首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Escherichia coli shifted from broth at external pH (pH0) 7·0 to pH0 7·0 broth plus glucose rapidly induced marked acid tolerance which also appeared, albeit to a lesser extent, plus maltose, sucrose or lactose. Tolerance appeared without the medium pH becoming acidic. Tolerance was most substantial when glucose was added at pH0 7·0 but was also appreciable at pH0 7·5, 8·0 and 8·5. Induction of tolerance by glucose was markedly reduced by cyclic AMP and essentially abolished plus NaCl or sucrose ; the induction process was also reduced but not fully inhibited by chloramphenicol, tetracycline and nalidixic acid. Glucose-induced organisms showed less acid damage to DNA and β-galactosidase and it is likely that this is because glucose induces a new pH homeostatic mechanism which keeps internal pH close to neutrality at acidic pH0. In conclusion, it is clear that glucose induces a novel acid tolerance response in log-phase E. coli at pH0 7·0 ; it is now known that induction of this response involves the functioning of extracellular induction components including an extracellular induction protein.  相似文献   

3.
Isopropyl cinodine and nalidixic acid were compared in the direct viable count. With raw water and biofilms, elongated cells were seen in the presence of isopropyl cinodine. Increased incubation time led to an increased direct viable count. Individual bacteria responded differently to isopropyl cinodine. Five organisms grew in the presence of 0.01 μg ml-1 of isopropyl cinodine but were inhibited by 0.1 μg ml-1. These values for a sixth organism were 0.1 μg ml-1 and 1.0 μg ml-1 respectively. The direct viable count was done with inocula taken when the cells were in either lag, log or stationary phases of growth. No differences were seen in the percentage of elongated cells within an experiment but there was variation between experiments. The effect of nalidixic acid and isopropyl cinodine appeared to be additive with respect to inhibition of growth, but little or no additive effect was seen upon the percent of nutrient responsive cells.  相似文献   

4.
Abstract The transfusion of blood is associated with long-term immunosuppression, which has been postulated to influence immunosurveillance and cancer cell killing. The mononuclear phagocyte synthesises large quantities of PGE2, and PGE2 has been shown to inhibit the activity of a range of immunocompetent cell types. The role of mononuclear phagocyte PGE2 synthesis in transfusion-associated immunosuppression, and the elements of transfused blood which control this immunosuppression, were investigated using a transfused rat model. A significant increase in macrophage PGE2 synthesis was detected 7 days after transfusion with blood and serum. The storage of blood for 24 h increased the stimulatory activity of transfused blood. The effects of storage and serum on macrophage PGE2 synthesis were greater than effects due to genetic differences between blood donor and recipient, and the serum effects indicated that a major factor activating PGE2-mediated immunosuppression in transfused subjects may be humoral in nature.  相似文献   

5.
Abstract: The effect of linoleic acid on the formation of cyclic AMP in the slices of guinea pig cerebral cortex was examined. Treatment of the slices with linoleic acid resulted in an increase of basal and of norepinephrine-stimulated formation of cyclic AMP. The stimulatory effect on the basal level of cyclic AMP was not specific for linoleic acid: the potency of the fatty acid was related to the magnitude of unsaturation. In contrast, the enhancement of norepinephrine-stimulated formation of cyclic AMP seemed relatively specific for linoleic acid and arachidonic acid. Linoleic acid markedly enhanced the stimulated formation of cyclic AMP by histamine and adenosine, as well that by norepinephrine, without affecting that by excitatory amino acids and veratridine. Theophylline, adenosine deaminase, and 2'-deoxyadenosine antagonized the effect of linoleic acid. Linoleic acid enhanced the maximum responses to norepinephrine and adenosine without altering the ED50 values for these agonists. When linoleic acid-treated slices were washed with Krebs-Ringer containing defatted bovine serum albumin, both enhancement of the response to norepinephrine and the amount of [14C]linoleic acid incorporated in a free form significantly diminished.  相似文献   

6.
Aims:  To evaluate the effectiveness of organic acids and supercritical carbon dioxide (SC-CO2) treatments as well as their combined effect for the reduction of nonpathogenic Escherichia coli and three pathogenic bacteria in fresh pork.
Methods and Results:  The different treatment conditions were as follows: (i) treatment with acetic (1%, 2% or 3%) or lactic acid (1%, 2% or 3%) only, (ii) treatment with SC-CO2 at 12 MPa and 35°C for 30 min only and (iii) treatment with 3% acetic or lactic acid followed by treatment with SC-CO2. Within the same organic acid concentration, the lactic and acetic acid treatments had similar reductions. For the combined treatment of lactic acid and SC-CO2, micro-organism levels were maximally reduced, ranging from 2·10 to 2·60 log CFU cm−2 ( E. coli , 2·58 log CFU cm−2; Listeria monocytogenes , 2·60 log CFU cm−2; Salmonella typhimurium , 2·33 log CFU cm−2; E. coli O157:H7, 2·10 log CFU cm−2).
Conclusions:  The results of this study indicate that the combined treatments of SC-CO2 and organic acids were more effective at destroying foodborne pathogens than the treatments of SC-CO2 or organic acids alone.
Significance and Impact of the Study:  The combination treatment of SC-CO2 and organic acids may be useful in the meat industry to help increase microbial safety.  相似文献   

7.
The reduction of nitrate by Pseudomonas denitrificans in a culture medium containing glycerol, yeast extract and 700 mg/1 NO3–N, was antagonized by Aeromonas hydrophila, Escherichia coli and Enterobacter aerogenes. Nitrate reduction by Ps. denitrificans in mixed culture with a fermentative heterotroph was inhibited when 100–150 mg/1 NO2–N had accumulated in the medium. The number of Ps. denitrificans declined concomitantly with the appearance of NO2 in the culture medium, but there was only a slight increase in the numbers of fermentative hetero-trophs. The fermentative heterotrophs did not antagonize nitrate reduction by Ps. denitrificans , when the culture medium contained 140 mg/1 NO3–N. When mixtures of equal parts of Ps. denitrificans and Esch. coli cultures were added to autoclaved river water relatively high concentrations of NO2 were produced from the nitrate present in the water.  相似文献   

8.
Abstract: We have used postnatal rat cerebellar astrocyte-enriched cultures to study the excitatory amino acid receptors present on these cells. In the cultures used, type-2 astrocytes (recognized by the monoclonal antibodies A2B5 and LB1) selectively took up γ-[3H]aminobutyric acid ([3H]GABA) and released it when incubated in the presence of micromolar concentrations of kainic and quisqualic acids. The releasing effect of kainic acid was concentration dependent in the range of 5–100 μ M . Quisqualate was more effective than kainate in the lower concentration range but less effective at concentrations at which its releasing activity was maximal (∼50 μ M ). N -Methyl- d -aspartic acid and dihydrokainate (100 μ M ) did not stimulate [3H]GABA release from cultured astrocytes. l -Glutamic acid (20–100 μ M ) stimulated [3H]GABA release as effectively as kainate. The stimulatory effects of kainate and quisqualate on [3H]GABA release were completely Na+ dependent; that of kainate was also partially Ca2+ dependent. Kynurenic acid (50–200 μ M ) selectively antagonized the releasing effects of kainic acid and also that of l -glutamate; quisqualate was unaffected. Quisqualic acid inhibited the releasing effects of kainic acid when both agonists were used at equimolar concentrations (50 μ M ). d -[3H]aspartate was taken up by both type-1 and type-2 astrocytes, but only type-2 astrocytes released it in the presence of kainic acid. Excitatory amino acid receptors with a pharmacology similar to that of the receptors present in type-2 astrocytes were also expressed by the immature, bipotential progenitors of type-2 astrocytes and oligodendrocytes.  相似文献   

9.
The effects of physical and chemical factors on the production of H2O2 from Escherichia coli cells were studied. When 20 mmol 1-1 Tris-HCl buffer was used for this purpose the electron transport system (ETS) showed the highest activity at pH 7.6-8.2. KCN promoted the production of H2O2 from E. coli cells, and the optimum concentration was changed in different reaction times and pH values. Glucose, 5 mg ml-1, increased the ETS activity about twofold. The other substrates and surfactants did not increase the chemiluminescence intensity. NaNO2 and Na2SO4 in inorganic salts significantly reduced the ETS activity above 70%. In addition, the optimum temperature for the production of H2O2 was 30°C in this study. When glucose (5 mg ml-1) and KCN (0.2 mmol 1-1) were added to the reaction buffer containing 0.5 mmol 1-1 menadione, the detectable minimum cell densities (averages of triplicate assay) of E. coli, Enterobacter cloacae and Serratia marcescens were 5 times 103 cells ml-1, 104 cells ml-1 and 104 cells ml-1 respectively.  相似文献   

10.
Neuropeptide Y (NPY) is a 36 amino acid peptide widely present in the CNS, including the retina. Previous studies have demonstrated that NPY promotes cell proliferation of rat post-natal hippocampal and olfactory epithelium precursor cells. The aim of this work was to investigate the role of NPY on cell proliferation of rat retinal neural cells. For this purpose, primary retinal cell cultures expressing NPY, and NPY Y1, Y2, Y4 and Y5 receptors [Álvaro et al. , (2007) Neurochem. Int., 50, 757] were used. NPY (10–1000 nM) stimulated cell proliferation through the activation of NPY Y1, Y2 and Y5 receptors. NPY also increased the number of proliferating neuronal progenitor cells (BrdU+/nestin+ cells). The intracellular mechanisms coupled to NPY receptors activation that mediate the increase in cell proliferation were also investigated. The stimulatory effect of NPY on cell proliferation was reduced by l -nitroarginine-methyl-esther ( l -NAME; 500 μM), a nitric oxide synthase inhibitor, 1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ; 20 μM), a soluble guanylyl cyclase inhibitor or U0126 (1 μM), an inhibitor of the extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, NPY stimulates retinal neural cell proliferation, and this effect is mediated through nitric oxide–cyclic GMP and ERK 1/2 pathways.  相似文献   

11.
Abstract The level of cGMP in a suspension of Escherichia coli cells increased transiently upon the addition of chemoattractants. Ca2+ (1 mM), but not Mg2+, produced constant tumbling of cells in the presence of the ionophore A23187. The effect was observed either in stationary-state cells, or in a logarithmic culture treated with EDTA to increase permeability by A23187. Under the same conditions, Ca2+ decreased the cytoplasmic level of cGMP. In Phormidium uncinatum , rapid 45Ca2+ accumulation followed a light-dark stimulus, or the addition of tetramethylquinone (TMQ), a chemorepellent. La3+, which increases the reversal rate, also enhanced the level of cytoplasmic Ca2+, presumably by blocking the outward Ca2+ flux. In both E. coli and P. uncinatum Ca2+ inhibited methylaccepting chemotaxis protein (MCP) methylation. It is concluded that cGMP and Ca2+ are secondary messengers in taxis information-processing.  相似文献   

12.
Abstract: Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by ∼63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 n M . Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

13.
14.
Abstract— The effects of two sulfhydryl reagents, PCMBS ( p -chloromercuribenzene sulfonic acid) and NEM ( N -ethylmaleimide) on microtubule-associated Mg2+ -and Ca2+ -ATPase activity were studied in a MTP (microtubule proteins) preparation and in a MAP (microtubule-associated proteins) fraction. In the MTP preparation at pH 6.8, PCMBS stimulated the Mg2+ -ATPase activity at low concentrations and inhibited at higher, whereas the Ca2+ -ATPdse activity was only inhibited. NEM affected the activity in a similar way. At pH 8.0 PCMBS was only inhibitory. NEM showed stimulatory effects over a broader concentration range.
Preincubation in the presence of ATP counteracted the stimulatory effects of both PCMBS and NEM on Mg2+ -ATPase at pH 6.8.
In the MAP fraction at pH 6.8 PCMBS and NEM caused similar but less pronounced effects on the Mg2+ -and Ca2+ -ATPase.
The results show that brain microtubule-associated ATPase activity is similar to dynein and myosin ATPases with respect to biphasic alteration by sulfhydryl reagents.  相似文献   

15.
Novel acid sensitivity induced in Escherichia coli at alkaline pH   总被引:1,自引:1,他引:0  
Transfer of pH 7.0-grown Escherichia coli to pH 9.0 led to rapid acid sensitivity induction (ASI), the response being fully accomplished within 15 min at 37°C in broth. Only a slight increase in acid sensitivity occurred at pH 8.2 but the response was substantial at pH 8.4 and complete at pH 9.0 with no further sensitization at pH 9.5–10.5. ASI was not prevented by lesions in rpoH, katF, ompR, relA, spoT, fur, phoU, phoM (CreC), phoB/R, unc(atp), phoP or cadA and was unaffected by nalidixic acid, L-leucine or iron starvation or excess. Full acid sensitivity was maintained for at least 2 h after a shift from pH 9.0 back to pH 7.0. ASI did not depend to a major extent on PhoE derepression and increased acid sensitivity of alkali-induced strain C75a ( phoE+ ) probably did not involve use of a new outer membrane proton pore.  相似文献   

16.
Cheverry, J. L., Sy, M. O., Pouliquen, J. and Marcellin, P. 1988. Regulation by CO2 of 1-aminocyclopropane-1-carboxylic acid conversion to ethylene in climateric fruits. - Physiol. Plant. 72: 535–540.
A high CO2 concentration (20%) at 20°C rapidly and strongly inhibited the development of the climacteric ethylene burst in apple ( Malus domestica Borkh. cv. Granny Smith) and avocado ( Persea americana Mill. cv. Fuerte) fruits and did not change 1-aminocyclopropane-l-carboxylic acid (ACC) content. Treatment with 20% CO2 markedly decreased ACC-dependent ethylene biosynthesis at 20°C in climacteric pericarp tissues. It is suggested, therefore, that high CO2 levels inhibit conversion of ACC to ethylene.
Synthesis of the ethylene forming enzyme (EFE) was enhanced when intact preclimacteric apples or early climacteric avocados were pretreated for 40 h with 10 μ11-1 ethylene. When CO2 (20%) and ethylene were both applied, a reduced stimulatory effect of ethylene on EFE synthesis was observed. A high CO2 concentration enhanced EFE acivity in excised tissues of apples and avocados incubated with ACC (2 m M ) and cycloheximide (1 m M ) or 2–5-norbornadiene (5 ml 1-1). In the autocatalytic process, 20% CO2 antagonized the stimulation of EFE synthesis by ethylene, but promoted EFE activity.  相似文献   

17.
ABSTRACT. The uterine gland of the tsetse fly Glossina morsitans morsitans Westw. synthesizes a secretion which nourishes the developing larva in the uterus. Aqueous extracts of the brain have been shown to stimulate the synthesis of the protein and amino acid components of this secretion from L- [U-14C]leucine by uterine gland tubules in vivo and in vitro. A linear dose response relationship was demonstrated in vitro with extract concentrations ranging from 1 × 10-4 to 1 × 10-2 brains μl-1. The maximum response, a > 300% increase in the rate of protein and amino acid synthesis, was achieved with as little as 1 × 10-2 brains μl-1 The concentration of active factor(s) in the brain declined during a single interlarval period coincident with the period of release of secretion associated with larval growth. The stimulatory activity in brain extracts was destroyed by proteolytic enzymes indicating that it is probably a protein or peptide. Results suggest that the active factor(s) is a hormone responsible for the stimulation of uterine gland protein synthesis essential for larval nutrition.  相似文献   

18.
Abstract: The release of preloaded [14C]neuroactive amino acids (glutamic acid, proline, γ-aminobutyric acid) from rat brain synaptosomes can occur via a time-dependent, Ca2+ -independent process. This Ca2+-independent efflux is increased by compounds that activate Na+ channels (veratridine, scorpion venoms), by the ionophore gramicidin D, and by low concentrations of unsaturated fatty acids (oleic acid and arachidonic acid). Saturated fatty acids have no effect on the efflux process. Neither saturated nor unsaturated fatty acids have an effect on the release of [14C]leucine, an amino acid not known to possess neurotransmitter properties. The increase in the efflux of neuroactive amino acids by oleic and arachidonic acids can also be demonstrated using synaptosomal membrane vesicles. Under conditions in which unsaturated free fatty acids enhance amino acid efflux, no effect on 22Na+ permeability is observed. Since Na+ permeability is not altered by fatty acids, the synaptosomes are not depolarized in their presence and, thus, the Na+ gradient can be assumed to be undisturbed. We conclude that unsaturated fatty acids represent a potentially important class of endogenous modulators of neuroactive amino acid transport in nerve endings and further postulate that their action is the result of an uncoupling of amino acid transport from the synaptosomal Na+ gradient.  相似文献   

19.
No significant differences were noted between responses of rainbow trout Oncorhynchus mykiss facial and glossopharyngeal nerves to 15 amino acids. Nine of these amino acids tested at 10−2 M were stimulatory, whereas only two tested at 10−3 M were effective gustatory stimuli. For both nerve systems, ≤10−3 M L-proline was the most stimulatory amino acid, with an estimated threshold of 10−7 M; however, L-α-amino-β-guanidino-propionic acid (estimated threshold of 3×10−3 M), was the most potent compound at 10−2 M. These results indicate that the same amino acids activate taste buds innervated by facial and glossopharyngeal nerves, respectively, and suggest that the same amino acids can be important in chemosensory feeding behaviour in the rainbow trout.  相似文献   

20.
Abstract: The effect of ascorbic acid on Ca2+ uptake in cultured rat astrocytes was examined in the presence of ouabain and monensin, which are considered to drive the Na+-Ca2+ exchanger in the reverse mode. Ascorbic acid at 0.1–1 m M inhibited Na+-dependent Ca2+ uptake significantly but not Na+-dependent glutamate uptake in the cells, although the inhibition required pretreatment for more than 30 min. The effect of ascorbic acid on the Ca2+ uptake was blocked by simultaneous addition of ascorbate oxidase (10 U/ml). Na+-dependent Ca2+ uptake was also inhibited by isoascorbate at 1 m M but not by ascorbate 2-sulfate, dehydroascorbate, and sulfhydryl-reducing reagents such as glutathione and 2-mercaptoethanol. The inhibitory effect of ascorbic acid was observed even in the presence of an inhibitor of lipid peroxidation, o -phenanthroline, or a radical scavenger, mannitol, and the degrading enzymes such as catalase and superoxide dismutase. On the other hand, the inhibitory effect was not observed under the Na+-free conditions that inhibited the uptake of ascorbic acid in astrocytes. When astrocytes were cultured for 2 weeks in a medium containing ascorbic acid, the content of ascorbic acid in the cells was increased and conversely Na+-dependent Ca2+ uptake was decreased. These results suggest that an increase in intracellular ascorbic acid results in a decrease of Na+-Ca2+ exchange activity in cultured astrocytes and the mechanism is not related to lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号