首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The PrfA protein of Listeria monocytogenes functions as a key regulatory factor for the coordinated expression of many virulence genes during bacterial infection of host cells. PrfA activity is controlled by multiple regulatory mechanisms, including an apparent requirement for either the presence of a cofactor or some form of posttranslational modification that regulates the activation of PrfA. In this study, we describe the identification and characterization of a novel PrfA mutation that results in constitutive activation of the PrfA protein. The PrfA L140F mutation was found to confer high-level expression of PrfA-regulated genes and to be functionally dominant over the wild-type allele. The presence of the PrfA L140F mutation resulted in the aggregation of L. monocytogenes in broth culture and, unlike previously described prfA mutations, appeared to be slightly toxic to the bacteria. High-level PrfA-dependent gene expression showed no additional increase in L. monocytogenes strains containing an additional copy of prfA L140F despite a >4-fold increase in PrfA protein levels. In contrast, the introduction of multiple copies of the wild-type prfA allele to L. monocytogenes resulted in a corresponding increase in PrfA-dependent gene expression, although overall expression levels remained far below those observed for PrfA L140F strains. These results suggest a hierarchy of PrfA regulation, such that the relative levels of PrfA protein present within the cell correlate with the levels of PrfA-dependent gene expression when the protein is not in its fully activated state; however, saturating levels of the protein are then quickly reached when PrfA is converted to its active form. Regulation of the PrfA activation status must be an important facet of L. monocytogenes survival, as mutations that result in constitutive PrfA activation may have deleterious consequences for bacterial physiology.  相似文献   

6.
7.
单核细胞增生李斯特菌(Listeria monocytogenes,LM)是重要的革兰氏阳性食源性致病菌,易在食品以及各种食品加工、运输和保藏设备的接触面形成生物被膜,从而具有更强的抗逆性而难以彻底清除,因此成为食品卫生安全的重要隐患.PrfA是LM毒力基因转录表达的重要调控因子,通过比较研究LM野生株(EGD和EGDe)、PrfA缺失株(EGDAprfA和EGDeAprfA)、无害李斯特菌(Listeria innocua,LI),携带组成性表达PrfA蛋白的重组无害李斯特菌(LI-pERL3-prfA*)以及重组单核细胞增生李斯特菌(EGDeΔprfA-pERL3-prfA*)生物被膜形成能力的差异,探讨LM重要的毒力调控蛋白PrfA对生物被膜形成的影响.实验结果显示:LM野生株具有较强的生物被膜形成能力,而LI形成生物被膜的能力最弱;PrfA的缺失能降低LM生物被膜的形成能力;组成性高量表达PrfA蛋白可以回复EGDeΔprfA的生物被膜形成能力,但对LI没有增强作用.以上实验结果表明:PrfA在LM生物被膜形成中具有重要的促进作用.  相似文献   

8.
9.
10.
While the stress-responsive alternative sigma factor sigma(B) has been identified in different species of Bacillus, Listeria, and Staphylococcus, the sigma(B) regulon has been extensively characterized only in B. subtilis. We combined biocomputing and microarray-based strategies to identify sigma(B)-dependent genes in the facultative intracellular pathogen Listeria monocytogenes. Hidden Markov model (HMM)-based searches identified 170 candidate sigma(B)-dependent promoter sequences in the strain EGD-e genome sequence. These data were used to develop a specialized, 208-gene microarray, which included 166 genes downstream of HMM-predicted sigma(B)-dependent promoters as well as selected virulence and stress response genes. RNA for the microarray experiments was isolated from both wild-type and Delta sigB null mutant L. monocytogenes cells grown to stationary phase or exposed to osmotic stress (0.5 M KCl). Microarray analyses identified a total of 55 genes with statistically significant sigma(B)-dependent expression under the conditions used in these experiments, with at least 1.5-fold-higher expression in the wild type over the sigB mutant under either stress condition (51 genes showed at least 2.0-fold-higher expression in the wild type). Of the 55 genes exhibiting sigma(B)-dependent expression, 54 were preceded by a sequence resembling the sigma(B) promoter consensus sequence. Rapid amplification of cDNA ends-PCR was used to confirm the sigma(B)-dependent nature of a subset of eight selected promoter regions. Notably, the sigma(B)-dependent L. monocytogenes genes identified through this HMM/microarray strategy included both stress response genes (e.g., gadB, ctc, and the glutathione reductase gene lmo1433) and virulence genes (e.g., inlA, inlB, and bsh). Our data demonstrate that, in addition to regulating expression of genes important for survival under environmental stress conditions, sigma(B) also contributes to regulation of virulence gene expression in L. monocytogenes. These findings strongly suggest that sigma(B) contributes to L. monocytogenes gene expression during infection.  相似文献   

11.
12.
13.
14.
15.
16.
Reporter gene fusions were used to investigate the contributions of PrfA DNA binding sites to Listeria monocytogenes virulence gene expression. Our results suggest that the DNA sequence of PrfA binding sites determines the levels of expression of certain virulence genes, such as hly and mpl. Other virulence genes, such as actA and plcB, may depend upon additional factors for full regulation of gene expression.  相似文献   

17.
18.
The pathogenesis of listerial infections is complex and involves a number of virulence factors expressed by virulent Listeria species. We have recently described a regulator gene, prfA, that positively regulates the expression of a number of virulence factors in Listeria monocytogenes. When the prfA gene was used as a DNA probe, we found it to be extremely specific for the pathogenic species L. monocytogenes. No reaction was obtained with strains of all other species of this genus. By using this information, an oligonucleotide primer pair was developed that specifically amplifies the prfA gene in L. monocytogenes strains of all known serotypes.  相似文献   

19.
The pathogenesis of listerial infections is complex and involves a number of virulence factors expressed by virulent Listeria species. We have recently described a regulator gene, prfA, that positively regulates the expression of a number of virulence factors in Listeria monocytogenes. When the prfA gene was used as a DNA probe, we found it to be extremely specific for the pathogenic species L. monocytogenes. No reaction was obtained with strains of all other species of this genus. By using this information, an oligonucleotide primer pair was developed that specifically amplifies the prfA gene in L. monocytogenes strains of all known serotypes.  相似文献   

20.
The purpose of this study was to evaluate gene expression profiles in the liver and blood for prediction of infection severity from Listeria monocytogenes (LM). Mice were injected with medium broth (control) or a nonlethal or lethal dose of LM and sacrificed 6 h later. Gene expression changes were determined using Affymetrix MGU74Av2 GeneChips and confirmed by real-time polymerase chain reaction analysis. We identified discernable genes whose gene expression profiles can be used in pattern recognition to predict and classify samples in differently treated groups, with >or=90% accuracy in liver samples and 80% accuracy in blood at prediction; however, different genes were predictive in each tissue. Our results suggest that gene expression profiling in response to LM in mice may be able to distinguish samples in groups with varying severity of infection and provide information in finding molecular mechanisms and early biomarkers for subsequent conventional clinical endpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号