首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During secondary palate development, two shelves are elevated to a horizontal position above the tongue through a process involving many cellular mechanisms, including proliferation. In particular, the expression patterns of Tbx3 and Bmp4, which are colocalized at embryonic day 13.5 (E13.5) and have unique expression patterns in specific regions at E14.5, have been investigated in early mouse palatogenesis. Tbx3 expression is reported to be associated with Bmp4 signaling during the process of organogenesis in other areas, such as limb development. However, the function of Tbx3 and the relationship between Tbx3 and Bmp4 in palate development have not been determined. We have examined the gene expression pattern and cell proliferation in order to understand the mutual interactions and function of Tbx3 and Bmp4. An electroporation method was used to investigate the altered pattern of these genes after their over-expression in organ cultures. NOGGIN protein-soaked beads were also implanted into the cultured palate to determine the function of Bmp4 in palatogenesis. After electroporation and NOGGIN bead implantation, the number of PCNA-positive cells was counted. The results showed that Tbx3 and Bmp4 strongly up- and down-regulated each other in order to control the proliferation of the palatal shelf. Thus, Tbx3 expression is induced by Bmp4 in the mesenchyme of the anterior palatal shelves, whereas mesenchymal expression of Tbx3 down-regulates Bmp4 expression in the mesenchyme of the palate. The harmonization between Tbx3 and Bmp4 therefore controls cell proliferation to regulate secondary palate development. This research was supported by the International Cooperation Research Program of the Ministry of Science & Technology (M6-0302-00-0044).  相似文献   

3.
4.
The key to understanding the evolutionary origin and modification of phenotypic traits is revealing the responsible underlying developmental genetic mechanisms. An important organismal trait of ray‐finned fishes is the gas bladder, an air‐filled organ that, in most fishes, functions for buoyancy control, and is homologous to the lungs of lobe‐finned fishes. The critical morphological difference between lungs and gas bladders, which otherwise share many characteristics, is the general direction of budding during development. Lungs bud ventrally and the gas bladder buds dorsally from the anterior foregut. We investigated the genetic underpinnings of this ventral‐to‐dorsal shift in budding direction by studying the expression patterns of known lung genes (Nkx2.1, Sox2, and Bmp4) during the development of lungs or gas bladder in three fishes: bichir, bowfin, and zebrafish. Nkx2.1 and Sox2 show reciprocal dorsoventral expression patterns during tetrapod lung development and are important regulators of lung budding; their expression during bichir lung development is conserved. Surprisingly, we find during gas bladder development, Nkx2.1 and Sox2 expression are inconsistent with the hypothesis that they regulate the direction of gas bladder budding. Bmp4 is expressed ventrally during lung development in bichir, akin to the pattern during mouse lung development. During gas bladder development, Bmp4 is not expressed. However, Bmp16, a paralogue of Bmp4, is expressed dorsally in the developing gas bladder of bowfin. Bmp16 is present in the known genomes of Actinopteri (ray‐finned fishes excluding bichir) but absent from mammalian genomes. We hypothesize that Bmp16 was recruited to regulate gas bladder development in the Actinopteri in place of Bmp4.  相似文献   

5.

Background  

Polarised gene expression is thought to lead to the graded distribution of signaling molecules providing a patterning mechanism across the embryonic eye. Bone morphogenetic protein 4 (Bmp4) is expressed in the dorsal optic vesicle as it transforms into the optic cup. Bmp4 deletions in human and mouse result in failure of eye development, but little attempt has been made to investigate mammalian targets of BMP4 signaling. In chick, retroviral gene overexpression studies indicate that Bmp4 activates the dorsally expressed Tbx5 gene, which represses ventrally expressed cVax. It is not known whether the Tbx5 related genes, Tbx2 and Tbx3, are BMP4 targets in the mammalian retina and whether BMP4 acts at a distance from its site of expression. Although it is established that Drosophila Dpp (homologue of vertebrate Bmp4) acts as a morphogen, there is little evidence that BMP4 gradients are interpreted to create domains of BMP4 target gene expression in the mouse.  相似文献   

6.
7.
《Epigenetics》2013,8(2):204-211
During mouse development, imprinted X chromosome inactivation (XCI) is observed in preimplantation embryos and is inherited to the placental lineage, whereas random XCI is initiated in the embryonic proper. Xist RNA, which triggers XCI, is expressed ectopically in cloned embryos produced by somatic cell nuclear transfer (SCNT). To understand these mechanisms, we undertook a large-scale nuclear transfer study using different donor cells throughout the life cycle. The Xist expression patterns in the reconstructed embryos suggested that the nature of imprinted XCI is the maternal Xist-repressing imprint established at the last stage of oogenesis. Contrary to the prevailing model, this maternal imprint is erased in both the embryonic and extraembryonic lineages. The lack of the Xist-repressing imprint in the postimplantation somatic cells clearly explains how the SCNT embryos undergo ectopic Xist expression. Our data provide a comprehensive view of the XCI cycle in mice, which is essential information for future investigations of XCI mechanisms.  相似文献   

8.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   

9.
10.

Background  

Cdkn1c encodes an embryonic cyclin-dependant kinase inhibitor that acts to negatively regulate cell proliferation and, in some tissues, to actively direct differentiation. This gene, which is an imprinted gene expressed only from the maternal allele, lies within a complex region on mouse distal chromosome 7, called the IC2 domain, which contains several other imprinted genes. Studies on mouse embryos suggest a key role for genomic imprinting in regulating embryonic growth and this has led to the proposal that imprinting evolved as a consequence of the mismatched contribution of parental resources in mammals.  相似文献   

11.
The mature heart valves and septa are derived from the cardiac cushions which initially form as local outgrowths of mesenchymal cells within the outflow tract and atrioventricular regions. Endocardial cells respond to signals from the overlying myocardium and undergo an epithelial-to-mesenchymal transformation to invade the intervening extracellular matrix. The molecules that can induce and maintain these cell populations are not known, but many candidates, including several TGFbetas and BMPs, have been proposed based on their expression patterns and activities in other systems. In the present study, we describe the expression of Bmp6 and Bmp7 in overlapping and adjacent sites, including the cardiac cushions during mouse embryonic development. Previous analyses demonstrate that neither of these BMPs is required during cardiogenesis, but analysis of Bmp6;Bmp7 double mutants uncovers a marked delay in the formation of the outflow tract endocardial cushions. A proportion of Bmp6;Bmp7 mutants also display defects in valve morphogenesis and chamber septation, and the embryos die between 10.5 and 15.5 dpc due to cardiac insufficiency. These data provide the first genetic evidence that BMPs are involved in the formation of the cardiac cushions.  相似文献   

12.
Analysis of the skeletal phenotypes caused by the genetic inactivation of individual Bmps, along with the study of their expression patterns, suggest possible functional redundancy of these molecules. To investigate the effect on skeleton development of the combined absence of some Bmp genes expressed in the same areas, we have intercrossed heterozygous Bmp7 mice with Bmp2+/−, Bmp4+/−, or Bmp5+/− animals. Bmp2/7 and Bmp5/7 double heterozygous animals do not present with any abnormalities. In contrast, Bmp4/7 double heterozygotes develop minor defects in two restricted areas of the skeleton, the rib cage, and the distal part of the limbs. In the ribs, Bmp4 and Bmp7 seem to act in the same pathway to assure proper guidance of mesenchymal condensations of the ribs extending toward the sternum. In the limbs, these molecules appear to play a similar role in controlling digit number, possibly through induction of apoptosis in the interdigital and anterior mesenchyme. Dev. Genet. 22:340–348, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Prader-Willi syndrome (PWS) results from loss of function of a 1.0- to 1.5-Mb domain of imprinted, paternally expressed genes in human Chromosome (Chr) 15q11-q13. The loss of imprinted gene expression in the homologous region in mouse Chr 7C leads to a similar neonatal PWS phenotype. Several protein-coding genes in the human PWS region are intronless, possibly arising by retrotransposition. Here we present evidence for continued acquisition of genes by the mouse PWS region during evolution. Bioinformatic analyses identified a BAC containing four genes, Mkrn3, Magel2, Ndn, Frat3, and the Atp5l-ps1 pseudogene, the latter two genes derived from recent L1-mediated retrotransposition. Analyses of eight overlapping BACs indicate that these genes are clustered within 120 kb in two inbred strains, in the order tel–Atp5l-ps1–Frat3–Mkrn3–Magel2–Ndn–cen. Imprinting analyses show that Frat3 is differentially methylated and expressed solely from the paternal allele in a transgenic mouse model of Angelman syndrome, with no expression from the maternal allele in a mouse model of PWS. Loss of Frat3 expression may, therefore, contribute to the phenotype of mouse models of PWS. The identification of five intronless genes in a small genomic interval suggests that this region is prone to retroposition in germ cells or their zygotic and embryonic cell precursors, and that it allows the subsequent functional expression of these foreign sequences. The recent evolutionary acquisition of genes that adopt the same imprint as older, flanking genes indicates that the newly acquired genes become `innocent bystanders' of a primary epigenetic signal causing imprinting in the PWS domain. Received: 22 May, 2001 / Accepted: 16 July 2001  相似文献   

14.
Several imprinted genes have been implicated in the regulation of placental function and embryonic growth. On distal mouse chromosome 7, two clusters of imprinted genes, each regulated by its own imprinting center (IC), are separated by a poorly characterized region of 280 kb (the IC1–IC2 interval). We previously generated a mouse line in which this IC1–IC2 interval has been deleted (Del7AI allele) and found that maternal inheritance of this allele results in low birth weights in newborns. Here we report that Del7AI causes a partial loss of Ascl2, a maternally expressed gene in the IC2 cluster, which when knocked out leads to embryonic lethality at midgestation due to a lack of spongiotrophoblast formation. The hypomorphic Ascl2 allele causes embryonic growth restriction and an associated placental phenotype characterized by a reduction in placental weight, reduced spongiotrophoblast population, absence of glycogen cells, and an expanded trophoblast giant cell layer. We also uncovered severe defects in the labyrinth layer of maternal mutants including increased production of the trilaminar labyrinth trophoblast cell types and a disorganized labyrinthine vasculature. Our results have important implications for our understanding of the role played by the spongiotrophoblast layer during placentation and show that regulation of the dosage of the imprinted gene Ascl2 can affect all three layers of the chorio-allantoic placenta.  相似文献   

15.
16.
The embryonic poly(A)-binding protein (EPAB) functions in the translational regulation of the maternal messenger RNAs (mRNAs) required during oocyte maturation, fertilization, and early embryo development. Since there is no antibody specific to mammalian EPAB protein, all studies related to the Epab gene could be performed at the mRNA levels except for the investigations in the Xenopus. In this study, we have produced an EPAB-specific antibody. When we examined its expressional distribution in the mouse gonadal and somatic tissues, the EPAB protein was found to be expressed only in the mouse ovary and testis tissues, but it is undetectable level in the somatic tissues including stomach, liver, heart, small intestine, and kidney. Additionally, the spatial and temporal expression patterns of the EPAB and poly(A)-binding protein cytoplasmic 1 (PABPC1) proteins were analyzed in the mouse germinal vesicle (GV) and metaphase II (MII) oocytes, one-cell, and two-cell embryos. While EPAB expression gradually decreased from GV oocytes to two-cell embryos, the PABPC1 protein level progressively increased from GV oocytes to one-cell embryos and remarkably declined in the two-cell embryos ( P < 0.05). We have also described herein that the EPAB protein interacted with Epab, Pabpc1, Ccnb1, Gdf9, and Bmp15 mRNAs dependent upon the developmental stages of the mouse oocytes and early embryos. As a result, we have first produced an EPAB-specific antibody and characterized its expression patterns and interacting mRNAs in the mouse oocytes and early embryos. The findings suggest that EPAB in cooperation with PABPC1 implicate in the translational control of maternal mRNAs during oogenesis and early embryo development.  相似文献   

17.
18.
We previously described a gene, Ipl (Tssc3), that is expressed selectively from the maternal allele in placenta, yolk sac, and fetal liver and that maps within the imprinted domain of mouse distal Chromosome (Chr) 7/human Chr 11p15.5 (Hum Mol Genet 6, 2021, 1997). Ipl is similar to TDAG51, a gene that is involved in FAS/CD95 expression. Here we describe another gene, Tih1 (TDAG/Ipl homologue 1), with equivalent sequence similarity to Ipl. Structural prediction indicates that the products of these three genes share a central motif resembling a pleckstrin-homology (PH) domain, and TIH1 protein has weak sequence similarity to the PH-domain protein SEC7/CYTOHESIN. Like Ipl, Tih1 is a small gene with a single small intron. Tih1 maps to distal mouse Chr 1 and human Chr 1q31, chromosomal regions that have not shown evidence for imprinting and, in contrast to Ipl, Tih1 is expressed equally from both parental alleles. Ipl, Tih1, and TDAG51 have overlapping but distinct patterns of expression. Tih1 and TDAG51 are expressed in multiple fetal and adult tissues. In contrast, during early mouse development Ipl mRNA and protein are highly specific for two tissues involved in maternal/fetal exchange: visceral endoderm of the yolk sac and labyrinthine trophoblast of the placenta. These findings highlight the dominance of chromosomal context over gene structure in some examples of parental imprinting and extend previous evidence for placenta-specific expression of imprinted genes. The data also define a new subfamily of PH domain genes. Received: 10 June 1999 / Accepted: 26 July 1999  相似文献   

19.
One of the main criteria of pluripotency is ability of cell lines to differentiate into the germ line. Pluripotent stem cell lines in ground state of pluripotency differ from the lines in primed state by their ability to give rise to the mature gametes. To understand molecular mechanisms involved in regulation of different states of pluripotency we investigated the expression patterns of germ line specific genes in different type pluripotent stem cells and mouse and human embryonic teratocarcinoma cells. We found that pluripotent stem cells in vitro, in blastocyst and gonocytes at stage E13.5 had similar expression patterns in contrast to the epiblast cells at stage E6.5. Quantitative real time PCR analysis showed that Vasa/Ddx4 expression in mouse and human embryonic stem cells was significantly lower than in blastocyst and gonocytes. Moreover, Vasa/Ddx4 and E-ras expression was significantly higher in mouse embryonic stem cells than in human embryonic stem cells. Our analysis of germ line specific gene expression in differentiating mouse embryonic stem and embryonic germ cells as well as in mouse embryonic teratocarcinoma cells maintained under conditions promoting cell reprogramming from primed to ground state of pluripotency (2i + LIF) revealed that only pluripotent stem cells are able to regulate the expression level of Oct4 and Vasa/Ddx4 and restore initial ground state, while in embryonic teratocarcinoma cells the expression level of these genes remained unchanged. We suggest that expression patterns of germ lines specific genes, in particular of Vasa/Ddx4, can underlie the regulation of ground and primed states of pluripotency.  相似文献   

20.
Xu K  Wu X  Shapiro E  Huang H  Zhang L  Hickling D  Deng Y  Lee P  Li J  Lepor H  Grishina I 《PloS one》2012,7(1):e29372

Background

During normal development in human and other placental mammals, the embryonic cloacal cavity separates along the axial longitudinal plane to give rise to the urethral system, ventrally, and the rectum, dorsally. Defects in cloacal development are very common and present clinically as a rectourethral fistula in about 1 in 5,000 live human births. Yet, the cellular mechanisms of cloacal septation remain poorly understood.

Methodology/Principal Findings

We previously detected Bone morphogenetic protein 7 (Bmp7) expression in the urorectal mesenchyme (URM), and have shown that loss of Bmp7 function results in the arrest of cloacal septation. Here, we present evidence that cloacal partitioning is driven by Bmp7 signaling in the cloacal endoderm. We performed TUNEL and immunofluorescent analysis on cloacal sections from Bmp7 null and control littermate embryos. We found that loss of Bmp7 results in a dramatic decrease in the endoderm survival and a delay in differentiation. We used immunological methods to show that Bmp7 functions by activating the c-Jun N-terminal kinase (JNK) pathway. We carried out confocal and 3D imaging analysis of mitotic chromosome bundles to show that during normal septation cells in the cloacal endoderm divide predominantly in the apical-basal direction. Loss of Bmp7/JNK signaling results in randomization of mitotic angles in the cloacal endoderm. We also conducted immunohistochemical analysis of human fetal sections to show that BMP/phospho-SMAD and JNK pathways function in the human cloacal region similar as in the mouse.

Conclusion/Significance

Our results strongly indicate that Bmp7/JNK signaling regulates remodeling of the cloacal endoderm resulting in a topological separation of the urinary and digestive systems. Our study points to the importance of Bmp and JNK signaling in cloacal development and rectourethral malformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号