首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to evaluate the usefulness of different pairs of DNA repair-deficient and DNA repair-proficient bacterial tester strains in a mutagenicity/carcinogenicity screen, possibly as complements to the Ames test. 70 carcinogenic and non-carcinogenic compounds, representing a variety of chemical structures, were tested for their DNA-damaging effects, using 6 different DNA-repair-deficient bacterial strains. 2 Bacillus subtilis systems, H17/M45 and HLL3g/HJ-15, were used. The susceptibility of Escherichia coli AB1157 was compared with the susceptibility of 4 recombination-deficient mutants, JC5547, JC2921, JC2926 and JC5519. The test compounds were applied onto paper disks (spot test, ST), or incorporated into a top agar layer (agar-incorporation test, AT). The 2 B. subtilis systems were generally found to be more sensitive and reliable than the assays using E coli. The incorporation of the test compounds in the agar increased the sensitivity of the test for polycyclic aromatic hydrocarbons and other poorly water-soluble compounds. Hydrazines and several other highly polar chemicals could be tested more efficiently when applied onto paper disks. About 30% of the test compounds did not induce any growth inhibition and so could not be tested properly. In order to evaluate the ability of these DNA-repair tests to complement the Ames Salmonella mutagenicity test in a genetic toxicology screening program, results from this study were compared with published data both on mutagenicity in the Ames test and on carcinogenicity. 8 carcinogens generally found to be non-mutagenic for Salmonella were tested: 2 showed DNA-damaging properties (mitomycin C, 1,2-dimethylhydrazine), 5 failed to do so (actinomycin D, griseofulvin, thioacetamide, diethylstilbestrol, safrole), and one (thiourea) was not toxic, so that no classification was possible. 2 non-carcinogenic bacterial mutagens were examined; one, sodium azide, was equitoxic for repair-proficient and -deficient strains, while the other, nitrofurantoin, primarily inhibited repair-deficient strains. The DNA-repair tests failed to indicate the mutagenic and carcinogenic properties of acridine orange. Nalidixic acid, a non-mutagenic DNA synthesis inhibitor, damaged bacterial DNA. Apart from the differences summarized above, carcinogenicity was indicated correctly by the Salmonella S9 assay and most sets of DNA-repair-deficient and DNA-repair-proficient tester strains evaluated in this study. Thus, several more carcinogens could be detected by performing the Ames test and the bacterial DNA-repair tests in tandem than by using either test alone. Nevertheless, the use of both bacterial in vitro systems in a battery of short-term tests for mutagenicity/carcinogenicity evaluation is not considered to be ideal, since the Ames test and the pairs of DNA-repair-deficient and DNA-repair-proficient tester strains used had several shortcomings in common under the conditions of this study.  相似文献   

2.
The active pure compounds of 4 pesticides were tested for DNA-damaging and mutagenic activity in Bacillus subtilis and Salmonella typhimurium tester strains. Included were zinc ethylenebisdithiocarbamate (dithane), 1,2-dihydropyridazine-3,6-dione (maleic hydrazide), O,O-dimethylphosphorodithioate (malathion), and 1,2-dibromoethane (fumazone). These agents gave either weak or negative mutagenic responses with the Salmonella/microsome tests for mutagenicity, but were all positive when the tester was B. subtilis strain TKJ6321. Of the 4 chemicals, only fumazone required metabolic activation with rat-liver S9 mix. Upon activation, it produced a volatile mutagenic product. Dithane, maleic hydrazide, and malathion were all mutagenic and did not require metabolic activation. Among these agents, dithane was strongly mutagenic while fumazone, maleic hydrazide and malathion were moderately mutagenic. Only dithane gave significant DNA-damaging activity when applied to a battery of repair-deficient B. subtilis mutants. For the chemicals reported, it is concluded that B. subtilis is superior to S. typhimurium in the detection of mutagenic activity. We strongly recommend its use for prescreening procedures in combination with the S. typhimurium testers.  相似文献   

3.
Erythrosine (diNa, tetraiodofluorescein) was nonmutagenic to the Ames/Salmonella typhimurium strains TA97a, TA98, TA100, TA102, and TA104, to a concentration of 2 mg/plate. No mutative intermediates were detected on metabolism by rat caecal cell-free extracts or rat liver S9 mixture; or on incubation with the comutagens, harman and norharman (+/- S9). Instead, an unexpected dose-dependent suppression in spontaneous reversion frequencies was observed (maximum approximately equal to 35% decrease). Erythrosine was antimutagenic to benzo[a]pyrene, but it did not decrease the mutagenicity of the other adduct-forming mutagen, 4-nitroquinoline N-oxide. The food dye was strongly antimutagenic to the bifunctional alkylating agent, mitomycin C, though it did not exhibit a similar effect on the mutagenicity of the corresponding monofunctional agent, methyl methanesulphonate. It partially depressed the mutagenic potentials of sodium azide. The antimutagenic effect of erythrosine on an intercalating agent, ethidium bromide, was discernible only at the highest dose (2 mg/plate). These results have been interpreted in terms of a genointeractive role of erythrosine. Erythrosine produced differential toxic effects in repair-deficient (TA97a, TA98, TA100) and repair-proficient (TA102, TA104) Salmonella tester strains; survival of the repair-deficient strains was found to be decreased. Photoinduced potentiation of erythrosine toxicity was observed, although light irradiation in the presence of erythrosine did not modify the reversion frequencies of the tester strains. The evidence strongly suggests that erythrosine, which exhibits nonmutagenicity in the Ames/Salmonella test, can interact with DNA repair enzymes and/or with DNA.  相似文献   

4.
Ticlopidine hydrochloride, 5-(o-chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine hydrochloride, a platelet aggregation inhibitor, was tested for mutagenic activity in the Ames Salmonella/mammalian microsome test. Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and TA1538 were employed. Two of these strains (TA1535 and TA100) are sensitive to base-pair substitution mutagens, and the remaining 3 are sensitive to frame-shift mutagens. There was no evidence that ticlopidine hydrochloride had any mutagenic activity either in the presence or absence of a liver microsomal supplement.  相似文献   

5.
11 platinum compounds with nitrogen donor ligands, previously tested for anti-tumour activity, were studied for induction of prophage lambda and for mutagenicity in the Ames assay, with various strains of Salmonella. The compounds included cis and trans isomers of Pt(II) and Pt(IV) complexes and were tested with and without metabolic activation. All the cis compounds elicited prophage induction, whereas the trans compounds were inactive. Mutagenicity was found only in strains containing the R factor, indicating that SOS-type repair processes are required for the conversion of initial DNA lesions into mutations. Mutation induction was also influenced by the excision-repair process. The 2 trans compounds were not, or only slightly, mutagenic; all other compounds were mutagenic in at least one strain, exhibiting a 2-20-fold increase over the spontaneous background level. Addition of liver homogenate had no significant effect on the number of mutants. One compound induced exclusively frameshift mutations. The other mutagenic compounds induced frameshift mutations as well as base-pair substitutions. 7 compounds were more mutagenic for the repair-proficient than for the repair-deficient strains; only one showed the opposite effect. This suggests that for mutagenicity testing of platinum compounds, repair-proficient strains are more sensitive indicators. The differences in response of the various strains are more sensitive indicators. The differences in response of the various strains toward the compounds suggest the formation of different DNA lesions and/or a selective action of repair processes on these lesions. In general, a good qualitative correlation was observed between prophage-inducing capacity, mutagenicity in bacterial and mammalian cells and anti-tumour activity.  相似文献   

6.
5 oil dispersants and a sample of paraffin were devoid of mutagenic activity in the Ames reversion test, with and without S9 mix, using 7 his- S. typhimurium strains (TA1535, TA1537, TA1538, TA97, TA98, TA100, TA102). However, 3 dispersants produced direct DNA damage in E. coli WP2, which was not repairable in repair-deficient strains (WP2uvrA, CM871, TM1080), as shown by two different DNA-repair test procedures. The uvrA excision-repair system was in all cases the most important mechanism involved in repairing the DNA damage produced by oil dispersants, while the combination of uvrA with other genetic defects (polA, recA, lexA) decreased the efficiency of the system. The observed genotoxic effects were considerably lowered in the presence of S9 mix containing liver S9 fractions from Aroclor-treated rats. The sample of oil dispersant yielding the most pronounced DNA damage in repair-deficient E. coli failed to induce gene sfiA in E. coli (strain PQ37), using the SOS chromotest, or mitotic crossing-over in Saccharomyces cerevisiae (strain D5). The direct toxicity of the oil dispersant to both bacterial and yeast cells was markedly decreased in the presence of rat-liver preparations. These two short-term tests were effective in detecting the genotoxicity of both direct-acting compounds (such as 4-nitroquinoline N-oxide and methyl methanesulfonate) and procarcinogens (such as cyclophosphamide, 2-aminoanthracene and 2-aminofluorene). Moreover, the SOS chromotest was successfully applied to discriminate the activity of chromium compounds as related to their valence (i.e. Cr(VI) genotoxic and Cr(III) inactive). Combination of oil dispersants with Cr(VI) compounds did not affect the direct mutagenicity to S. typhimurium (TA102) of a soluble salt (sodium dichromate) nor did it result in any release of a water-soluble salt (lead chromate), as also confirmed by analytical methods. On the other hand, exposure to sunlight tended to decrease, to a slow rate, the direct genotoxicity of an oil dispersant in the bacterial DNA-repair test.  相似文献   

7.
Catechol was not mutagenic for Salmonella typhimurium TA98, TA100 or TA1537 in the presence or absence of S9 mix. At the lower level of S9 in the Ames method, the mutagenic activity of benzo[a]pyrene decreased with the increased addition of catechol. When catechol was added to the pre-incubation mixture at a higher concentration than in the conventional Ames method, the mutagenic activity of benzo[a]pyrene increased with the increased addition of catechol. Catechol is believed to be a co-mutagen for benzo[a]pyrene in the presence of a sufficient amount of S9 in the incubation mixture.  相似文献   

8.
Mutagenic, DNA-damaging, and in vivo alteration of DNA have been demonstrated for 1,2-dimethylhydrazine (DMH), a potent inducer of adenocarcinomas of the large intestine and colon of rats. These activities are pH-dependent, with 6.5 giving optimum response. There was no requirement for metabolic activation with rat-liver S9 mix when the appropriate Bacillus subtilis mutant strains were used. The Rec- strains recA8 and mc-1 were greater than 300-fold more sensitive to the DNA-damaging activity of DMH than was their isogenic wild-type parent. The DNA isolated from DMH-treated mc-1 had altered spectroscopic characteristics, and gave a greatly reduced transformation efficiency. Treatment of B. subtilis strain TKJ6321 with DMH at pH 6.5 induced His+, Met+ mutations in substantial numbers at low concentrations of this chemical. The use of B. subtilis mutants in these studies has therefore made it possible to demonstrate mutagenic and DNA-damaging activity in bacteria for this potent carcinogenic chemical.  相似文献   

9.
The DNA-damaging capacity and the mutagenicity of 6 disinfectants were studied by liquid rec-assay and Ames test. 5 disinfectants were found to be positive in DNA-damaging capacity while only one of them showed clear mutagenicity in the Ames test. Liquid rec-assay by direct incubation with S9 mix was the most sensitive method and gave the best correlation between the growth ratio (R 50) and the time lag, both of which compared Rec+ and Rec-. Liquid rec-assay may be useful for detecting the DNA-damaging capacity of chemicals with a strong killing effect.  相似文献   

10.
Treatment of Ames mutagen tester strains with aflatoxin B1 (AFB1) and S9 mix results not only in the production of a poten mutagen, but induces a pathway that leads to the induction of prophages present in all Ames tester strains.Characterization of the prophage induction and mutagenic response following AFB1 treatment showed that plasmid pKM101 dramatically enhances mutagenesis, but suppressed prophage induction. Spontaneous release of phage by TA98 and TA100 was also lower than in TA1535 and TA1538.In addition to mutagenesis and prophage induction, survival of all 4 tester strains was quantitated after AFB1 treatment. The data show that the frameshift tester strains (TA1538 and TA98) are more sensitive to the bactericidal action of AFB1 than the base-pair tester strains (TA1535 and TA100), survival being significantly affected above 100 ng. One of several hypotheses examined was the difference in the number and types of prophages present in base-pair tester strains that are not detectable in the frame-shift tester strains.These data suggest that prophage induction can detect DNA damage that is non-mutagenic; and that it is important to characterize the lysogenic nature of the Ames strains since it may influence the observed histidine revertant rate and the survival of the tester strain.  相似文献   

11.
cis-Diamminodichloroplatinum(II) (cis-PDD) and diaquoethylenediamineplatinum(II) induce histidine revertants in Salmonella typhimurium strains TA98 (frame-shift mutation) and TA100 (base-pair substitution mutation). A linear dose--response relationship is found with cis-PDD acting on TA98 and TA100. Salmonella typhimurium strains TA1535, TA1537 and TA1538 are not sensitive to the mutagenic action of cis-PDD. All 5 strains are sensitive to the toxic effect of cis-PDD. Platinum(II) complexes induce mutations (frame-shift or base-pair substitution) only in strains carrying the R-factor plasmid.  相似文献   

12.
N6,O2'-Dibutyryl cyclic adenosine 3,5-monophosphate (DBcAMP) was studied for mutagenicity using the rec assay, the Ames method, and in vitro cytogenetics. DBcAMP had no mutagenic effect on B. subtilis in the rec assay, or on S. typhimurium (TA1535, TA1537, TA1538, TA98 and TA100) or E. coli (WP2 uvrA). In the cytogenetic study, a significant increase in chromosomal aberrations was observed at a concentration of 50,000 micrograms/ml, but it was considered that this effect could be attributed to the secondary effect of the high osmotic pressure in the culture medium. These results suggest that DBcAMP has no mutagenic potential.  相似文献   

13.
Emodin (1,6,8-trihydroxy-3-methylanthraquinone), an important aglycone found in natural anthraquinone glycosides frequently used in laxative drugs, was mutagenic in the Salmonella/mammalian microsome assay (Ames test) with a specificity for strain TA1537. The mutagenic activity was activation-dependent with an optimal amount of S9 from Aroclor 1254-treated male Sprague-Dawley rats of 20% in the S9 mix (v/v) for 10 micrograms emodin per plate. Heat inactivation of the S9 for 30 min at 60 degrees C prevented mutagenicity. The addition of the cytochrome P-448 inhibitor 7,8-benzoflavone (18.5 nmoles per plate) reduced the mutagenic activity of 5.0 micrograms emodin per plate to about one third, whereas the P-450 inhibitor metyrapone (up to 1850 nmoles per plate) was without effect. To test whether a metabolite binds covalently to Salmonella DNA, [10-(14)C]emodin was radiosynthesized, large batches of bacteria were incubated with [10-(14)C]emodin and DNA was isolated. [G-3H]Aflatoxin B1 (AFB1) was used as a positive control mutagen known to act via DNA binding. DNA obtained after aflatoxin treatment could be purified to constant specific activity. With emodin, the specific activity of DNA did not remain constant after repeated precipitations so that it is unlikely that the mutagenicity of emodin is due to covalent interaction of a metabolite with DNA. The antioxidants vitamin C and E or glutathione did not reduce the mutagenicity. Emodin was also negative with strain TA102. Thus, oxygen radicals are probably not involved. When emodin was incubated with S9 alone for up to 50 h before heat-inactivation of the enzymes and addition of bacteria, the mutagenic activity did not decrease. It is concluded that the mutagenicity of emodin is due to a chemically stable, oxidized metabolite forming physico-chemical associations with DNA, possibly of the intercalative type. In order to check whether an intact mammalian organism might be able to activate emodin to a DNA-binding metabolite, radiolabelled emodin was administered by oral gavage to male SD rats and liver DNA was isolated after 72 h. Very little radioactivity was associated with the DNA. Considering that DNA radioactivity could also be due to sources other than covalent interactions, an upper limit for the covalent binding index, CBI = (mumoles chemical bound per moles DNA nucleotides)/(mmoles chemical administered per kg body weight) of 0.5 is deduced. This is 10(4) times below the CBI of AFB1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The effects of 5-azacytidine (5-AZ) and mitomycin C (MMC), administered by larval feeding, on crossing-over were measured in Drosophila melanogaster male germ cells of a DNA repair-proficient and a repair-deficient (mei-9L1) strain. Both 5-AZ and MMC are effective inducers of male crossing-over. The estimated number of induced recombination events was higher in repair-proficient than in mei-9L1 males. The apparently lower sensitivity of mei-9L1 males to crossing-over induction may be the result of an incomplete crossing-over process.  相似文献   

15.
The detection of DNA-damaging agents by repair-deficient bacterial assays is based on the differential inhibition of growth of repair-proficient and repair-deficient bacterial pairs. The various methodologies used are described and recommendations are made for their improved use. In a survey of the literature through April 1979, 91 of 276 papers evaluated contained usable data, resulting in an analysis of 611 compounds that had been assayed in 1 or more of 55 pairs of repair-proficient and repair-deficient strains. The results indicate that (1) a liquid suspension assay is more sensitive than a spot (diffusion) test. In a review of the Escherichia coli polA assay, 45 compounds that gave "No Test" in the spot test were clearly positive or negative in the liquid suspension assay. (2) Of the 21 compounds analyzed by the E. coli polA assay and by other E. coli repair-deficient strains (e.g., rec, uvr, hcr, and exr derivatives of WP2 and AB1157), 10 were in complete agreement in all strains except uvrA strains. This indicates that strains other than polA+/polA- are useful for detecting DNA-damaging agents. However, in selecting strains for use in these assays, care should be taken to consider repair pathway specificity for particular compounds. (3) There was a 78% correspondence between results obtained with E. coli polA and Bacillus subtilis (H17/M45, 17A/45T) rec assay and between E. coli polA and Proteus mirabilis. (4) In a comparison of test results with carcinogenicity data, 44 of 71 (62%) carcinogenic compounds assayed by the polA system were positive, 10 (14%) were negative, and 17 (24%) gave No Test or doubtful results. 7 carcinogens were assayed by other E. coli strains and all were positive. 56 carcinogens were assayed in B. subtilis: 24 (43%) were positive, 9 (16%) were negative, and 23 (41%) gave No Test or doubtful results. Of the 7 carcinogens assayed in P. mirabilis, 6 (86%) were positive and 1 (14%) was negative. (5) The results were analyzed with respect to chemical classes. E. coli polA detected the highest percentage of hydroxylamines and alkyl epoxides. The B. subtilis rec assay detected the highest percentage of nitrosamines and sulfur and nitrogen oxides. It is concluded that some of these test systems are effective tools for the detection of DNA-damaging and potentially carcinogenic compounds, especially if the assay is done in liquid suspension and if more than 1 pair of tester strains is used. Advantages and disadvantages of the assay are discussed and suggestions are made for improvements in the system.  相似文献   

16.
The reaction products from butylated hydroxyanisole treated with nitrite under acidic conditions were investigated for mutagenic activity in Salmonella typhimurium his reversion assay and for DNA-damaging activity using H17 Rec+ (wild) and M45 Rec- (recombinationless) of Bacillus subtilis. The chloroform extract of the reaction mixture showed 9 spots on thin-layer chromatography (TLC). Compounds from 2 spots on the TLC had high mutagenic activity in TA100 without S9 mix, with DNA-damaging activity. The 2 mutagens were then crystallized from the reaction mixture and identified to be 2-tert.-butyl-p-quinone (t-BQ) and the dimer of t-BQ; 3,3'-di-tert.-butyl-biphenyldiquinone-(2,5,2',5') (BBDQ), from their instrumental analysis. The mutagenic activities of t-BQ and BBDQ were determined by Ames test, and the induced mutation frequencies were about 1.9 X 10(-4) (t-BQ) and 8.3 X 10(-5) (BBDQ).  相似文献   

17.
Compounds of various chemical classes were comparatively assayed in the Ames reversion test with his- S. typhimurium strains TA1535, TA157 , TA1538, TA98, TA100, and, in part, TA97 , and in a DNA-repair test with trp- E. coli strains WP2 (repair-proficient), WP67 (uvrA- polA-) and CM871 (uvrA- recA- lexA-). A liquid micromethod procedure for the assessment of the minimal inhibitory concentration (MIC) of test compounds, using the same reagents as the Ames test, was set up and calibrated in its technical details. Other techniques (spot test and treat-and-plate method) were applied to a number of compounds in order to obtain more complete information on their DNA-damaging activity in E. coli. From a qualitative standpoint, the results obtained in the reversion test and in the DNA-repair test (liquid micromethod) were overlapping for 96 (59 positive and 37 negative) out of 135 compounds (71.1%). There was disagreement for 39 compounds (28.9%), 9 of which were positive only in the reversion test (8 requiring metabolic activation and 5 genotoxic in the treat-and-plate method). 30 compounds were positive only in the lethality test, showing a direct DNA-damaging activity, which in half of the cases was completely eliminated by S9 mix. Although the experimental protocol intentionally included several compounds already reported as nonmutagenic carcinogens or as noncarcinogenic mutagens, the overall accuracy was 64.5% for the reversion test and 72.4% for the DNA-repair test, as evaluated for 75 compounds classified according to their carcinogenic activity. Quantitation of results was obtained in the Ames test by relating the net number of revertants to nmoles of compound and in the DNA-repair test by means of a formula relating the difference and ratio of MICs in repair-proficient and -deficient bacteria to nmoles of compound. Following these criteria, the genotoxic potency varied over a 4.5 X 10(7)-fold range among compounds positive in the reversion test and over a 6 X 10(9)-fold range among compounds damaging E. coli DNA. The genotoxic potencies in the two bacterial systems were correlated within the majority of the chemical classes under scrutiny.  相似文献   

18.
In a comparative study on 135 compounds of various chemical classes, 30 agents inducing direct nonreparable DNA damage in repair-deficient E. coli failed in reverting strains TA1535, TA1537, TA1538, TA98 and TA100 of S. typhimurium (De Flora et al., 1984b). These compounds were re-assayed in the Ames test using strains TA97 and TA102. A dose-dependent mutagenic response was detected with aminoantipyrine and p-rosaniline in TA97 and with streptomycin and formaldehyde in TA102. p-Rosaniline was the only mutagen requiring metabolic activation. 5 compounds, i.e. o-aminophenol in TA97 and methanol, ethanol, cadmium chloride and cadmium sulfate in TA102, induced a reproducible increase in revertants over controls, but this was less than 2-fold. The remaining 21 chemicals--including amino compounds, aliphatics, aromatics, heterocycles, hydrazine derivatives and inorganics--confirmed their inactivity in the Ames test. Overall data for 135 compounds, comparing the Ames test (7 strains) and the DNA-repair test (3 strains), are re-assessed on the basis of these findings.  相似文献   

19.
DL-p-chlorophenylalanine (PCPA) and its derivatives were evaluated for genotoxic effects using Escherichia coli and Bacillus subtilis strains lacking various DNA-repair mechanisms in spottest and in suspension test. The mutagenic activity of studied compounds was determined by the Ames test. Reverse mutation test was performed with Salmonella typhimurium strains TA98, TA100, TA1535 and TA1537 without S9 mix. 0.02 M nitrosomethylurea (NMU) standard mutagen was used as a positive control. The results showed that the parent nonessential amino acid PCPA had no detectable genotoxic and mutagenic activities in bacteria. The methyl ester of this amino acid and its N-phenylacetyl derivative possessed weak genotoxicity. Meanwhile N-sec-butyloxycarbonyl, N-benzyloxycarbonyl, N-(p-nitrophenylacetyl) and N-(p-nitrophenoxyacetyl) derivatives of DL-p-chlorophenylalanine exhibited appreciable genotoxicity. Among the seven tested compounds only N-benzyloxycarbonyl and N-(p-nitrophenoxyacetyl) derivatives of DL-p-chlorophenylalanine have been found to be mutagenic. Only parent PCPA possessed antimutagenic properties in respect of nitrosomethylurea. The structural modification, which strongly affects genotoxicity and mutagenicity perhaps may be due to steric hydrance of the substituents, causing interference with enzyme and DNA interactions.  相似文献   

20.
Investigations concerned Escherichia coli nitroreductase in creation of mutagens from non-mutagenic pesticides-derivatives of urea. Three new compounds were studied: N-phenyl-N'-methylurea (IPO 4328), N-methyl,N-(2-hydroxyethyl)-N'phenylurea (IPO 2363), N-(2-hydroxyethyl), N-methyl-N'-(3,4 dichloroethyl) urea, and diurone-3-(3,4 dichlorophenyl)-1,1 dimethylurea. These compounds were incubated in anaerobic conditions with cells of E. coli K-12 (KF) strain and nitrate or nitrite. Using Ames test, mutagenicity of resulting metabolites was investigated. It was found that during incubation of herbicide IPO 4328 with cells of E. coli K-12 (KF) and nitrate, mutagenic product for strain of S. typhimurium TA 1537 is created. Very weak mutagenic metabolite for the same strain was appearing during incubation of herbicide IPO 2363 with cells of E. coli K-12 (KF) in presence of nitrite. Incubation of investigated compounds with E. coli K-12 (KF) cells alone did not result in appearance of mutagenic substances. Thus, role of Escherichia coli in creation of mutagenic compounds from non-mutagenic derivatives of urea consisted of nitrite from nitrate production with participation of nitroreductase, which afterwards in absence of bacteria or action of their enzymes reacted with investigated pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号