首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both wild-type (WT) and IFN-gamma-deficient (IFN-gamma(-/-)) C57BL/6 mice can rapidly reject BALB/c cardiac allografts. When depleted of CD8(+) cells, both WT and IFN-gamma(-/-) mice rejected their allografts, indicating that these mice share a common CD4-mediated, CD8-independent mechanism of rejection. However, when depleted of CD4(+) cells, WT mice accepted their allografts, while IFN-gamma(-/-) recipients rapidly rejected them. Hence, IFN-gamma(-/-), but not WT mice developed an unusual CD8-mediated, CD4-independent, mechanism of allograft rejection. Allograft rejection in IFN-gamma(-/-) mice was associated with intragraft accumulation of IL-4-producing cells, polymorphonuclear leukocytes, and eosinophils. Furthermore, this form of rejection was resistant to treatment with anti-CD40 ligand (CD40L) mAb, which markedly prolonged graft survival in WT mice. T cell depletion studies verified that anti-CD40L treatment failed to prevent CD8-mediated allograft rejection in IFN-gamma(-/-) mice. However, anti-CD40L treatment did prevent CD4-mediated rejection in IFN-gamma(-/-) mice, although grafts were eventually rejected when CD8(+) T cells repopulated the periphery. The IL-4 production and eosinophil influx into the graft that occurred during CD8-mediated rejection were apparently epiphenomenal, since treatment with anti-IL-4 mAb blocked intragraft accumulation of eosinophils, but did not interfere with allograft rejection. These studies demonstrate that a novel, CD8-mediated mechanism of allograft rejection, which is resistant to experimental immunosuppression, can develop when IFN-gamma is limiting. An understanding of this mechanism is confounded by its association with Th2-like immune events, which contribute unique histopathologic features to the graft but are apparently unnecessary for the process of allograft rejection.  相似文献   

2.
The primary effector cells of contact hypersensitivity (CHS) responses to dintrofluorobenzene (DNFB) are IFN-gamma-producing CD8(+) T cells, whereas CD4(+) T cells regulate the magnitude and duration of the response. The requirement for CD40-CD154 engagement during CD8(+) and CD4(+) T cell priming by hapten-presenting Langerhans cells (hpLC) is undefined and was tested in the current study. Similar CHS responses to DNFB were elicited in wild-type and CD154(-/-) animals. DNFB sensitization of CD154(-/-) mice primed IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells. However, anti-CD154 mAb MR1 given during hapten sensitization inhibited hapten-specific CD8(+), but not CD4(+), T cell development and the CHS response to challenge. F(ab')(2) of MR1 failed to inhibit CD8(+) T cell development and the CHS response suggesting that the mechanism of inhibition is distinct from that of CD40-CD154 blockade. Furthermore, anti-CD154 mAb did not inhibit CD8(+) T cell development and CHS responses in mice depleted of CD4(+) T cells or in CD4(-/-) mice. During in vitro proliferation assays, hpLC from mice treated with anti-CD154 mAb during DNFB sensitization were less stimulatory for hapten-primed T cells than hpLC from either control mice or mice depleted of CD4(+) T cells before anti-CD154 mAb administration. These results demonstrate that development of IFN-gamma-producing CD8(+) T cells and the CHS response are not dependent on CD40-CD154 interactions. This study proposes a novel mechanism of anti-CD154 mAb-mediated inhibition of CD8(+) T cell development where anti-CD154 mAb acts indirectly through CD4(+) T cells to impair the ability of hpLC to prime CD8(+) T cells.  相似文献   

3.
We have previously shown that pretransplant donor lymphocyte infusion (DLI) together with transient depletion of CD4(+) T cells could induce permanent rat-to-mouse heart graft survival, whereas depleting CD4(+) T cells alone failed to do so. In this study, we investigated the mechanism leading to long-term xenograft survival. We found that peripheral CD4(+) T cells from DLI/anti-CD4-treated mice could mount rat heart graft rejection after adoptive transfer into B6 CD4(-/-) mice. Infusing donor-Ag-loaded mature dendritic cells (DCs) could break long-term cardiac xenograft survival in DLI/anti-CD4-treated mice. Interestingly, when the number and phenotype of graft-infiltrating cells were compared between anti-CD4- and DLI/anti-CD4-treated groups, we observed a significant increase in both the number and suppressive activity of alphabeta-TCR(+)CD3(+)CD4(-)CD8(-) double negative regulatory T cells and decrease in the numbers of CD4(+) and CD8(+) T cells in the xenografts of DLI/anti-CD4-treated mice. Moreover, there was a significant reduction in MHC class II-high DCs within the xenografts of DLI/anti-CD4-treated recipients. DCs isolated from the xenografts of anti-CD4- but not DLI/anti-CD4-treated recipients could stimulate CD4(+) T cell proliferation. Our data indicate that functional anti-donor T cells are present in the secondary lymphoid organs of the mice that permanently accepted cardiac xenografts. Their failure to reject xenografts is associated with an increase in double negative regulatory T cells as well as a reduction in Ag stimulation by DCs found within grafts. These findings suggest that local regulatory mechanisms need to be taken into account to control anti-xenograft T cell responses.  相似文献   

4.
During sensitization with dinitrofluorobenzene for contact hypersensitivity (CHS) responses, hapten-specific CD8(+) T cells develop into IFN-gamma-producing cells, and CD4(+) T cells develop into IL-4/IL-5-producing cells. Administration of IL-12 during sensitization skews CD4(+) T cell development to IFN-gamma-producing cells, resulting in exaggerated CHS responses. In the current report we tested the role of IL-12 on CD8(+) T cell development during sensitization and elicitation of CHS to dinitrofluorobenzene. Administration of IL-12 during hapten sensitization induced the expression of IL-12Rbeta2 on both CD4(+) and CD8(+) T cells, augmented IFN-gamma production by these T cell populations, and increased the magnitude and duration of the CHS response to hapten challenge. CHS responses were virtually identical in wild-type and IL-12 p40(-/-) mice. Since engagement of CD40 on APC may stimulate IL-12 production, we also tested the role of CD40-CD154 interactions on the development of IFN-gamma-producing CD4(+) and CD8(+) T cells following hapten sensitization. Development of IFN-gamma-producing CD4(+) T cells during hapten sensitization was absent in wild-type mice treated with anti-CD154 mAb or in CD154(-/-) mice. In contrast, the absence of CD40-CD154 signaling had little or no impact on the development of IFN-gamma-producing CD8(+) T cells. These results demonstrate that the development of hapten-specific Th1 effector CD4(+) T cells in CHS requires both CD40-CD154 interactions and IL-12, whereas the development of IFN-gamma-producing effector CD8(+) T cells can occur independently of these pathways.  相似文献   

5.
CD28/B7 regulation of anti-CD3-mediated immunosuppression in vivo   总被引:4,自引:0,他引:4  
FcR-binding "classical" anti-CD3 mAb is a potent immunosuppressive drug that alters CD4(+) and CD8(+) T cell function in vivo via anergy induction and programmed cell death (PCD). Anti-CD3-mediated PCD was Fas independent but was mediated by the mitochondria-initiated apoptosis that was abrogated in Bcl-x(L)-transgenic T cells. The PCD was more pronounced in CD28-deficient mice consistent with defective Bcl-x(L) up-regulation. Residual T cells isolated from anti-CD3-treated wild-type, CD28(-/-), and Bcl-x(L)-transgenic mice were hyporesponsive. The hyporesponsiveness was more pronounced in CD28(-/-) and wild-type mice treated with anti-B7-2, suggesting that CD28 interaction with B7-2 regulates T cell responsiveness in anti-CD3-treated animals. Finally, anti-CD3 treatment led to indefinite cardiac allograft survival in wild-type but not Bcl-x(L) animals. Together these results implicate CD28/B7 signaling in the regulation of both anti-CD3-induced T cell depletion and hyporesponsiveness in vivo, but T cell depletion, not hyporesponsiveness, appears to be critical for anti-CD3 mAb-mediated long-term immune regulation.  相似文献   

6.
In the DBA/2 --> unirradiated (C57BL/6 x DBA/2)F(1) model of chronic graft-vs-host disease (cGVHD), donor CD4(+) T cells play a critical role in breaking host B cell tolerance, while donor CD8(+) T cells are rapidly removed and the remaining cells fall into anergy. Previously we have demonstrated that in vivo ligation of GITR (glucocorticoid-induced TNF receptor-related gene) can activate donor CD8(+) T cells, subsequently converting the disease pattern from cGVHD to an acute form. In this study, we investigated the effect of an agonistic mAb against CD40 on cGVHD. Treatment of anti-CD40 mAb inhibited the production of anti-DNA IgG1 autoantibody and the development of glomerulonephritis. The inhibition of cGVHD occurred because anti-CD40 mAb prevented donor CD8(+) T cell anergy such that subsequently activated donor CD8(+) T cells deleted host CD4(+) T cells and host B cells involved in autoantibody production. Additionally, functionally activated donor CD8(+) T cells induced full engraftment of donor hematopoietic cells and exhibited an increased graft-vs-leukemia effect. However, induction of acute GVHD by donor CD8(+) T cells seemed to be not so apparent. Further CTL analysis indicated that there were lower levels of donor CTL activity against host cells in mice that received anti-CD40 mAb, compared with mice that received anti-GITR mAb. Taken together, our results suggest that a different intensity of donor CTL activity is required for removal of host hematopoietic cells, including leukemia vs induction of acute GVHD.  相似文献   

7.
CD4 T cells are not essential for primary clearance of replicating murine gammaherpesvirus 68 (MHV-68) but are required for effective long-term control. The virus reactivates in the lungs of major histocompatibility complex class II-deficient (CII-/-) mice that lack functional CD4 T cells. CD40 ligand (CD40L) is upregulated on activated CD4 T cells, and it is thought that CD40-CD40L interactions are an important component of CD4 T-cell help. Our previous studies have shown that agonistic antibodies to CD40 can substitute for CD4 T-cell function in the long-term control of MHV-68. In the present study, we sought to identify the CD40-positive cell type mediating this effect. To address this question, we adoptively transferred MHV-68 peptide-pulsed CII(-/-) dendritic cells (DC) that had been treated with an agonistic antibody to CD40 into MHV-68-infected CII(-/-) recipients. Viral reactivation was significantly lower in mice injected with anti-CD40-treated DC than in those injected with control DC or in mice that did not receive any DC. However, in similar experiments with B cells, anti-CD40 treatment had no effect. We also investigated the requirement for CD40 expression on T cells by adoptive transfer of T cells from CD40(+/+) or CD40(-/-) mice into T-cell-deficient recipients that were subsequently infected with MHV-68. The results showed that CD40 expression on T cells is not necessary for preventing viral reactivation. Taken together, our data suggest that CD40 engagement on DC, but not on T or B cells, is essential for effective long-term control of MHV-68.  相似文献   

8.
The delivery of CD40 signaling to APCs during T cell priming enhances many T cell-mediated immune responses. Although CD40 signaling up-regulates APC production of IL-12, the impact of this increased production on T cell priming is unclear. In this study an IL-12-independent T cell-mediated immune response, contact hypersensitivity (CHS), was used to further investigate the effect of CD40 ligation on the phenotypic development of Ag-specific CD4(+) and CD8(+) T cells. Normally, sensitization for CHS responses induces hapten-specific CD4(+) T cells producing type 2 cytokines and CD8(+) T cells producing IFN-gamma. Treatment of mice with agonist anti-CD40 mAb during sensitization with the hapten 2,4-dinitrofluorobenzene resulted in CHS responses of increased magnitude and duration. These augmented responses in anti-CD40 Ab-treated mice correlated with increased numbers of hapten-specific CD4(+) and CD8(+) T cells producing IFN-gamma in the skin draining lymph nodes. Identical results were observed using IL-12(-/-) mice, indicating that CD40 ligation promotes CHS responses and development of IFN-gamma-producing CD4(+) and CD8(+) T cells in the absence of IL-12. Engagement of CD40 on hapten-presenting Langerhans cells (hpLC) up-regulated the expression of both class I and class II MHC and promoted hpLC migration into the T cell priming site. These results indicate that hpLC stimulated by CD40 ligation use a mechanism distinct from increased IL-12 production to promote Ag-specific T cell development to IFN-gamma-producing cells.  相似文献   

9.
A novel subset of CD3(+)CD4(-)CD8(-) (double negative; DN) regulatory T cells has recently been shown to induce donor-specific skin allograft acceptance following donor lymphocyte infusion (DLI). In this study, we investigated the effect of DLI on rat to mouse cardiac xenotransplant survival and the ability of DN T cells to regulate xenoreactive T cells. B6 mice were given either DLI from Lewis rats, a short course of depleting anti-CD4 mAb, both DLI and anti-CD4 treatment together, or left untreated. DLI alone did not prolong graft survival when compared with untreated controls. Although anti-CD4-depleting mAb alone significantly prolonged graft survival, grafts were eventually rejected by all recipients. However, the combination of DLI and anti-CD4 treatment induced permanent cardiac xenograft survival. We demonstrate that recipients given both DLI and anti-CD4 treatment had a significant increase in the total number of DN T cells in their spleens when compared with all other treatment groups. Furthermore, DN T cells harvested from the spleens of DLI plus anti-CD4-treated mice could dose-dependently inhibit the proliferation of syngeneic antidonor T cells. Suppression mediated by these DN T cells was specific for antidonor T cells as T cells stimulated by third-party Ags were not suppressed. These results demonstrate for the first time that a combination of pretransplant DLI and anti-CD4-depleting mAb can induce permanent survival of rat to mouse cardiac xenografts and that DN T regulatory cells play an important role in preventing long-term concordant xenograft rejection through the specific suppression of antidonor T cells.  相似文献   

10.
Administration of anti-CD25 mAb before an aggressive murine breast tumor inoculation provoked effective antitumor immunity. Compared with CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that did not reject tumor, CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that rejected tumor stimulated by dendritic cells (DCs) produced more IFN-gamma and IL-2, and less IL-17 in vitro, and ignited protective antitumor immunity in vivo in an adoptive transfer model. Tumor Ag-loaded DCs activated naive CD8(+) T cells in the presence of these CD4(+) T cells in vitro. Tumor Ag and adoptively transferred CD4(+) T cells were both required for inducing a long-term tumor-specific IFN-gamma-producing cellular response and potent protective antitumor activity. Although adoptively transferred CD4(+) T cells ignited effective tumor-specific antitumor immunity in wild-type mice, they failed to do so in endogenous NK cell-depleted, Gr-1(+) cell-depleted, CD40(-/-), CD11c(+) DC-depleted, B cell(-/-), CD8(+) T cell-depleted, or IFN-gamma(-/-) mice. Collectively, the data suggest that adoptively transferred CD4(+) T cells orchestrate both endogenous innate and adaptive immunity to generate effective tumor-specific long-term protective antitumor immunity. The data also demonstrate the pivotal role of endogenous DCs in the tumor-specific protection ignited by adoptively transferred CD4(+) T cells. Thus, these findings highlight the importance of adoptively transferred CD4(+) T cells, as well as host immune components, in generating effective tumor-specific long-term antitumor activity.  相似文献   

11.
Lupus is an Ab-mediated autoimmune disease. One of the potential contributors to the development of systemic lupus erythematosus is a defect in naturally occurring CD4(+)CD25(+) regulatory T cells. Thus, the generation of inducible regulatory T cells that can control autoantibody responses is a potential avenue for the treatment of systemic lupus erythematosus. We have found that nasal administration of anti-CD3 mAb attenuated lupus development as well as arrested ongoing lupus in two strains of lupus-prone mice. Nasal anti-CD3 induced a CD4(+)CD25(-)latency-associated peptide (LAP)(+) regulatory T cell that secreted high levels of IL-10 and suppressed disease in vivo via IL-10- and TFG-beta-dependent mechanisms. Disease suppression also occurred following adoptive transfer of CD4(+)CD25(-)LAP(+) regulatory T cells from nasal anti-CD3-treated animals to lupus-prone mice. Animals treated with nasal anti-CD3 had less glomerulonephritis and diminished levels of autoantibodies as measured by both ELISA and autoantigen microarrays. Nasal anti-CD3 affected the function of CD4(+)ICOS(+)CXCR5(+) follicular helper T cells that are required for autoantibody production. CD4(+)ICOS(+)CXCR5(+) follicular helper T cells express high levels of IL-17 and IL-21 and these cytokines were down-regulated by nasal anti-CD3. Our results demonstrate that nasal anti-CD3 induces CD4(+)CD25(-)LAP(+) regulatory T cells that suppress lupus in mice and that it is associated with down-regulation of T cell help for autoantibody production.  相似文献   

12.
Blockade of the CD40-CD154 costimulatory pathway can inhibit CD4(+) T cell-mediated alloimmune responses. The aim of this study was to define the in vivo requirement for CD40-CD154 costimulation by CD4(+) T cells that respond to alloantigen following direct recognition. We used TCR-transgenic CD4(+) T cells that are reactive to the MHC class II alloantigen, H2A(s). An experimental in vivo model was established that allowed direct comparison of the fate of a trace population of H2A(s)-reactive CD4(+) T cells when challenged with different forms of H2A(s+) alloantigen under conditions of CD40-CD154 costimulation blockade. In this study, we demonstrate that an i.v. infusion of H2A(s+) leukocytes in combination with anti-CD154 therapy rapidly deletes H2A(s)-reactive CD4(+) T cells. In contrast, following transplantation of an H2A(s+) cardiac allograft, H2A(s)-reactive CD4(+) T cell responses were unaffected by blocking CD40-CD154 interactions. Consistent with these findings, combined treatment with donor leukocytes and anti-CD154 therapy was found to be more effective in prolonging the survival of cardiac allografts compared with CD154 mAb treatment alone. The dominant mechanism by which donor leukocyte infusion and anti-CD154 therapy facilitate allograft acceptance is deletion of donor-reactive direct pathway T cells. No evidence for the generation of regulatory cells by this combined therapy was found. Taken together, these results clearly demonstrate that naive alloreactive CD4(+) T cells have distinct requirements for CD40-CD154 costimulation depending on the form and microenvironment of primary alloantigen contact.  相似文献   

13.
CD154 is transiently expressed by activated T cells and interacts with CD40 on B cells, dendritic cells, macrophages, and monocytes. This costimulatory receptor-ligand couple seems decisive in Ag-driven immune responses but may be differentially involved in type 1 vs type 2 responses. We studied the importance of CD40-CD154 in both responses using the reporter Ag popliteal lymph node assay in which selectively acting drugs generate clearly polarized type 1 (streptozotocin) or type 2 (D-penicillamine, diphenylhydantoin) responses to a constant coinjected Ag in the same mouse strain. Treatment of mice with anti-CD154 reduced characteristic immunological parameters in type 2 responses (B and CD4(+) T cell proliferation, IgG1 and IgE Abs, and IL-4 secretion) and only slightly affected the type 1 response (small decrease in IFN-gamma production, influx of CD11c(+) and F4/80(+) cells, and prevention of architectural disruption of the lymph node, but no effect on IgG2a Ab and TNF-alpha secretion or B and CD4(+) T cell proliferation). The findings indicate that the CD40-CD154 costimulatory interaction is a prerequisite in drug-induced type 2 responses and is only marginally involved in type 1 responses. The observed expression patterns of CD80 and CD86 on different APC (B cells in type 2 and dendritic cells in type 1) may be responsible for this discrepancy.  相似文献   

14.
We determined whether distinct subclasses of dendritic cells (DC) could polarize cytokine production and regulate the pattern of xenograft rejection. C57BL/6 recipients, transplanted with Lewis rat hearts, exhibited a predominantly CD11c(+)CD8alpha(+) splenic DC population and an intragraft cytokine profile characteristic of a Th1-dominant response. In contrast, BALB/c recipients of Lewis rat heart xenografts displayed a predominantly CD11c(+)CD8alpha(-) splenic DC population and IL-4 intragraft expression characteristic of a Th2 response. In addition, the CD11c(+)IL-12(+) splenic DC population in C57BL/6 recipients was significantly higher than that in BALB/c recipients. Adoptive transfer of syngeneic CD8alpha(-) bone marrow-derived DC shifted a Th1-dominant, slow cell-mediated rejection to a Th2-dominant, aggressive acute vascular rejection (AVR) in C57BL/6 mice. This was associated with a cytokine shift from Th1 to Th2 in these mice. In contrast, transfer of CD8alpha(+) bone marrow-derived DC shifted AVR to cell-mediated rejection in BALB/c mice and significantly prolonged graft survival time from 6.0 +/- 0.6 days to 14.2 +/- 0.8 days. CD8alpha(+) DC transfer rendered BALB/c mice susceptible to cyclosporine therapy, thereby facilitating long-term graft survival. Furthermore, CD8alpha(+) DC transfer in IL-12-deficient mice reconstituted IL-12 expression, induced Th1 response, and attenuated AVR. Our data suggest that the pattern of acute xenogeneic rejection can be regulated by distinct DC subsets.  相似文献   

15.
Differences in murine follicular dendritic cells (FDC)-CD23 expression under Th1 vs Th2 conditions prompted the hypothesis that T cells help regulate the phenotype of FDCs. FDCs express CD40, suggesting that T cell-CD40L and lymphokines may be involved in regulating FDC-CD23. To test this, highly enriched FDCs were incubated with CD40L trimer or anti-CD40 to mimic T cell signaling in the presence of IFN-gamma or IL-4. Surface expression of CD23 was determined by flow cytometry, whereas mRNA levels of CD23 and its isoforms CD23a and CD23b were independently measured by quantitative PCR. When FDCs were incubated with either CD40L trimer or agonistic anti-CD40 Ab, the expression of FDC-CD23 was increased both at the mRNA and protein levels. Moreover, engagement of FDC-CD40 enhanced mRNA levels for both CD23a and CD23b isoforms. In addition, IFN-gamma substantially enhanced CD23a and CD23b mRNA levels in CD40-stimulated FDCs. Curiously, IL-4 could also up-regulate FDC-CD23a but not -CD23b. Anti-IFN-gamma dramatically inhibited FDC-CD23 in mice immunized with CFA, whereas anti-IL-4 had only a modest inhibitory effect. In contrast with FDCs, IFN-gamma inhibited surface expression of murine B cell-CD23 as well as mRNA for B cell CD23a and -CD23b, whereas IL-4 dramatically enhanced message for both isoforms as well as protein expression. In short, CD23 was regulated very differently in FDCs and B cells. Previous studies suggest that high levels of FDC-CD23 inhibit IgE production, and this IFN-gamma and CD40L-mediated up-regulation of FDC-CD23 may explain, at least in part, why Th1 responses are associated with low IgE responses in vivo.  相似文献   

16.
17.
In vivo priming of CD8(+) T lymphocytes against exogenously processed model Ags requires CD4(+) T cell help, specifically interactions between CD40 ligand (CD40L) expressed by activated CD4(+) T cells and CD40, which is present on professional APC such as dendritic cells (DCs). To address this issue in the context of bacterial infection, we examined CD40L-CD40 interactions in CD8(+) T cell priming against an exogenously processed, nonsecreted bacterial Ag. CD40L interactions were blocked by in vivo treatment with anti-CD40L mAb MR-1, which inhibited germinal center formation and CD8(+) T cell cross-priming against an exogenous model Ag, OVA. In contrast, MR-1 treatment did not interfere with CD8(+) T cell priming against a nonsecreted or secreted recombinant Ag expressed by Listeria monocytogenes. Memory and secondary responses of CD8(+) T cells against nonsecreted and secreted bacterial Ags were also largely unimpaired by transient MR-1 treatment. When MR-1-treated mice were concurrently immunized with L. monocytogenes and OVA-loaded splenocytes, cross-priming of OVA-specific naive CD8(+) T cells occurred. No significant decline in cross-priming against OVA was measured when either TNF or IFN-gamma was neutralized in L. monocytogenes-infected animals, demonstrating that multiple signals exist to overcome CD40L blockade of CD8(+) T cell cross-priming during bacterial infection. These data support a model in which DCs can be stimulated in vivo through signals other than CD40, becoming APC that can effectively stimulate CD8(+) T cell responses against exogenous Ags during infection.  相似文献   

18.
CD4 T cells are known to assist the CD8 T cell response by activating APC via CD40-CD40 ligand (L) interactions. However, recent data have shown that bacterial products can directly activate APC through Toll-like receptors, resulting in up-regulation of costimulatory molecules necessary for the efficient priming of naive T cells. It remains unclear what role CD4 T cell help and various costimulation pathways play in the development of CD8 T cell responses during bacterial infection. In this study, we examined these questions using an intracellular bacterium, Listeria monocytogenes, as a model of infection. In CD4 T cell-depleted, CD4(-/-), and MHC class II(-/-) mice, L. monocytogenes infection induced CD8 T cell activation and primed epitope-specific CD8 T cells to levels commensurate with those in normal C57BL/6 mice. Furthermore, these epitope-specific CD8 T cells established long-term memory in CD4(-/-) mice that was capable of mounting a protective recall response. In vitro analysis showed that L. monocytogenes directly stimulated the activation and maturation of murine dendritic cells. The CD8 T cell response to L. monocytogenes was normal in CD40L(-/-) mice but defective in CD28(-/-) and CD137L(-/-) mice. These data show that in situations where infectious agents or immunogens can directly activate APC, CD8 T cell responses are less dependent on CD4 T cell help via the CD40-CD40L pathway but involve costimulation through CD137-CD137L and B7-CD28 interactions.  相似文献   

19.
The predominant T lymphocytes that accumulate in the peripheral lymphoid tissues of mice homozygous for the lpr gene bear the phenotype CD3+CD4-CD8-. By certain functional criteria these cells would appear to have impaired CD3-mediated signal transduction, in that they do not respond to alloantigen and produce little if any detectable IL-2 or other lymphokines. However, the signal pathway appears adequate for achieving other T cell functions, including induction of high affinity IL-2R, and thymic deletion. To clarify the basis of this seeming discrepancy, we examined transmembrane signal transduction in T cell subsets of lpr/lpr (lpr) and +/+ mice, as defined by increased [Ca2+]i and the generation of inositol phosphates (InsPs). Stimulation of lpr CD4-CD8- cells with anti-CD3 antibody produced prompt and sustained increases in the concentration of [C2+]i and in InsPs. Similar responses occurred in mature T cells from lpr and +/+ mice, except for the somewhat slower kinetics of their increased [Ca2+]i. In marked distinction to the anti-CD2-mediated response, Con A, even in high doses, could not stimulate any increase of [Ca2+]i in lpr CD4-CD8- cells, and only modest increases in InsPs. Mature T cells, whether of lpr or +/+ origin, yielded normal increased [Ca2+]i with Con A. The reason for the differences in signal transduction between anti-CD3 and Con A stimulation of lpr CD4-CD8- cells may relate to the absence of surface structures on these immature T cells that are required for activation by Con A but not by anti-CD3. The data demonstrate that the CD3 complex in lpr CD4-CD8- T cells can couple to phospholipase C to hydrolyze phosphoinositides. These activation properties of lpr CD4-CD8- T cells have interesting functional parallels to thymocytes at the time of thymic selection, as well as tolerance induction of mature T lymphocytes.  相似文献   

20.
The presence or absence of CD4(+) T cell help can determine the direction of adaptive immune responses toward either cross-priming or cross-tolerance. It has been demonstrated that interactions of CD40-CD40 ligand can replace CD4(+) T cell help and enable dendritic cells to prime cytotoxic T cells. Here, we demonstrate that antitumor reactivity induced in regional lymph nodes (LNs) by s.c. injection of CD40 ligand (CD40L)-transduced tumor (MCA205 CD40L) showed far superior therapeutic efficacy against established brain tumors of a weakly immunogenic fibrosarcoma, MCA205, when adoptively transferred. Coinjection of apoptotic, but not necrotic parental tumor cells with CD40L-expressing tumor cells caused a strong synergistic induction of antitumor reactivity in tumor-draining LNs. Freshly isolated T cells from LNs immunized with apoptotic parental tumor cells and MCA205 CD40L were capable of mediating regression of the parental tumor in vivo. In contrast, T cells derived from LNs immunized without MCA205 CD40L required ex vivo anti-CD3/IL-2 activation to elicit therapeutic activity. On anti-CD3/IL-2 activation, cells from LNs immunized with MCA205 CD40L exhibited superior per cell antitumor reactivity. An in vitro depletion study revealed that either CD4(+) or CD8(+) T cells could mediate therapeutic efficacy but that the antitumor efficacy mediated by CD4(+) T cells was far superior. Cytosolic flow cytometric analyses indicated that priming of CD4(+) cells in LNs draining CD40L-expressing tumors was polarized to the Th1 type. This is the first report that fully potent antitumor CD4(+) T cell priming was promoted by s.c. injection of CD40L-transduced tumor in the presence of apoptotic tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号