol/L。基于细胞生长和D-甘露醇合成的偶联,进一步通过代谢进化技术提高细胞合成D-甘露醇的生产能力。经过80代的驯化,D-甘露醇产量提高了2.6倍,甘露醇脱氢酶的活性提高了2.8倍。构建获得的遗传稳定的工程菌能直接发酵糖生产D-甘露醇,不需添加抗生素、诱导剂和甲酸,在工业化生产时有一定优势。  相似文献   

4.
A whole-cell biotransformation system for the conversion of d-fructose to d-mannitol was developed in Escherichia coli by constructing a recombinant oxidation/reduction cycle. First, the mdh gene, encoding mannitol dehydrogenase of Leuconostoc pseudomesenteroides ATCC 12291 (MDH), was expressed, effecting strong catalytic activity of an NADH-dependent reduction of d-fructose to d-mannitol in cell extracts of the recombinant E. coli strain. By contrast whole cells of the strain were unable to produce d-mannitol from d-fructose. To provide a source of reduction equivalents needed for d-fructose reduction, the fdh gene from Mycobacterium vaccae N10 (FDH), encoding formate dehydrogenase, was functionally co-expressed. FDH generates the NADH used for d-fructose reduction by dehydrogenation of formate to carbon dioxide. These recombinant E. coli cells were able to form d-mannitol from d-fructose in a low but significant quantity (15 mM). The introduction of a further gene, encoding the glucose facilitator protein of Zymomonas mobilis (GLF), allowed the cells to efficiently take up d-fructose, without simultaneous phosphorylation. Resting cells of this E. coli strain (3 g cell dry weight/l) produced 216 mM d-mannitol in 17 h. Due to equimolar formation of sodium hydroxide during NAD+-dependent oxidation of sodium formate to carbon dioxide, the pH value of the buffered biotransformation system increased by one pH unit within 2 h. Biotransformations conducted under pH control by formic-acid addition yielded d-mannitol at a concentration of 362 mM within 8 h. The yield Y D-mannitol/D-fructosewas 84 mol%. These results show that the recombinant strain of E. coli can be utilized as an efficient biocatalyst for d-mannitol formation.  相似文献   

5.
NAD-dependent formate dehydrogenase (FDH1) was isolated from the alpha-proteobacterium Methylobacterium extorquens AM1 under oxic conditions. The enzyme was found to be a heterodimer of two subunits (alpha1beta1) of 107 and 61 kDa, respectively. The purified enzyme contained per mol enzyme approximately 5 mol nonheme iron and acid-labile sulfur, 0.6 mol noncovalently bound FMN, and approximately 1.8 mol tungsten. The genes encoding the two subunits of FDH1 were identified on the M. extorquens AM1 chromosome next to each other in the order fdh1B, fdh1A. Sequence comparisons revealed that the alpha-subunit harbours putative binding motifs for the molybdopterin cofactor and at least one iron-sulfur cluster. Sequence identity was highest to the catalytic subunits of the tungsten- and selenocysteine-containing formate dehydrogenases characterized from Eubacterium acidaminophilum and Moorella thermoacetica (Clostridium thermoaceticum). The beta-subunit of FDH1 contains putative motifs for binding FMN and NAD, as well as an iron-sulfur cluster binding motif. The beta-subunit appears to be a fusion protein with its N-terminal domain related to NuoE-like subunits and its C-terminal domain related to NuoF-like subunits of known NADH-ubiquinone oxidoreductases.  相似文献   

6.
Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (Δcat Δpqo Δpta-ackA ΔldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pyc(P458S) into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD(+)-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose).  相似文献   

7.
A mutant of Methylobacterium extorquens AM1 with lesions in genes for three formate dehydrogenase (FDH) enzymes was previously described by us (L. Chistoserdova, M. Laukel, J.-C. Portais, J. A. Vorholt, and M. E. Lidstrom, J. Bacteriol. 186:22-28, 2004). This mutant had lost its ability to grow on formate but still maintained the ability to grow on methanol. In this work, we further investigated the phenotype of this mutant. Nuclear magnetic resonance experiments with [13C]formate, as well as 14C-labeling experiments, demonstrated production of labeled CO2 in the mutant, pointing to the presence of an additional enzyme or a pathway for formate oxidation. The tungsten-sensitive phenotype of the mutant suggested the involvement of a molybdenum-dependent enzyme. Whole-genome array experiments were conducted to test for genes overexpressed in the triple-FDH mutant compared to the wild type, and a gene (fdh4A) was identified whose translated product carried similarity to an uncharacterized putative molybdopterin-binding oxidoreductase-like protein sharing relatively low similarity with known formate dehydrogenase alpha subunits. Mutation of this gene in the triple-FDH mutant background resulted in a methanol-negative phenotype. When the gene was deleted in the wild-type background, the mutant revealed diminished growth on methanol with accumulation of high levels of formate in the medium, pointing to an important role of FDH4 in methanol metabolism. The identity of FDH4 as a novel FDH was also confirmed by labeling experiments that revealed strongly reduced CO2 formation in growing cultures. Mutation of a small open reading frame (fdh4B) downstream of fdh4A resulted in mutant phenotypes similar to the phenotypes of fdh4A mutants, suggesting that fdh4B is also involved in formate oxidation.  相似文献   

8.
甲酸脱氢酶在Klebsiella pneumoniae中的表达和功能分析   总被引:3,自引:0,他引:3  
在甘油厌氧发酵生产1,3-丙二醇的过程中,需要消耗还原当量NADH,NADH的有效供给决定了1,3-丙二醇的产量和得率。采用PCR方法从Candidaboidinii基因组中克隆编码甲酸脱氢酶基因fdh,将fdh基因片段插入载体pMALTM-p2X中,构建表达载体pMALTM-p2X-fdh,并转入1,3-丙二醇生产菌Klebsiella pneumoniae YMU2,获得重组菌Klebsiella pneumoniae F-1。研究了重组质粒的稳定性和IPTG诱导fdh基因过量表达的条件。结果表明,重组质粒具有良好的稳定性;fdh基因表达的蛋白分子量为40.2kDa;IPTG诱导表达研究表明,在IPTG浓度为0.5mmol/L时,诱导4h后甲酸脱氢酶表达明显;发酵过程中甲酸脱氢酶比酶活达到5.47U/mg;与出发菌株K.pneumoniae YMU2相比,重组菌F-1合成1,3-丙二醇的浓度提高了12.5%。  相似文献   

9.
10.
Leuconostoc mesenteroides dextransucrase DsrS was recombinantly produced in Bacillus megaterium and exported into the growth medium. For this purpose a plasmid-based xylose-inducible gene expression system was optimized via introduction of a multiple cloning site and an encoded optimal B. megaterium ribosome binding site. A cre mediating glucose-dependent catabolite repression was removed. Recombinant DsrS was found in the cytoplasm and exported via its native leader sequence into the growth medium. Elimination of the extracellular protease NprM increased extracellular DsrS concentrations by a factor of 4 and stabilized the recombinant protein for up to 12 h. Cultivation in a semi-defined medium resulted in a further doubling of extracellular DsrS concentration up to an activity of 65 Units/L. To develop an industrial process a high cell density cultivation of B. megaterium was established yielding cell dry weights of up to 80 g/L. After induction of dsrS expression high specific (362 Units/g) and volumetric (28,600 Units/L) activities of dextran free DsrS were measured. However, using high cell density cultivation, most DsrS was found cell-associated indicating current limitations of the production process. A protease accessibility assay identified the major limitation of DsrS production at the level of protein folding. Intracellular misfolding of DsrS hampered DsrS export via the SEC pathway at high cell densities. The subsequent use of a semi-defined mineral medium and the induction of DsrS production at lower cell densities increased protein export efficiency remarkably, but also led to extracellular DsrS aggregation. Further optimization strategies for the production of recombinant DsrS in B. megaterium are discussed.  相似文献   

11.
生物法生产1,3-丙二醇(1,3-Propanediol,1,3-PD)是当前工业生物技术研究的热点之一,生产过程中,需要消耗还原当量NADH,NADH的有效供给决定了1,3-PD的产量和得率。本文采用PCR的方法从Candida boidinii基因组中克隆编码fdh的基因,将该基因片段插入载体pMALTM-p2X,构建表达载体pMALTM -p2X-fdh,并转入醛脱氢酶失活菌Klebsiella pneumoniae DA-1HB,获得重组菌Klebsiella pneumoniae DAF-1。在IPTG浓度0.5 mmol/L时,诱导3 h后甲酸脱氢酶表达明显;发酵过程中甲酸脱氢酶比酶活达到4.82 U/mg;与出发菌株K. pneumoniae DA-1HB相比,重组菌DAF-1合成1,3-丙二醇的浓度提高了19.2%?。  相似文献   

12.
13.
Anaerobic Saccharomyces cerevisiae cultures reoxidize the excess NADH formed in biosynthesis via glycerol production. This study investigates whether cometabolism of formate, a well-known NADH-generating substrate in aerobic cultures, can increase glycerol production in anaerobic S. cerevisiae cultures. In anaerobic, glucose-limited chemostat sultures (D=0.10 h(-1)) with molar formate-to-glucose ratios of 0 to 0.5, only a small fraction of the formate added to the cultures was consumed. To investigate whether incomplete formate consumption was by the unfavourable kinetics of yeast formate dehydrogenase (high k(M) for formate at low intracellular NAD(+) concentrations) strains were constructed in which the FDH1 and/or GPD2 genes, encoding formate dehydrogenase and glycerol-3-phosphate dehydrogenase, respectively, were overexpressed. The engineered strains consumed up to 70% of the formate added to the feed, thereby increasing glycerol yields to 0.3 mol mol(-1) glucose at a formate-to-glucose ratio of 0.34. In all strains tested, the molar ratio between formate consumption and additional glycerol production relative to a reference culture equalled one. While demonstrating that that format can be use to enhance glycerol yields in anaerobic S. cerevisiae cultures, This study also reveals kinetic constraints of yeast formate dehydrogenase as an NADH-generating system in yeast mediated reduction processes.  相似文献   

14.
Mutants of Escherichia coli were isolated which were affected in the formation of both formate dehydrogenase N (phenazine methosulfate reducing) (FDHN) and formate dehydrogenase H (benzylviologen reducing) (FDHH). They were analyzed, together with previously characterized pleiotropic fdh mutants (fdhA, fdhB, and fdhC), for their ability to incorporate selenium into the selenopolypeptide subunits of FDHN and FDHH. Eight of the isolated strains, along with the fdhA and fdhC mutants, maintained the ability to selenylate tRNA, but were unable to insert selenocysteine into the two selenopolypeptides. The fdhB mutant tested had lost the ability to incorporate selenium into both protein and tRNA. fdhF, which is the gene coding for the 80-kilodalton selenopolypeptide of FDHH, was expressed from the T7 promoter-polymerase system in the pleiotropic fdh mutants. A truncated polypeptide of 15 kilodaltons was formed; but no full-length (80-kilodalton) gene product was detected, indicating that translation terminates at the UGA codon directing the insertion of selenocysteine. A mutant fdhF gene in which the UGA was changed to UCA expressed the 80-kilodalton gene product exclusively. This strongly supports the notion that the pleiotropic fdh mutants analyzed possess a lesion in the gene(s) encoding the biosynthesis or the incorporation of selenocysteine. The gene complementing the defect in one of the isolated mutants was cloned from a cosmid library. Subclones were tested for complementation of other pleiotropic fdh mutants. The results revealed that the mutations in the eight isolates fell into two complementation groups, one of them containing the fdhA mutation. fdhB, fdhC, and two of the new fdh isolates do not belong to these complementation groups. A new nomenclature (sel) is proposed for pleiotropic fdh mutations affecting selenium metabolism. Four genes have been identified so far: selA and selB (at the fdhA locus), selC (previously fdhC), and selD (previously fdhB).  相似文献   

15.
In this work, a fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032 was investigated. Nicotinamide adenine dinucleotide (NADH) production and formate dehydrogenase activity increased with formate addition from 0.5 to 2.0 g/L, respectively. However, with the formate addition of 1.5 g/L, the activities of pyruvate kinase and glucose 6-phosphate dehydrogenase reached a peak and increased by 316 and 150% relative to those of the control, respectively. In addition, intracellular production of pyruvate, aspartate, citrate and adenine were significantly enhanced by 75, 66, 32 and 78% as well. An improvement (90%) of thuringiensin production was also successfully obtained. Interestingly to point out, thuringiensin yield was closely correlative with adenine production, and the linear relationship was also observed. The results suggest that appropriate formate addition did act as a modulator and facilitate carbon flux in glycolysis and pentose phosphate pathway to synthesize adenine and thuringiensin via intracellular NADH availability.  相似文献   

16.
A whole-cell biotransformation system for the reduction of prochiral carbonyl compounds, such as methyl acetoacetate, to chiral hydroxy acid derivatives [methyl (R)-3-hydroxy butanoate] was developed in Escherichia coli by construction of a recombinant oxidation/reduction cycle. Alcohol dehydrogenase from Lactobacillus brevis catalyzes a highly regioselective and enantioselective reduction of several ketones or keto acid derivatives to chiral alcohols or hydroxy acid esters. The adh gene encoding for the alcohol dehydrogenase of L. brevis was expressed in E. coli. As expected, whole cells of the recombinant strain produced only low quantities of methyl (R)-3-hydroxy butanoate from the substrate methyl acetoacetate. Therefore, the fdh gene from Mycobacterium vaccae N10, encoding NAD+-dependent formate dehydrogenase, was functionally coexpressed. The resulting two-fold recombinant strain exhibited an in vitro catalytic alcohol dehydrogenase activity of 6.5 units mg–1 protein in reducing methyl acetoacetate to methyl (R)-3-hydroxy butanoate with NADPH as the cofactor and 0.7 units mg–1 protein with NADH. The in vitro formate dehydrogenase activity was 1.3 units mg–1 protein. Whole resting cells of this strain catalyzed the formation of 40 mM methyl (R)-3-hydroxy butanoate from methyl acetoacetate. The product yield was 100 mol% at a productivity of 200 mol g–1 (cell dry weight) min–1. In the presence of formate, the intracellular [NADH]/[NAD+] ratio of the cells increased seven-fold. Thus, the functional overexpression of alcohol dehydrogenase in the presence of formate dehydrogenase was sufficient to enable and sustain the desired reduction reaction via the relatively low specific activity of alcohol dehydrogenase with NADH, instead of NADPH, as a cofactor.  相似文献   

17.
The structural gene (FDH1) coding for NAD(+)-dependent formate dehydrogenase (FDH) was cloned from a genomic library of Candida boidinii, and the FDH1 gene was disrupted in the C. boidinii genome (fdh1 delta) by one-step gene disruption. In a batch culture experiment, although the fdh1 delta strain was still able to grow on methanol, its growth was greatly inhibited and a toxic level of formate was detected in the medium. In a methanol-limited chemostat culture at a low dilution rate (0.03 to 0.05 h[-1]), formate was not detected in the culture medium of the fdh1 delta strain; however, the fdh1 delta strain showed only one-fourth of the growth yield of the wild-type strain. Expression of FDH1 was found to be induced by choline or methylamine (used as a nitrogen source), as well as by methanol (used as a carbon source). Induction of FDH1 was not repressed in the presence of glucose when cells were grown on methylamine, choline, or formate, and expression of FDH1 was shown to be regulated at the mRNA level. Growth on methylamine or choline as a nitrogen source in a batch culture was compared between the wild type and the fdh1 delta mutant. Although the growth of the fdh1 delta mutant was impaired and the level of formate was higher in the fdh1 delta mutant than in the wild-type strain, the growth defect caused by FDH1 gene disruption was small and less severe than that caused by growth on methanol. As judged from these results, the main physiological role of FDH with all of the FDH1-inducing growth substrates seems to be detoxification of formate, and during growth on methanol, FDH seems to contribute significantly to the energy yield.  相似文献   

18.
An enzymatic, NAD(H)-dependent process for the efficient production of D-mannitol from D-fructose as one single product is described and optimized with respect to productivity at high substrate conversion. Stereospecific reduction of D-fructose is catalyzed by recombinant mannitol dehydrogenase from Pseudomonas fluorescens DSM 50106, overexpressed in Escherichia coli. Regeneration of NADH is accomplished by formate dehydrogenase-mediated oxidation of formate into CO2, thus avoiding byproduct formation and yielding total turnover numbers for the coenzyme of approximately 1000 for a single round of D-fructose conversion. In optimized batchwise reduction of D-fructose, a D-mannitol productivity of 2.25 g/(L h) was obtained for a final product concentration of 72g/L and a D-fructose conversion of 80%. D-Mannitol was crystallized from the ultrafiltered product solution in 97% purity and 85% recovery, thus also allowing reuse of enzymes for repeated batchwise production of D-mann!itol!.  相似文献   

19.
20.
The NAD+-dependent formate dehydrogenase FDH1 gene (fdh1), cloned from Candida boidinii, was expressed in the ldh-deleted mutant of Enterobacter aerogenes IAM1183 strain. The plasmid of pCom10 driven by the PalkB promoter was used to construct the fdh1 expression system and thus introduce a new dihydronicotinamide adenine dinucleotide (NADH) regeneration pathway from formate in the ldh-deleted mutant. The knockout of NADH-consuming lactate pathway affected the whole cellular metabolism, and the hydrogen yield increased by 11.4% compared with the wild strain. Expression of fdh1 in the ldh-deleted mutant caused lower final cell concentration and final pH after 16 h cultivation, and finally resulted in 86.8% of increase in hydrogen yield per mole consumed glucose. The analysis of cellular metabolites and estimated redox state balance in the fdhl-expressed strain showed that more excess of reducing power was formed by the rewired NADH regeneration pathway, changing the metabolic distribution and promoting the hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号