首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1   总被引:23,自引:0,他引:23  
The molecular mechanism underlying the retention of intron-containing mRNAs in the nucleus is not understood. Here, we show that retention of intron-containing mRNAs in yeast is mediated by perinuclearly located Mlp1. Deletion of MLP1 impairs retention while having no effect on mRNA splicing. The Mlp1-dependent leakage of intron-containing RNAs is increased in presence of ts-prp18 delta, a splicing mutant. When overall pre-mRNA levels are increased by deletion of RRP6, a nuclear exosome component, MLP1 deletion augments leakage of only the intron-containing portion of mRNAs. Our data suggest, moreover, that Mlp1-dependent retention is mediated via the 5' splice site. Intriguingly, we found Mlp-proteins to be present only on sections of the NE adjacent to chromatin. We propose that at this confined site the perinuclear Mlp1 implements a quality control step prior to export, physically retaining faulty pre-mRNAs.  相似文献   

6.
7.
The PTEN tumor suppressor gene modulates several cellular functions, including cell migration, survival, and proliferation [1] by antagonizing phosphatidylinositol 3-kinase (PI 3-kinase)-mediated signaling cascades. Mechanisms by which the expression of PTEN is regulated are, however, unclear. The ligand-activated nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) [2] has been shown to regulate differentiation and/or cell growth in a number of cell types [3, 4, 5], which has led to the suggestion that PPARgamma, like PTEN [1, 6], could act as a tumor suppressor. PPARgamma has also been implicated in anti-inflammatory responses [7, 8], although downstream mediators of these effects are not well defined. Here, we show that the activation of PPARgamma by its selective ligand, rosiglitazone, upregulates PTEN expression in human macrophages, Caco2 colorectal cancer cells, and MCF7 breast cancer cells. This upregulation correlated with decreased PI 3-kinase activity as measured by reduced phosphorylation of protein kinase B. One consequence of this was that rosiglitazone treatment reduced the proliferation rate of Caco2 and MCF7 cells. Antisense-mediated disruption of PPARgamma expression prevented the upregulation of PTEN that normally accompanies monocyte differentiation and reduced the proportion of macrophages undergoing apoptosis, while electrophoretic mobility shift assays showed that PPARgamma is able to bind two response elements in the genomic sequence upstream of PTEN. Our results demonstrate a role for PPARgamma in regulating PI 3-kinase signaling by modulating PTEN expression in inflammatory and tumor-derived cells.  相似文献   

8.
9.
Autoregulation of renal blood flow is ineffective when arterial pressure perturbations occur at frequencies above 0.05 Hz. To determine whether wave propagation velocity to the macula densa is rate limiting, we estimated compliances of the proximal tubule and the loop of Henle, and used these values in a model of pressure and flow as functions of time and distance in the nephron. Compliances were estimated from measurements of pressures and flows in early proximal, late proximal, and early distal tubules in rats under normal and Ringer-loaded conditions. A model of steady pressure and flow in a compliant, reabsorbing tubule was fitted to these results. The transient model was a set of nonlinear, hyperbolic partial differential equations with split, nonlinear boundary conditions, and was solved with finite difference methods. The loop of Henle compliance was larger than the proximal tubule compliance, and impulses in glomerular filtration rate were attenuated in magnitude and delayed in time in the loop of Henle. Simulated step forcings revealed a similar pattern. Periodic variations of GFR were attenuated at frequencies greater than 0.05 Hz, and there was a delay of 5 s between variations in GFR and macula densa flow rate. The high compliance of the loop slows wave propagation to the macular densa and reduces the amplitude of high frequency waves originating in the glomerulus, but other parts of the signal chain also contribute to the slow response of macula densa feedback.  相似文献   

10.
11.
Thiazolidinediones (TZDs) are widely used to treat type 2 diabetes mellitus; however, their use is complicated by systemic fluid retention. Along the nephron, the pharmacological target of TZDs, peroxisome proliferator-activated receptor-gamma (PPARgamma, encoded by Pparg), is most abundant in the collecting duct. Here we show that mice treated with TZDs experience early weight gain from increased total body water. Weight gain was blocked by the collecting duct-specific diuretic amiloride and was also prevented by deletion of Pparg from the collecting duct, using Pparg (flox/flox) mice. Deletion of collecting duct Pparg decreased renal Na(+) avidity and increased plasma aldosterone. Treating cultured collecting ducts with TZDs increased amiloride-sensitive Na(+) absorption and Scnn1g mRNA (encoding the epithelial Na(+) channel ENaCgamma) expression through a PPARgamma-dependent pathway. These studies identify Scnn1g as a PPARgamma target gene in the collecting duct. Activation of this pathway mediates fluid retention associated with TZDs, and suggests amiloride might provide a specific therapy.  相似文献   

12.
The correct folding and assembly of proteins within the endoplasmic reticulum (ER) are prerequisites for subsequent transport from this organelle to the Golgi apparatus. The mechanisms underlying the ability of the cell to recognize and retain unassembled or malfolded proteins generally require binding to molecular chaperones within the ER. One classic example of this process occurs during the biosynthesis of procollagen. Here partially folded intermediates are retained and prevented from secretion, leading to a build up of unfolded chains within the cell. The accumulation of these partially folded intermediates occurs during vitamin C deficiency due to incomplete proline hydroxylation, as vitamin C is an essential co-factor of the enzyme prolyl 4-hydroxylase. In this report we show that this retention is tightly regulated with little or no secretion occurring under conditions preventing proline hydroxylation. We studied the molecular mechanism underlying retention by determining which proteins associate with partially folded procollagen intermediates within the ER. By using a combination of cross-linking and sucrose gradient analysis, we show that the major protein binding to procollagen during its biosynthesis is prolyl 4-hydroxylase, and no binding to other ER resident proteins including Hsp47 was detected. This binding is regulated by the folding status rather than the extent of hydroxylation of the chains demonstrating that this enzyme can recognize and retain unfolded procollagen chains and can release these chains for further transport once they have folded correctly.  相似文献   

13.
14.
15.
16.
Birds are uricotelic and, like humans, maintain high plasma urate concentrations (approximately 300 microM). The majority of their urate waste, as in humans, is eliminated by renal proximal tubular secretion; however, the mechanism of urate transport across the brush-border membrane of the intact proximal tubule epithelium during secretion is uncertain. The dominance of secretory urate transport in the bird provides a convenient model for examining this process. The present study shows that short hairpin RNA interference (shRNAi) effectively knocked down gene expression of multidrug resistance protein 4 (Mrp4; 25% of control) in primary monolayer cultures of isolated chicken proximal tubule epithelial cells (cPTCs). Control and Mrp4-shRNAi-treated cPTCs were mounted in Ussing chambers and unidirectional transepithelial fluxes of urate were measured. To detect nonspecific effects, transepithelial electrical resistance (TER) and sodium-dependent glucose transport (Iglu) were monitored throughout experiments. Knocking down Mrp4 expression resulted in a reduction of transepithelial urate secretion to 35% of control with no effects on TER or Iglu. Although electrical gradient-driven urate transport in isolated brush-border membrane vesicles was confirmed, potassium-induced depolarization of the plasma membrane in intact cPTCs failed to inhibit active transepithelial urate secretion. However, electrical gradient-dependent vesicular urate transport was inhibited by the MRP4 inhibitor MK-571 also known to inhibit active transepithelial urate transport by cPTCs. Based on these data, direct measure of active transepithelial urate secretion in functional avian proximal tubule epithelium indicates that Mrp4 is the dominant apical membrane exit pathway from cell to lumen.  相似文献   

17.
Establishing an effective epidermal barrier requires a series of coordinated molecular events involving keratinocytes (KCs) within a stratified epithelium. Epidermal maturation depends on convergence of pathways involving components of NF-kappaB and peroxisome proliferator activated receptor (PPAR) signaling systems that promote terminal differentiation and production of a stratum corneum. The Notch-1 receptor and its ligand Delta-1 have been proposed by others to participate in early events in KC differentiation. Here, we establish differential expression patterns for several Notch receptors and ligands in normal human skin. These immunolocalization findings, together with functional studies demonstrating increased levels of Notch ligand/receptors occurring during the onset of differentiation, prompted use of a soluble Notch ligand, a peptide derived from the most conspicuously expressed ligand in skin, Jagged-1. Exposing submerged KC monolayers to this peptide (JAG-1) in co-presence of elevated calcium ion concentration, produced stratification with loricrin expression. Using a living human epidermal equivalent (EE) model system, when submerged cultures were raised to an air/liquid interface to generate a fully mature epidermis, activation of Notch signaling was detected. Addition of JAG-1 peptide to submerged EEs was sufficient to induce epidermal maturation. Moreover, a soluble decoy Notch inhibitor prevented such differentiation and corneogenesis in human EEs exposed to either an air/liquid interface or to the JAG-1 peptide. In KC monolayers, addition of JAG-1 peptide induced IKKalpha mediated NF-kappaB activation, as well as increased PPARgamma expression. Immunoprecipitation/Western blot analysis revealed a physical association between the p65 subunit of NF-kappaB and PPARgamma. These results indicate that activation of Notch signaling is necessary for maturation of human epidermis, and activation by a soluble Notch ligand is sufficient to trigger complete KC differentiation including cornification.  相似文献   

18.
The subcellular localization of the human Ca(2+)-binding EF-hand/leucine zipper protein NEFA was studied in HeLa cells by immunofluorescence microscopy. Double immunostaining using mouse anti-NEFA monoclonal antibody 1H8D12 and rabbit anti-ERD2 polyclonal antibody proved that NEFA is localized in the Golgi apparatus. The result was confirmed by the expression of NEFA-green fluorescent protein (GFP) fusion protein in the Golgi in the same cell line. Cycloheximide treatment proved NEFA to be a Golgi-resident protein. Seven NEFA deletion mutants were constructed to ascertain the peptide region relevant for Golgi retention. The expression of each NEFA-GFP variant was detected by fluorescence microscopy and immunoblotting. Only the DeltaN mutant, lacking the N-terminal Leu/Ile-rich region, failed to be retained in the Golgi after cycloheximide treatment. The other six deletion mutants in which either the basic region, the complete EF-hand pair domain, the two EF-hand motifs separately, the leucine zipper and the leucine zipper plus the C-terminal region is deleted, were localized to the Golgi. The peptide sequence within the Leu/Ile-rich region is discussed as a novel Golgi retention motif.  相似文献   

19.
Retention time of food in the digestive tract is among the key variables that describe the digestive strategy of a herbivore. Mean retention time (MRT) was measured on 4 captive specimens of the okapi, a strictly browsing ruminant. Retention time was quantified on different diets, using Co-EDTA (fluid phase) and Cr-mordanted fibres (1–2 mm) (particle phase) as pulse-fed markers. Average food intake was 55–65 g DM/(kg BW0.75*d). Fecal excretion of the markers was quantified over 10 days. Different models to calculate retention time and passage rate in the gastrointestinal tract (GIT) and the reticulorumen (RR) were applied. Average MRTparticleGIT was quantified to be 47 ± 8 h and MRTfluidGIT 36 ± 5 h. Concerning estimation of retention times in the reticulorumen, MRTparticleRR was quantified to be 27 ± 7 h, while MRTfluidRR was 17 ± 4 h. The quotients MRTparticle/MRTfluid were quantified to be 1.3 ± 0.1 for the GIT and 1.6 ± 0.2 for the RR. Compared to data established with comparable markers, the okapi has low coefficients of MRTparticle/MRTfluid. A less well developed retention mechanism for fibres compared to species like cattle or sheep can be explained by a comparatively high fermentation rate and low digestibility of the natural food of the okapi—browse—in comparison to grass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号