首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine whether gonadotrophin-releasing hormone (GnRH), oxytocin (OT) and vasoactive intestinal polypeptide (VIP) modulate beta-endorphin-like immunoreactivity (beta-END-LI) secretion by dispersed anterior pituitary cells of pigs and in vivo priming with steroid hormones, estradiol benzoate (EB) and progesterone (P(4)), influences the cell reactivity to peptide hormones tested. Additionally, the aim of this research was to examine the involvement of cyclic nucleotides (cAMP and cGMP) in transduction of signals induced by GnRH, OT and VIP in porcine pituitary cells. Pituitaries were collected from ovariectomized (OVX) gilts that were divided into four experimental groups. Animals of group 1 (OVX) received 1ml corn oil (placebo)/100 kg body weight (b.w.), group 2 (OVX+EB I) and group 3 (OVX+EB II) were treated with EB at the dose 2.5mg/100 kg b.w., 30-36 and 60-66 h before slaughter, respectively. Animals of group 4 (OVX+P(4)) were injected with P(4) at the dose 120 mg/100 kg b.w. for 5 subsequent days before slaughter. Anterior pituitaries were dispersed with trypsin and then pituitary cells were cultured (10(6) per well) in McCoy's 5A medium containing horse serum (10%) and fetal calf serum (2.5%) for 3 days at 37 degrees C under an atmosphere of 95% air and 5% CO(2). Subsequently, plates were rinsed with fresh McCoy's 5A medium and pituitary cells were treated with one of the following agents: GnRH (100 ng/ml), OT (10(-6)M) or VIP (10(-7)M) and incubated for 3.5h at 37 degrees C.GnRH did not affect beta-END-LI secretion by pituitary cells of OVX (group 1) and OVX+P(4) (group 4) gilts. When the pituitary cells were incubated in the presence of OT and VIP, significant increases were observed. After priming of OVX gilts with EB, 30-36 h before slaughter (group 2), we noted a significant increase in beta-END-LI release from pituitary cells only in the presence of VIP. Pituitary cells from gilts treated with EB, 60-66 h before slaughter (group 3), produced markedly elevated amounts of beta-END-LI after GnRH, OT or VIP addition.GnRH markedly stimulated cGMP release from cultured pituitary cells in all experimental groups and significantly increased cAMP production by the cells from OVX, OVX+EB II and OVX+P(4) animals. The addition of OT enhanced both cAMP and cGMP output in all experimental groups of pigs. VIP stimulated cAMP release from pituitary cells derived from OVX, OVX+EB I and OVX+EB II animals. cGMP output was markedly elevated under the influence of VIP from pituitary cells of OVX, OVX+EB II and OVX+P(4) gilts.In conclusion, our results suggest that GnRH, OT and VIP can modulate beta-endorphin release from porcine pituitary cells and imply the involvement of cAMP and cGMP in transduction of signals induced by studied peptides in the cells.  相似文献   

2.
The aim of the present study was to evaluate the possible direct effects of GnRH, oxytocin (OT) and vasoactive intestinal peptide (VIP) on the release of LH and PRL by dispersed porcine anterior pituitary cells. Pituitary glands were obtained from mature gilts, which were ovariectomized (OVX) one month before slaughter. Gilts randomly assigned to one of the four groups were treated: in Group 1 (n = 8) with 1 ml/100 kg b.w. corn oil (placebo); in Group 2 (n = 8) and Group 3 (n = 8) with estradiol benzoate (EB) at the dose 2.5 mg/100 kg b.w., respectively, 30-36 h and 60-66 h before slaughter; and in Group 4 (n = 9) with progesterone (P4) at the dose 120 mg/ 100 kg b.w. for five consecutive days before slaughter. In gilts of Group 2 and Group 3 treatments with EB have induced the negative and positive feedback in LH secretion, respectively. Isolated anterior pituitary cells (10(6)/well) were cultured in McCoy's 5a medium with horse serum and fetal calf serum for 3 days at 37 degrees C under the atmosphere of 95% air and 5% CO2. Subsequently, the culture plates were rinsed with fresh McCoy's 5A medium and the cells were incubated for 3.5 h at 37 degrees C in the same medium containing one of the following agents: GnRH (100 ng/ml), OT (10-1000 nM) or VIP (1-100 nM). The addition of GnRH to cultured pituitary cells resulted in marked increases in LH release (p < 0.001) in all experimental groups. In the presence of OT and VIP we noted significant increases (p < 0.001) in LH secretion by pituitary cells derived from gilts representing the positive feedback phase (Group 3). In contrast, OT and VIP were without any effect on LH release in Group 1 (placebo) and Group 2 (the negative feedback). Pituitary cells obtained from OVX gilts primed with P4 produced significantly higher amounts (p < 0.001) of LH only after an addition of 100 nM OT. Neuropeptide GnRH did not affect PRL secretion by pituitary cells obtained from gilts of all experimental groups. Oxytocin also failed to alter PRL secretion in Group 1 and Group 2. However, pituitary cells from animals primed with EB 60-66 h before slaughter and P4 produced markedly increased amounts of PRL in the presence of OT. Neuropeptide VIP stimulated PRL release from pituitary cells of OVX gilts primed with EB (Groups 2 and 3) or P4. In contrast, in OVX gilts primed with placebo, VIP was without any effect on PRL secretion. In conclusion, the results of our in vitro studies confirmed the stimulatory effect of GnRH on LH secretion by porcine pituitary cells and also suggest a participation of OT and VIP in modulation of LH and PRL secretion at the pituitary level in a way dependent on hormonal status of animals.  相似文献   

3.
The aim of this study was to investigate incompetence for oestradiol-induced LH surges in long-term ovariectomized gilts and male pigs. Gilts (250 days old; n = 36), which had been ovariectomized 30 (OVX 30) or 100 days (OVX 100) before the start of treatment, were challenged i.m. with oestradiol benzoate and were either given no further treatment, fed methallibure to inhibit endogenous GnRH release or fed methallibure and given i.v. pulses of 100 or 200 ng GnRH agonist at 1 h intervals during the LH surge (48-96 h after oestradiol benzoate). The same treatments were applied to long-term orchidectomized male pigs (ORC, n = 23). In addition, one ORC group was not injected with oestradiol benzoate but was fed methallibure and given pulses of 200 ng GnRH agonist. Oestradiol benzoate alone induced an LH surge in the OVX 30 group only (5/6 gilts), methallibure suppressed (P < 0.05) oestradiol benzoate-induced LH secretion, while pulses of 100 ng GnRH agonist in animals fed methallibure produced LH surges in four of six OVX 30 and four of six OVX 100 gilts. The induced LH surges were similar to those produced by oestradiol benzoate alone in OVX 30 gilts. Pulses of 200 ng GnRH agonist produced LH surges in OVX 30 (6/6) and OVX 100 (6/6) gilts and increased the magnitude of the induced LH surge in OVX 100 gilts (P < 0.05 compared with 100 ng GnRH agonist or OVX 30 control). Pulses of 200 ng GnRH agonist also induced LH surge release in ORC male pigs (5/6), but were unable to increase LH concentrations in a surge-like manner in ORC animals that had not been given oestradiol benzoate, indicating that oestradiol increases pituitary responsiveness to GnRH. These results support the hypothesis that oestradiol must inhibit secretion of LH before an LH surge can occur. It is concluded that incompetence for oestradiol-induced LH surges in long-term ovarian secretion-deprived gilts and in male pigs is due to the failure of oestradiol to promote a sufficient increase in the release of GnRH.  相似文献   

4.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

5.
The effects of the antiprogestins (APs) ZK 98.299, ZK 98.734 and RU 486 on GnRH-stimulated LH secretion and their antagonistic activity on progesterone (P) actions were investigated in cultured pituitary cells from adult female Wistar rats. P (100 nM) was able to exert a facilitatory effect on GnRH (1 nM)-induced LH secretion after short-term (4 h) treatment of estradiol-primed (1 nM, 48 h) rat pituitary cells. When the APs (10 pM-10 microM) were introduced during the 4 h incubation period with P the facilitatory effect of P was totally abolished at concentrations greater than 10 nM (ZK 98.299, ZK 98.734) and greater than 1 nM (RU 486). Also the APs were shown to block the inhibitory action of P which occurs after long-term incubation of pituitary cells with this steroid. However at concentrations greater than 10 nM (ZK 98.734, RU 486) and greater than 100 nM (ZK 98.299) this antagonistic action of the APs was lost. To evaluate whether the APs have direct effects on GnRH-induced LH secretion in the absence of exogenous P pituitary cells cultivated for 48 h with or without 1 nM estradiol were incubated for 4 or 24 h with increasing concentrations of the APs (10 pM-10 microM). Four hour treatment of non-estradiol-primed cells with ZK 98.299 or ZK 98.734 was without any effect on the LH response to a 1 nM GnRH-stimulus. Only the highest concentration of RU 486 (10 microM) reduced the LH response. Twenty-four hour treatment of the cultures with the APs led to enhancement of GnRH-stimulated LH secretion by up to 113, 37 and 33% for ZK 98.734, ZK 98.299 and RU 486, respectively. When estradiol-primed cells were used for the same experiments we observed exclusively inhibitory effects on GnRH-induced LH secretion after 4 and 24 h treatment periods. It is concluded that these new APs are potent inhibitors of P-actions, but also per se they induce diverse effects on GnRH-stimulated LH secretion in cultured rat pituitary cells which have to be taken into account.  相似文献   

6.
South American camelids are induced ovulators and require a stimulus to trigger the LH surge responsible for the ovulation. Seminal plasma (SP) of fertile alpacas (Lama pacos) was tested using a bioassay of pituitary cells to study the effect of seminal plasma on LH release. Plates containing rat pituitary cells (2 x 10(5) cells/90-95% viability) were cultured adding: (A) whole SP (WSP) treated with charcoal-dextran, or 1:2 or 1:4 proportions diluted in culture medium (DMEM/HEPES + antibiotics), or (B) 1:2 SP + anti-GnRH rabbit serum (inhibitory potency 10(-5) M), or (C) 1:2 SP + anti-GnRH + 100 nM synthetic GnRH (buserelin acetate) or (D) 100 nM, 50 nM, 10 nM, and 1 nM synthetic GnRH. Concentration (ng/ml) of LH secreted (Sec) and contained (Con) was analyzed using RIA 125I and the percentage of Sec and Con in each experiment was determined. The results of LH Sec for the cells treated with 50, 10, and 1 nM GnRH were 39, 13, and 1.5%, respectively (r2 = 98.41%, r = 0.9920) but cells treated with 100 nM GnRH secreted 10% of LH. With WSP, 1:2, or 1:4 SP the LH Sec was of 44.5% (3.25 ng/ml), 27% (1.9 ng/ml), and 18% (1.2 ng/ml), respectively. The exposure of cells to 1:2 SP + anti-GnRH, or to 1:2 SP + anti-GnRH/100 nM GnRH produced 31% (2.20 ng/ml) and 30% (1.8 ng/ml) of LH Sec, respectively. These results suggest that the SP of alpacas could have some factor(s) different from GnRH that would contribute to the mechanisms of LH secretion and to the induced ovulation in the female alpaca.  相似文献   

7.
Copper stimulated LH release from cultured rat pituitary cells in a dose-and time-dependent manner. After 4 h of incubation with 10 mu M Cu2+, LH release was stimulated by 3-fold. The release of LH stimulated by Cu2+ was Ca2+ dependent, thus excluding the possibility that the releasing activity of this divalent cation was due to a toxic effect on pituitary cells. The stimulatory action of Cu2+ is substantially mediated via the GnRH-receptors since Cu2+ inhibited 125I-Buserelin binding and since GnRH-antagonist blocked most of the Cu2+-stimulated LH release (80%). Both GnRH (1 microM) and Cu2+ (10 microM) induced desensitization of pituitary cells to a subsequent stimulation of either GnRH (0.5 nM) or Cu2+ (10 microM). However, in contrast to GnRH, Cu2+ did not induce down regulation of GnRH receptors. These findings suggest that the Cu2+ effects are mainly mediated through the GnRH receptors.  相似文献   

8.
We have previously reported that GnRH stimulates the synthesis of both the alpha- and beta-polypeptide chains of LH. In the present study, in order to investigate the mechanisms involved in the GnRH regulation of LH subunit synthesis, we have explored the effects of cAMP and a phorbol ester [12-O-tetradecanoyl phorbol 13-acetate (TPA)] using anterior pituitary cells in primary culture incubated in the presence of [35S]methionine. The radioactivity incorporated into alpha and LH beta immunologically related polypeptides was measured after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the labeled material immunoextracted from cells and media with specific antisera. The cAMP analog 8-Br-cAMP (at concentrations 0.25-2 mM), the cholera toxin (6-60 nM), and forskolin (10-100 microM) induced, like GnRH, an increase in the [35S]methionine incorporation into alpha- and LH beta-subunits. On the other hand, TPA (50-100 nM) also enhanced the synthesis of LH subunits. After a 5-h incubation in the presence of GnRH, 8-Br-cAMP, and TPA in different combinations, no cumulative effect was observed. These results demonstrate that intracellular cAMP and TPA are potent activators of both alpha- and LH beta-polypeptide chain synthesis, suggesting that cAMP as well as diacylglycerols may act as intracellular mediators of the GnRH effect on LH subunit synthesis.  相似文献   

9.
Mammalian gonadotropin-releasing hormone (GnRH) I is the neuropeptide that regulates reproduction. In recent years, a second isoform of GnRH, GnRH II, and its highly selective type II GnRH receptor were cloned and identified in monkey brain, but its physiological function remains unknown. We sought to determine whether GnRH II stimulates LH and FSH secretion by activating specific receptors in primary pituitary cultures from male monkeys. Dispersed pituitary cells were maintained in steroid-depleted media and stimulated with GnRH I and/or GnRH II for 6 h. Cells were also treated with Antide (Bachem, King of Prussia, PA), a GnRH I antagonist, to block gonadotropin secretion. In monkey as well as rat pituitary cultures, GnRH II was a less effective stimulator of LH and FSH secretion than was GnRH I. In both cell preparations, Antide completely blocked LH and FSH release provoked by GnRH II as well as GnRH I. Furthermore, the combination of GnRH I and GnRH II was no more effective than either agonist alone. These results indicate that GnRH II stimulates FSH and LH secretion, but they also imply that this action occurs through the GnRH I receptor. The GnRH II receptors may have a unique function in the monkey brain and pituitary other than regulation of gonadotropin secretion.  相似文献   

10.
To evaluate whether the median eminence (ME) is the site of action of CRF (corticotropin releasing factor) in inhibiting LH levels in female rats, we have injected CRF (1 nmol) directly into the ME and then measured plasma LH and FSH concentrations in conscious ovariectomized (OVX) rats in the absence or presence of a single dose of estradiol benzoate (EB). CRF caused a significant decrease in plasma LH levels in both OVX and OVX + EB rats at 30 min postinjection, in comparison to the values obtained in animals injected with water only. Injection into the ME of water had no effect on plasma LH levels in either OVX or OVX + EB animals. The results suggest that CRF probably inhibits LH secretion, at least in part by a central action on GnRH release in ME.  相似文献   

11.
Steroid hormones are known to affect synthesis and/or release of some peptides in the central nervous system and peripheral tissues. In the present study we determined changes in beta-endorphin, GnRH and galanin contents in uterine and oviductal tissues of ovariectomized (OVX) gilts following treatment with estradiol benzoate (EB) at a dose inducing a preovulatory-like LH surge. Seven month old gilts (90-100 kg of body weight; BW) were used in the study. Four weeks after ovariectomy, experimental animals were injected intramuscularly with EB (15 microg/kg BW) at 24 h (n=5), 48 h (n=6) or 72 h (n=5) before slaughter. Three control gilts received corn oil vehicle. Tissues were sampled from the ampulla and isthmus of the oviduct and from the perioviductal, middle and paracervical regions of the uterine horn for determination of beta-endorphin, GnRH and galanin content. Significant increases of beta-endorphin content were found in all regions of the uterus either 24 h or 48 h after priming with EB. In oviductal tissue, beta-endorphin concentration only tended to increase in response to EB. GnRH content in tissues originating from gilts receiving EB fluctuated from a stimulation in the ampulla of the oviduct and in the paracervical uterus to an inhibition in the middle part of the uterus. A significantly increased concentration of galanin in response to EB was observed exclusively in the paracervical part of the OVX pig uterus. The results suggest an involvement of beta-endorphin, GnRH and galanin in the regulation of uterine function in pigs during the periovulatory period.  相似文献   

12.
Recently, GnRH antagonists (GnRHant) like cetrorelix and ganirelix have been introduced in protocols of controlled ovarian hyperstimulation for assisted reproductive techniques to prevent premature luteinizing hormone (LH) surges. Here we tested, whether the actions of cetrorelix and the GnRH agonist (GnRHag) triptorelin in gonadotrophs are dependent on the steroid milieu. Furthermore, we characterized the actions of cetrorelix and triptorelin on LH secretion and the total LH pool. Female rat pituitary cells were treated either with 0.1 nM triptorelin for 1, 2, 4 and 6 days or for 1, 3, 5 and 6 h or with 1, 10 or 100 nM cetrorelix for 1, 2, 3 and 5 h or for 10 min. Cells were stimulated for 3h with different concentrations of GnRH (10 pM-1 microM). For analysis of the total LH pool, which is composed of stored and released LH, cells were lysed with 0.1% Triton X-100 at -80 degrees C overnight. To test, whether the steroid milieu affects the actions of cetrorelix and triptorelin, cells were incubated for 52 h with 1 nM estradiol (E) alone or with combinations of 100 nM progesterone (P) for 4 or 52 h, respectively. Cells were then treated with 0.1 nM triptorelin for 9 h or 1 nM cetrorelix for 3 h and stimulated for 3 h with different concentrations of GnRH (10 pM-1 microM). The suppressive effect of triptorelin on LH secretion was fully accomplished after 3 h of treatment, for cetrorelix only 10 min were sufficient. The concentration of cetrorelix must be at least equimolar to GnRH to block LH secretion. Cetrorelix shifted the EC50s of the GnRH dose-response curve to the right. Triptorelin suppressed total LH significantly (from 137 to 36 ng/ml) after 1 h in a time-dependent manner. In contrast, only high concentrations of cetrorelix increased total LH. In steroid treated cells the suppressive effects of triptorelin were more distinct. One nanomolar cetrorelix suppressed GnRH-stimulated LH secretion of cells not treated with steroids from 10.1 to 3.5 ng/ml. In cells, additionally treated with estradiol alone or estradiol and short-term progesterone, LH levels were higher (from 3.5 to 5.4 or 4.5 ng/ml, respectively). In cells co-treated with estradiol and progesterone for 52 h LH secretion was only suppressed from 10.1 to 9.5 ng/ml. Steroid treatments diminished the suppressive effect of cetrorelix on LH secretion. In conclusion, the depletion of the total LH pool contributes to the desensitizing effect of triptorelin. The actions of cetrorelix and triptorelin are dependent on the steroid milieu.  相似文献   

13.
The stimulation of luteinizing hormone (LH) release and cyclic GMP (cGMP) production in rat anterior pituitary cells by gonadotropin-releasing hormone (GnRH) are receptor mediated and calcium dependent, and have been shown to be accompanied by increased phospholipid turnover and arachidonic acid release. The incorporation of 32Pi into the total phospholipid fraction of pituitary gonadotrophs was significantly elevated by 10(-8) M GnRH, with specific increases in the labeling of phosphatidylinositol and phosphatidic acid (PA). Since PA acts as a calcium ionophore in several cell types, its effects upon calcium-mediated gonadotroph responses were compared with those elicited by GnRH. In rat pituitary gonadotrophs prepared by centrifugal elutriation, PA stimulated LH release and cGMP production by 9-fold and 5-fold, respectively. The stimulation of LH release by 30 microM PA was biphasic in its dependence on extracellular calcium concentration, rising from zero in the absence of calcium to a maximum of 10-fold at 0.5 mM Ca2+ and declining at higher calcium concentrations. In dose-response experiments, PA was 3-fold more potent at 0.5 mM Ca2+ than at 1.2 mM Ca2+. The cGMP response to PA in cultured gonadotrophs was also calcium dependent, and was progressively enhanced by increasing Ca2+ concentrations up to 1.5 mM. The ability of PA to stimulate both LH release and cGMP formation in a calcium-dependent manner suggests that endogenous PA formed in response to GnRH receptor activation could function as a Ca2+ ionophore in pituitary gonadotrophs, and may participate in the stimulation of gonadotroph responses by GnRH and its agonist analogs.  相似文献   

14.
Kisspeptins are peptide hormones encoded by the KiSS-1 gene and act as the principal positive regulator of the reproductive axis by directly stimulating gonadotropin-releasing hormone (GnRH) neuron activity. However, peripheral administration, as well as central administration, of kisspeptin stimulates luteinizing hormone (LH) secretion in some mammalian species. In order to evaluate the direct effects of kisspeptin-10 (the minimal kisspeptin sequence necessary for receptor activation) on LH secretion from bovine and porcine anterior pituitary (AP) cells, LH-releasing effects of kisspeptin-10 on AP cells were compared with GnRH in vitro. The AP cells were prepared from 1-month-old intact male calves, 8-month-old castrated male calves, or 6-month-old barrows, and then the cells were incubated for 2h with the peptides. The 1000 nM and 10,000 nM, but not lower concentrations, of kisspeptin-10 significantly stimulated LH secretion from the bovine AP cells (P<0.05). The 100 nM and 1000 nM, but not lower concentrations, of kisspeptin-10 significantly stimulated LH secretion from porcine AP cells (P<0.05). As 10nM of GnRH strongly stimulated LH secretion from all AP cells tested in this study, the present results suggest that kisspeptin-10 has a direct, but weak, stimulating effect on LH secretion in bovine and porcine AP cells. The present study is the first to examine the direct actions of kisspeptin on the bovine and porcine pituitary gland as far as we know. Kisspeptin might have other actions on the pituitary because the pituitary has multiple roles.  相似文献   

15.
Objectives were to determine if neuropeptide Y (NPY) had direct effects GnRH induced secretion of LH from the anterior pituitary gland, and if endogenous steroids modulated the effect of NPY. To accomplish these objectives, 15 Hereford heifers were assigned to one of three ovarian status groups: follicular, luteal, or ovariectomized. One animal from each of the three ovarian status groups was slaughtered on each of 5 days and anterior pituitary gland harvested. Anterior pituitary gland cells within ovarian status were equally distributed and randomly assigned to one of three cell culture treatments: no NPY or GnRH (control), 10 nM GnRH, or 100 nM NPY+10 nM GnRH. Anterior pituitary cell cultures were incubated with or without NPY for 4 h and further incubated for an additional 2 h with or without GnRH and supernatant collected for quantification of LH. Treatment of anterior pituitary cell cultures with GnRH or GnRH+NPY did not affect LH release in cultures obtained from follicular (S.E.=5%; P=0.58) or ovariectomized (S.E.=7%; P=0.22) heifers. Both GnRH and GnRH+NPY increased LH release from anterior pituitary cell cultures from heifers in the luteal phase (S.E.=14%; P < or = 0.05) compared to control cultures. Cultures from luteal phase heifers treated with GnRH did not differ from those treated with GnRH+NPY (P=0.34). These data provide evidence to suggest that effects of NPY on LH release may occur primarily at the level of the hypothalamus.  相似文献   

16.
Although endogenous opioid peptides (EOP) are thought to alter pituitary release of luteinizing hormone (LH) by modifying the release of gonadotropin-releasing hormone (GnRH) from the brain, EOP may also directly affect the release of LH from pituitary cells. This hypothesis was tested using dispersed cells from the bovine anterior pituitary gland. Pituitaries were enzymatically dissociated, preincubated for 18 h and then cultured for either 2 or 24 h with GnRH, naloxone, methionine-enkephalin (Met-enk) or their combinations. Basal release of LH into media was 18.2 and 38.4 ng/100,000 cells after culture for 2 or 24 h, respectively. When cultured for 2 or 24 h with 10 nM GnRH, LH release was 296% and 131% of the basal release for each culture period. Cellular viability (75% vs 68%) and total (cells + medium) LH (128 vs 134 ng/100,000 cells) did not differ (P greater than .05) between cells cultured for 2 or 24 h. Naloxone (1 microM) increased (P less than .01) basal release of LH by 57% after 2 h of culture but not after 24 h of culture. Naloxone did not augment the amount of LH released in response to 10 nM GnRH. Addition of Met-enk (1 nM to 1 microM) suppressed (P less than .05) basal release of LH (23% to 62%) after 2 h of culture. Similar suppressive effects (8% to 49%) occurred in a dose-dependent manner (0.1 nM to 1 microM) after 24 h of culture. Met-enk (1 and 100 nM) antagonized (P less than .05) the stimulatory effect of naloxone and reduced (P less than .05) the amount of LH released in response to GnRH after 2 h of culture. In summary, the stimulatory effect of naloxone on the basal release of LH suggests that EOP may directly regulate pituitary cell function; the inhibitory effect of physiological concentrations of Met-enk on the basal in vitro release of LH suggests that EOP may directly affect the release of LH in vivo; the antagonism between the stimulatory effect of naloxone and the inhibitory effect of Met-enk is consistent with effects exerted through opioid receptors; and the stimulatory effect of GnRH may be partially reduced by Met-enk. These results are consistent with the hypothesis that opioids may directly modulate the release of LH at the pituitary level.  相似文献   

17.
We compared the ability of estradiol and progesterone to modulate gonadotropin-releasing hormone (GnRH) and protein kinase C (PKC)-mediated luteinizing hormone (LH) secretion. Long-term (48 h) treatment of rat pituitary cells with 1 nM estradiol enhanced GnRH and phorbol ester (TPA)-stimulated LH secretion. This positive effect was facilitated by additional short-term (4 h) treatment with progesterone (100 nM). However, long-term progesterone treatment, which inhibited GnRH-stimulated LH secretion, did not influence TPA-stimulated gonadotropin release. These steroid actions occurred without an effect on the total amount of LH in the cell cultures (total LH = LH secreted + LH remaining in the cell) and neither the secretagogues nor the steroids altered total LH. Since GnRH or TPA-induced LH secretion depends on Ca2+ influx into the gonadotroph, we also analyzed the effects of estradiol and progesterone under physiological extracellular Ca2+ concentrations and in the absence of extracellular Ca2+. The steroids were able to influence GnRH or TPA-induced LH secretion under both conditions. However, when TPA was used as stimulus in Ca(2+)-deficient medium the relative changes induced by estradiol and progesterone were more pronounced, possibly indicating that the extracellular Ca(2+)-independent component of PKC-mediated LH secretion is more important for the regulation of the steroid effects. It is concluded that estradiol and progesterone might mediate their modulatory actions on GnRH-stimulated LH secretion via an influence on PKC. This effect can occur independently from de novo synthesis of LH and Ca2+ influx into gonadotrophs.  相似文献   

18.
The role of protein kinase C in luteinizing hormone (LH) release was analyzed in studies on the actions of gonadotropin releasing hormone (GnRH) and phorbol esters in cultured pituitary cells. During incubation in normal medium, GnRH stimulated LH release with an ED50 of 0.35 nM. Incubation in Ca2+-deficient medium (Ca2+-free, 10 microM) substantially decreased but did not abolish the LH responses to GnRH. The extracellular Ca2+-dependent component of GnRH action could be mimicked by high K+ concentrations, consistent with the presence of voltage-sensitive calcium channels (VSCC) in pituitary gonadotrophs. Ca2+ channel agonist (Bay K 8644) and antagonist (nifedipine) analogs, respectively, enhanced or partially inhibited LH responses to GnRH and also to K+, the latter confirming the participation of two types of VSCC (dihydropyridine-sensitive and -insensitive) in K+-induced secretion. Phorbol esters, including 12-O-tetradecanoylphorbol-13-acetate (TPA), 4 beta-phorbol-12,13-dibenzoate, and 4 beta-phorbol-12,13-diacetate, stimulated LH release with ED50s of 5, 10, and 1000 nM, respectively, and with about 70% of the efficacy of GnRH. Phorbol ester-stimulated LH secretion was decreased but not abolished by progressive reduction of [Ca2+]e in the incubation medium, and the residual LH response was identical with that elicited by GnRH in Ca2+-deficient medium. TPA increased [Ca2+]i to a peak after 20 s in normal medium but not in the absence of extracellular Ca2+, indicating that protein kinase C (Ca2+/phospholipid-dependent enzyme) promotes calcium entry but can also mediate secretory responses without changes in calcium influx and [Ca2+]i. The extracellular Ca2+-dependent action of TPA on LH release was blocked by Co2+. However, nifedipine did not alter TPA action on [Ca2+]i and LH release. These observations indicate that protein kinase C can participate in GnRH-induced LH release that is independent of Ca2+ entry, but also promotes the influx of extracellular Ca2+ through dihydropyridine-insensitive Ca2+-channels.  相似文献   

19.
It is known that acute ovariectomy (OVX) greatly attenuates the pituitary luteinizing hormone (LH) response to gonadotropin-releasing hormone (GnRH) in vitro. The present study evaluated possible quantitative and/or qualitative differences in the biosynthesis and secretion of LH in pituitaries from proestrous and acutely (72 h) OVX rats. Paired anterior pituitary glands were incubated for 4 h in a medium containing +/- 10 nM GnRH. Pituitary and secreted LH were measured by radioimmunoassay with differences in total LH (tissue plus medium) +/- GnRH being indicative of GnRH-stimulated LH synthesis. Qualitative changes in LH were evaluated by isoelectrofocusing (IEF). The results show that the major form of LH stored in and released from the pituitaries consisted of LH molecules with an isoelectric point (pI) in the alkaline pH range (alkaline LH), and a lesser amount (approximately 30%) of LH molecules in the acidic pH range (acidic LH). The ratio of alkaline/acidic LH observed in the pituitary and medium was similar in the proestrous and OVX groups, although the amount of alkaline and acidic LH release in response to GnRH was 2-3 times greater in the proestrous group. In both groups, the alkaline/acidic LH ratio of secreted LH was higher in the presence of GnRH than in its absence. Alkaline LH synthesis was increased by GnRH in both groups, with the response being greater in the proestrous than in the OVX group; GnRH-stimulated acidic LH synthesis was observed only in the proestrous group. In both groups, the amount of LH synthesized was about 60% of the amount released, which suggests that LH synthesis does not fully account for differences in GnRH-stimulated LH release. Treatment of pituitary extracts with neuraminidase decreased acidic LH, and proportionately increased alkaline LH. These results suggest that the quality of LH stored in and secreted from pituitaries of proestrous and OVX rats is similar, and that there is a preferential release of the major alkaline LH isoform in response to GnRH. The ovarian steroid environment, presumably estradiol, proportionately increases the amount of alkaline and acidic LH released, and differentially affects the amounts of the various isoforms synthesized in response to GnRH. The charge heterogeneity of alkaline and acidic LH may be related to the sialic acid content of the LH molecule.  相似文献   

20.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号