首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We conducted a series of liquid-culture experiments to begin to evaluate the abilities of gaseous sources of nitrogen and phosphorus to support biodegradation of polycyclic aromatic hydrocarbons (PAHs). Nutrients examined included nitrous oxide, as well as triethylphosphate (TEP) and tributylphosphate (TBP). Cultures were established using the indigenous microbial populations from one manufactured gas plant (MGP) site and one crude oil-contaminated drilling field site. Mineralization of phenanthrene was measured under alternative nutrient regimes and was compared to that seen with ammoniacal nitrogen and PO4. Parallel cultures were used to assess removal of a suite of three- to five-ring PAHs. In summary, the abilities of the different communities to degrade PAH when supplemented with N2O, TEP, and TBP were highly variable. For example, in the MGP soil, organic P sources, especially TBP, supported a considerably higher degree of removal of low-molecular-weight PAHs than did PO4; however, loss of high-molecular-weight compounds was impaired under these conditions. The disappearance of most PAHs was significantly less in the oil field soil when organophosphates were used. These results indicate that the utility of gaseous nutrients for PAH bioremediation in situ may be limited and will very likely have to be assessed on a case-by-case basis.  相似文献   

2.
Phytoremediation has been demonstrated to be a viable cleanup alternative for soils contaminated with petroleum products. This study evaluated the application of phytoremediation to soil from a manufactured gas plant (MGP) site with high concentrations of recalcitrant, polycyclic aromatic hydrocarbons (PAHs). Two greenhouse studies investigated the potential dissipation and plant translocation of PAHs by fescue (Festuca arundinacea) and switchgrass (Panicum virgatum) in the first experiment and zucchini (Curcubita pepo Raven) in the second. The MGP soil was highly hydrophobic and initially inhibited plant growth. Two unplanted controls were established with and without fertilization. In the first experiment, concentrations of PAHs decreased significantly in all treatments after 12 mo. Plant biomass and microbial numbers were statistically equivalent among plant species. PAH concentrations in plant biomass were negligible for fescue and switchgrass. In the second experiment, zucchini enhanced the dissipation of several PAHs after 90 d of treatment when compared to the unvegetated soil. Plant tissue concentrations of PAHs were not elevated in the zucchini roots and shoots, and PAHs were not detectable in the fruit.  相似文献   

3.
Phytoremediation is a natural, aesthetically pleasing, low-cost technology that employs plant-influenced microbial, chemical, and physical processes to remediate contaminated soils and waters. The Institute of Gas Technology (IGT) conducted a laboratory study to determine the potential of phytoremediation to remediate soils contaminated with polynuclear aromatic hydrocarbons (PAHs). The soils used for the study were collected from a former manufactured gas plant (MGP) site in Newark, NJ. Phytoremediation was assessed both as a primary remediation technology and as a final polishing step for soil treatment. The following three plant species were used for the 6-month laboratory study: alfalfa (Medicago sativa), switch grass (Panicum virgatum), and little bluestem grass (Schizachyrium scoparium). Using both alfalfa and switch grass for primary treatment of PAH-contaminated soil, a 57% reduction in total PAH concentration was observed after 6-months of treatment. Final polishing of that soil using alfalfa further reduced the total PAH concentration in that soil by 15%. Research is in progress with the objective of improving both the efficiency and the economics of phytoremediation for the cleanup of contaminated soils to environmentally acceptable endpoints at MGP sites.  相似文献   

4.
A field experiment investigating the removal and/or uptake of Polycyclic Aromatic Hydrocarbons (PAHs) and specific metals (As, Cd, Cr) from a crude oil polluted agricultural soil was performed during the 2013 wet season using four plant species: Fimbristylis littoralis, Hevea brasilensis (Rubber plants), Cymbopogom citratus (Lemon grass), and Vigna subterranea (Bambara nuts). Soil functional diversity and soil-enzyme interactions were also investigated. The diagnostic ratios and the correlation analysis identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs at the study site. A total of 16 PAHs were identified, 6 of which were carcinogenic. Up to 42.4 mg kg?1 total PAHs was recorded prior to the experiments. At 90 d, up to 92% total PAH reduction and 96% As removal were achieved using F. littoralis, the best performing species. The organic soil amendment (poultry dung) rendered most of the studied contaminants unavailable for uptake. However, the organic amendment accounted for over 70% of the increased dehydrogenase, phosphatase, and proteolytic enzymes activities in the study. Overall, the combined use of soil amendments and phytoremediation significantly improved the microbial community activity, thus promoting the restoration of the ecosystem.  相似文献   

5.
The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) have been isolated from the rhizospheres of plant species with varied biological traits; however, it is not known what phytochemicals promote contaminant degradation. One monocot and two dicotyledon plants were grown in PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. Bacteria were isolated from plant roots (rhizobacteria) and selected for growth on anthracene and chrysene on PAH-amended plates. Rhizosphere isolates metabolized 3- and 4-ring PAHs and PAH catabolic intermediates in liquid incubations. Aromatic root exudate compounds, namely flavonoids and simple phenols, were also substrates for isolated rhizobacteria. In particular, the phenolic compounds—morin, caffeic acid, and protocatechuic acid—appear to be linked to bacterial degradation of 3- and 4-ring PAHs in the rhizosphere.  相似文献   

6.
The purpose of this review is to recognize the scientific and environmental importance of diffuse pollution with polycyclic aromatic hydrocarbons (PAHs). Diffuse PAH pollution of surface soil is characterized by large area extents, low PAH concentrations, and the lack of point sources. Urban and pristine topsoils receive a continuous input of pyrogenic PAHs, which induces a microbial potential for PAH degradation. The significance of this potential in relation to black carbon particles, PAH bioaccessibility, microbial PAH degradation, and the fate of diffuse PAHs in soil is discussed. Finally, the state-of-the-art methods for future investigations of the microbial degradation of diffuse PAH pollution are reviewed.  相似文献   

7.

The present study aims at analyzing the degradation of polycyclic aromatic hydrocarbons (PAHs) at acidic conditions (pH = 2) by acidophilic Stenotrophomonas maltophilia strain AJH1 (KU664513). The strain AJH1 was obtained from an enrichment culture obtained from soil samples of mining area in the presence of PAH as sole sources of carbon and energy. Strain AJH1was able to degrade low (anthracene, phenanthrene, naphthalene, fluorene) and high (pyrene, benzo(e)pyrene and benzo(k)fluoranthene) molecular weight PAHs in acidophilic mineral salt medium at pH 2, with removal rates of up to 95% (LMW PAH) and 80% (HMW PAH), respectively. In addition, strain AJH1 treated petroleum wastewater with 89 ± 1.1% COD removal under acidic condition (pH 2) in a continuously stirred reactor. Acidophilic S. maltophilia strain AJH1, hence holds the promise as an effective degrader for biological treatment of PAHs contaminated wastewater at acidic pH.

  相似文献   

8.
A case study concerning the reclamation of a brownfield for residential purposes is presented. Because a high contamination of Polycyclic Aromatic Hydrocarbons (PAHs) was detected in soil, a remediation process is necessary. Bench-scale treat-ability tests were carried out in order to evaluate performances of some remediation technologies on this specific matrix, and particularly for the removal of high-molecular-weight PAHs. Biodegradation studies allowed the evaluation of PAH abatement in a slurry phase treatment, the amount of abiotic losses and the effect of macronutri-ents and bioaugmentation on the removal efficiency. The experimental study was performed in compliance with a Quality System, based on ISO 9001:2000 and ISO/ EC 17025:1999; validation of the analytical method provided the expanded uncertainty of the removal efficiency, varying from nearly 13 to 21%, depending on the compound considered. Experimental results showed a high removal efficiency for all PAHs; the addition of nitrogen and phosphorous increased the removal rate and the efficiency for high-molecular-weight PAHs, whereas no remarkable differences were observed in total (abiotic + biotic) removal of light compounds.  相似文献   

9.
Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria capable of growing under electrokinetic conditions were isolated using an adjusted acclimation and enrichment procedure based on soil contaminated with heavy PAHs in the presence of an electric field. Their ability to degrade heavy PAHs under an electric field was individually investigated in artificially contaminated soils. The results showed that strains PB4 (Pseudomonas fluorescens) and FB6 (Kocuria sp.) were the most efficient heavy PAH degraders under electrokinetic conditions. They were re-inoculated into a polluted soil from an industrial site with a PAH concentration of 184.95 mg kg?1. Compared to the experiments without an electric field, the degradation capability of Pseudomonas fluorescens and Kocuria sp. was enhanced in the industrially polluted soil under electrokinetic conditions. The degradation extents of total PAHs were increased by 15.4 and 14.0 % in the electrokinetic PB4 and FB6 experiments (PB4 + EK and FB6 + EK) relative to the PB4 and FB6 experiments without electrokinetic conditions (PB4 and FB6), respectively. These results indicated that P. fluorescens and Kocuria sp. could efficiently degrade heavy PAHs under electrokinetic conditions and have the potential to be used for the electro-bioremediation of PAH-contaminated soil, especially if the soil is contaminated with heavy PAHs.  相似文献   

10.
Road-deposited sediment and roadside soil in the urban area of the city of Tijuana were collected and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs). The ΣPAH concentration for road-deposited sediment (RDS) ranged between 460 and 2027 µg/kg with an average of 933 µg/kg. The ΣPAH concentration in roadside soil was lower than in RDS, with a range between 54 and 1863 µg/kg and a mean value of 308 µg/kg. The diagnostic ratios showed that the PAHs originated mostly from pyrogenic sources such as gasoline and diesel combustion. The results show that PAH concentration in RDS and roadside soils is low when compared with other published studies. The low PAH levels found in this study are possibly related to differences in climate, urban features, and anthropogenic activities conducted in the studied areas. The toxicity equivalent concentrations (TEQ) of PAH calculated were also low in comparison with other studies. This is probably due to the lower concentration of total PAHs and the highly toxic high-molecular-weight PAHs.  相似文献   

11.
In this study, we investigated the potential of multispecies rhizoremediation and monoculture rhizoremediation in decontaminating polycyclic aromatic hydrocarbon (PAH) contaminated soil Plant-mediated PAH dissipation was evaluated using monoplanted soil microcosms and soil microcosms vegetated with several different grass species (Brachiaria serrata and Eleusine corocana). The dissipation of naphthalene and fluorene was higher in the "multispecies" vegetated soil compared to the monoplanted and nonplanted control soil. The concentration of naphthalene was undetectable in the multispecies vegetated treatment compared to 96% removal efficiencies in the monoplanted treatments and 63% in the nonplanted control after 10 wk of incubation. Similar removal efficiencies were obtained for fluorene. However, there was no significant difference in the dissipation of pyrene in both the mono- and multispecies vegetated treatments. There also was no significant difference between the dissipation of PAHs in the monoplanted treatments with different grass species. Principle component analysis (PCA) and cluster analysis were used to evaluate functional diversity of the different treatments during phytoremediation of PAHs. Both PCA and cluster analysis revealed differences in the metabolic fingerprints of the PAH contaminated and noncontaminated soils. However, the differences in metabolic diversity between the multispecies vegetated and monoplanted treatments were not clearly revealed. The results suggest that multispecies rhizoremediation using tolerant plant species rather than monoculture rhizoremediation have the potential to enhance pollutant removal in moderately contaminated soils.  相似文献   

12.
The effects of nutrient addition on the in situ biodegradation of polycyclic aromatic hydrocarbons in creosote contaminated soil were studied in soil columns taken from various soil strata at a wood preserving plant in Norway. Three samples were used: one from the topsoil (0–0.5 m), one from an organic rich layer (2–2.5 m) and one from the sandy aquifer (4.5–5 m). The addition of inorganic nitrogen and phosphorous stimulated the degradation of polycyclic aromatic hydrocarbons (PAHs) in the top soil and the aquifer sand. These two soils, which differed strongly in contamination levels, responded similarly to nutrient addition with the corresponding degradation of 4-ring PAHs. The ratio between available nitrogen (N) and phosphorous (P) might explain the degree of degradation observed for the 4-ring PAHs. However, the degree of degradation of 3-ring PAHs did not significantly increase after nutrient addition. An increase in the respiration rate, after nutrient addition, could only be observed in the topsoil. In the aquifer sand, 4-ring PAH degradation was not accompanied by an increase in the respiration rate or the number of heterotrophic micro-organisms. PAH degradation in the organic layer did not respond to nutrient addition. This was probably due to the low availability of the contaminants for micro-organisms, as a result of sorption to the soil organic matter. Our data illustrate the need for a better understanding of the role of nutrients in the degradation of high molecular weight hydrocarbons for the successful application of bioremediation at PAH contaminated sites.  相似文献   

13.
This study was done to determine the concentration of PAHs in urban soil of Delhi (India). Surface top soil (up to 10 cm depth) samples were collected from four different sampling sites including industrial, roadside, residential, and agricultural areas of Delhi and 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were evaluated. Total PAH concentrations at industrial, roadside, residential, and agricultural sites were 11.46 ± 8.39, 6.96 ± 4.82, 2.12 ± 1.12, and 1.55 ± 1.07 mg/kg (dry weight), respectively, with 3–7 times greater concentrations in industrial and roadside soils than that in residential and agricultural soils. The PAH pattern was dominated by 4- and 5-ring PAHs (contributing >50% to the total PAHs) at industrial and roadside sites with greater concentration of fluoranthene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]anthracene, benzo[ghi]perylene, and pyrene, whereas, residential and agricultural sites showed a predominance of low molecular weight 2- and 3-ring PAHs (fluoranthene, acenaphthene, naphthalene, chrysene, and anthracene). Isomeric pair ratios suggested biomass combustion and fossil fuel emissions as the main sources of PAHs. The toxic equivalency factors (TEFs) showed that carcinogenic potency (benzo[a]pyrene-equivalent concentration (B[a]Peq) of PAH load in industrial and roadside soils was ~10 and ~6 times greater than the agricultural soil.  相似文献   

14.
This study assessed the potential abilities of Scirpus triqueter for phytoremediation of soils contaminated with Pb-PAHs, amended with environment-friendly surfactant alkyl polyglucoside (APG). The effects of APG on the removal of PAHs from soil and the plant uptake and translocation of Pb were tested with plant growth and soil enzymatic activities. Experiments demonstrated that APG has an ability to facilitate PAH degradation and Pb uptake in the plant body at appropriate concentrations (20–40mg L?1). The highest PAH removal rate was observed in 30 mg L?1 APG treatment, and the highest accumulation of Pb was detected as 40 mg L?1 APG. Experiments documented the effects of APG on plant growth, soil enzymatic activity, bioaccumulation and translocation of Pb in Scirpus triqueter. Results indicated that the addition of appropriate APG enhanced PAH removal rate and increased plant uptake and translocation of Pb.  相似文献   

15.
A continuous-flow column study was conducted to evaluate the long-term effects of in situ biostimulation on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil from a manufactured gas plant site. Simulated groundwater amended with oxygen and inorganic nutrients was introduced into one column, while a second column receiving unamended groundwater served as a control. PAH and dissolved oxygen (DO) concentrations, as well as microbial community profiles, were monitored along the column length immediately before and at selected intervals up to 534?days after biostimulation commenced. Biostimulation resulted in significantly greater PAH removal than in the control condition (73% of total measured PAHs vs. 34%, respectively), with dissolution accounting for a minor amount of the total mass loss (~6%) in both columns. Dissolution was most significant for naphthalene, acenaphthene, and fluorene, accounting for >20% of the total mass removed for each. A known group of PAH-degrading bacteria, 'Pyrene Group 2' (PG2), was identified as a dominant member of the microbial community and responded favorably to biostimulation. Spatial and temporal variations in soil PAH concentration and PG2 abundance were strongly correlated to DO advancement, although there appeared to be transport of PG2 organisms ahead of the oxygen front. At an estimated oxygen demand of 6.2?mg O(2)/g dry soil and a porewater velocity of 0.8?m/day, it took between 374 and 466?days for oxygen breakthrough from the 1-m soil bed in the biostimulated column. This study demonstrated that the presence of oxygen was the limiting factor in PAH removal, as opposed to the abundance and/or activity of PAH-degrading bacteria once oxygen reached a previously anoxic zone.  相似文献   

16.
The degradation of polycyclic aromatic hydrocarbons (PAHs) by an undefined culture obtained from a PAH-polluted soil and the same culture bioaugmented with three PAH-degrading strains was studied in carbon-limited chemostat cultures. The PAHs were degraded efficiently by the soil culture and bioaugmentation did not significantly improve the PAH degrading performance. The presence of PAHs did, however, influence the bacterial composition of the bioaugmented and non-bioaugmented soil cultures, resulting in the increase in cell concentration of sphingomonad strains. the initial enhancement of the degradation of the PAHs by biostimulation gradually disappeared and only the presence of salicylate in the additional carbon sources had a lasting slightly stimulating effect on the degradation of phenanthrene. The results suggest that bioaugmentation and biostimulation have limited potential to enhance PAH bioremediation by culture already proficient in the degradation of such contaminants.  相似文献   

17.
Biodegradation of a mixture of PAHs was assessed in forest soil microcosms performed either without or with bioaugmentation using individual fungi and bacterial and a fungal consortia. Respiratory activity, metabolic intermediates and extent of PAH degradation were determined. In all microcosms the low molecular weight PAH’s naphthalene, phenanthrene and anthracene, showed a rapid initial rate of removal. However, bioaugmentation did not significantly affect the biodegradation efficiency for these compounds. Significantly slower degradation rates were demonstrated for the high molecular weight PAH’s pyrene, benz[a]anthracene and benz[a]pyrene. Bioaugmentation did not improve the rate or extent of PAH degradation, except in the case of Aspergillus sp. Respiratory activity was determined by CO2 evolution and correlated roughly with the rate and timing of PAH removal. This indicated that the PAHs were being used as an energy source. The native microbiota responded rapidly to the addition of the PAHs and demonstrated the ability to degrade all of the PAHs added to the soil, indicating their ability to remediate PAH-contaminated soils.  相似文献   

18.
We analyzed the within-site spatial heterogeneity of microbial community diversity, polyaromatic hydrocarbon (PAH) catabolic genotypes, and physiochemical soil properties at a creosote contaminated site. Genetic diversity and community structure were evaluated from an analysis of denaturant gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified sequences of 16S rRNA gene. The potential PAH degradation capability was determined from PCR amplification of a suit of aromatic dioxygenase genes. Microbial diversity, evenness, and PAH genotypes were patchily distributed, and hot and cold spots of their distribution coincided with hot and cold spots of the PAH distribution. The analyses revealed a positive covariation between microbial diversity, biomass, evenness, and PAH concentration, implying that the creosote contamination at this site promotes diversity and abundance. Three patchily distributed PAH-degrading genotypes, NAH, phnA, and pdo1, were identified, and their abundances were positively correlated with the PAH concentration and the fraction of soil organic carbon. The covariation of the PAH concentration with the number and spatial distribution of catabolic genotypes suggests that a field site capacity to degrade PAHs may vary with the extent of contamination.  相似文献   

19.
Ring-hydroxylating dioxygenases (RHDs) play a crucial role in the biodegradation of a range of aromatic hydrocarbons found on polluted sites, including polycyclic aromatic hydrocarbons (PAHs). Current knowledge on RHDs comes essentially from studies on culturable bacterial strains, while compelling evidence indicates that pollutant removal is mostly achieved by uncultured species. In this study, a combination of DNA-SIP labeling and metagenomic sequence analysis was implemented to investigate the metabolic potential of main PAH degraders on a polluted site. Following in situ labeling using [13C]phenanthrene, the labeled metagenomic DNA was isolated from soil and subjected to shotgun sequencing. Most annotated sequences were predicted to belong to Betaproteobacteria, especially Rhodocyclaceae and Burkholderiales, which is consistent with previous findings showing that main PAH degraders on this site were affiliated to these taxa. Based on metagenomic data, four RHD gene sets were amplified and cloned from soil DNA. For each set, PCR yielded multiple amplicons with sequences differing by up to 321 nucleotides (17%), reflecting the great genetic diversity prevailing in soil. RHDs were successfully overexpressed in Escherichia coli, but full activity required the coexpression of two electron carrier genes, also cloned from soil DNA. Remarkably, two RHDs exhibited much higher activity when associated with electron carriers from a sphingomonad. The four RHDs showed markedly different preferences for two- and three-ring PAHs but were poorly active on four-ring PAHs. Three RHDs preferentially hydroxylated phenanthrene on the C-1 and C-2 positions rather than on the C-3 and C-4 positions, suggesting that degradation occurred through an alternate pathway.  相似文献   

20.
The potential for biodegradation of polycyclic aromatic hydrocarbons (PAHs)at low temperature and under anaerobic conditions is not well understood, but such biodegradation would be very useful for remediation of polluted sites. Biodegradation of a mixture of 11 different PAHs with two to five aromatic rings, each at a concentration of 10 micro g/ml, was studied in enrichment cultures inoculated with samples of four northern soils. Under aerobic conditions, low temperature severely limited PAH biodegradation. After 90 days, aerobic cultures at 20 degrees C removed 52 to 88% of the PAHs. The most extensive PAH degradation under aerobic conditions at 7 degrees C,53% removal, occurred in a culture from creosote-contaminated soil. Low temperature did not substantially limit PAH biodegradation under nitrate-reducing conditions. Under nitrate-reducing conditions,naphthalene, 2-methylnaphthalene, fluorene, and phenanthrene were degraded. The most extensive PAH degradation under nitrate-reducing conditions at 7 degrees C, 39% removal, occurred in a culture from fuel-contaminated Arctic soil. In separate transfer cultures from the above Arctic soil, incubated anaerobically at 7 degrees C, removal of 2-methylnaphthalene and fluorene was stoichiometrically coupled to nitrate removal. Ribosomal intergenic spacer analysis suggested that enrichment resulted in a few predominant bacterial populations,including members of the genera Acidovorax,Bordetella, Pseudomonas, Sphingomonas, and Variovorax. Predominant populations from different soils often included phylotypes with nearly identical partial 16S rRNA gene sequences (i.e., same genus) but never included phylotypes with identical ribosomal intergenic spacers (i.e., different species or subspecies). The composition of the enriched communities appeared to be more affected by presence of oxygen, than by temperature or source of the inoculum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号