首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wheat (Triticum aestivum L.) leaf proteome   总被引:1,自引:0,他引:1  
The wheat leaf proteome was mapped and partially characterized to function as a comparative template for future wheat research. In total, 404 proteins were visualized, and 277 of these were selected for analysis based on reproducibility and relative quantity. Using a combination of protein and expressed sequence tag database searching, 142 proteins were putatively identified with an identification success rate of 51%. The identified proteins were grouped according to their functional annotations with the majority (40%) being involved in energy production, primary, or secondary metabolism. Only 8% of the protein identifications lacked ascertainable functional annotation. The 51% ratio of successful identification and the 8% unclear functional annotation rate are major improvements over most previous plant proteomic studies. This clearly indicates the advancement of the plant protein and nucleic acid sequence and annotation data available in the databases, and shows the enhanced feasibility of future wheat leaf proteome research.  相似文献   

2.
Silicon absorption by wheat (Triticum aestivum L.)   总被引:3,自引:0,他引:3  
Rafi  Malik M.  Epstein  Emanuel 《Plant and Soil》1999,211(2):223-230
Although silicon (Si) is a quantitatively major inorganic constituent of higher plants the element is not considered generally essential for them. Therefore it is not included in the formulation of any of the solution cultures widely used in plant physiological research. One consequence of this state of affairs is that the absorption and transport of Si have not been investigated nearly as much as those of the elements accorded 'essential' status. In this paper we report experiments showing that Si is rapidly absorbed by wheat (Triticum aestivum L.) plants from solution cultures initially containing Si at 0.5 mM, a concentration realistic in terms of the concentrations of the element in soil solutions. Nearly mature plants (headed out) 'preloaded' with Si absorbed it at virtually the same rate as did plants grown previously in solutions to which Si had not been added. The rate of Si absorption increased by more than an order of magnitude between the 2-leaf and the 7-8 leaf stage, with little change thereafter. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The aim of this work was to discover whether the respiration of wheat (Triticum aestivum L. cv. Huntsman) leaves, transferred to darkness after 7 h photosynthesis, showed an initial period of wasteful respiration. For young and old leaves, CO2 production and O2 uptake after 7 h photosynthesis were up to 56% higher than at the end of an 8-h night. The maximum catalytic activities of citrate synthase (EC 4.1.3.7), aconitase (EC 4.2.1.3), fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) at the end of the day did not differ from those at the end of the night. Changes in the contents of glucose 6-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, and -ketoglutarate did not as a group parallel the changes in the rate of respiration. The detailed distribution of label from [U-14C] sucrose supplied to leaves in the dark was similar at the end of the day and the end of the night. No correlation was observed between the rates of leaf respiration and extension growth. It is argued that the higher rate of respiration at the beginning of the night cannot be attributed to wasteful respiration.Abbreviation RQ respiratory quotient We thank Dr H. Thomas and Professor C.J. Pollock, Institute for Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, UK for their generous help in measuring leaf extension. R.H.A. thanks the Science and Engineering Research Council for a studentship.  相似文献   

4.
Summary Decreases in the concentrations of nitrogen, phosphorus, potassium, calcium and magnesium, in the shoots of wheat seedlings soon after the start of waterlogging were mainly attributed to an inhibition of ion uptake and transport by roots in the oxygen deficient soil. There was a small net accumulation of nitrogen, phosphorus and potassium by the aerial tissues, principally the tillers rather than the main shoot. By contrast, calcium and magnesium accumulated in both tillers and main shoot. With waterlogging, nitrogen, phosphorus and potassium were translocated from the older leaves to the younger growing leaves, and in the case of nitrogen this was associated with the onset of premature senescence. Calcium and magnesium were not translocated from the older leaves, the younger leaves acquiring these cations from the waterlogged soil. The promotion of leaf senescence by waterlogging was counteracted by applications of nitrate or ammonium to the soil surface, or by spraying the shoots with solutions of urea, but the beneficial effects on shoot growth were small.The role of mineral nutrition in relation to waterlogging damage to young cereal plants is discussed.  相似文献   

5.
Summary The effects of waterlogging on concentrations of gases and various solutes dissolved in the soil water were investigated in the laboratory, to determine whether the early disruption to the growth of wheat was most closely associated with depletion of dissolved oxygen, accumulation of toxins, or changes in concentrations of nutrient ions in the soil water. Waterlogging slowed shoot fresh weight accumulation, leaf extension and nodal root growth; it also caused death of the seminal root system and early senescence of the lower leaves. However, the shoot dry weight initially increased above that of the non-waterlogged controls, and thus was not a reliable indicator of the early restriction to plant growth and development. The symptoms of damage to shoots and roots were attributed to the fall in soil oxygen concentrations, rather than to any decrease in concentration of inorganic nutrients in the soil water, or to the accumulation of any other measured solutes to toxic concentrations.  相似文献   

6.
M. L. Parker  C. R. Hawes 《Planta》1982,154(3):277-283
The ultrastructure and distribution of the Golgi apparatus in developing wheat endosperm was investigated using a zinc iodide-osmium tetroxide staining complex in conjunction with low and high voltage electron microscopy. Dictyosomes were numerous in starchy endosperm and aleurone at 15 days after anthesis, and during the period of rapid storage protein deposition 25 d after anthesis. Fewer dictyosomes were seen in maturing endosperm. Two types of vesicles were associated with the dictyosomes; small, heavily-stained vesicles were sited at the ends of fine tubules which extend from the cisternae, and larger less-stained vesicles were associated with the periphery of the cisternae. Stereo-pairs of micrographs up to 1 m thick were taken to demonstrate the interconnections between cisternal and tubular endoplasmic reticulum. Elements of tubular ER were closely associated with dictyosomes, but connections were not observed. These results are discussed in relation to the transport of endosperm storage proteins from their site of synthesis on the cisternal ER to their site of storage, the protein bodies.  相似文献   

7.
Fusarium head blight of wheat is a major deterrent to wheat production world-wide. The genetics of FHB resistance in wheat are becoming clear and there is a good understanding of the genome location of FHB resistance QTL from different sources such as Sumai3, Wuhan, Nyubai and Frontana. All the components needed for assembling complex genotypes through large-scale molecular breeding experiments are now available. This experiment used high throughput microsatellite genotyping and half-seed analysis to process four independent crosses through a molecular breeding strategy to introduce multiple pest resistance genes into Canadian wheat. This included two backcrosses and selection for a total of six FHB resistance QTL, orange blossom wheat midge resistance (Sm1) and leaf rust resistance (Lr21). In addition, the fixation of the elite genetic background was monitored with 45–76 markers to accelerate restoration of the genetic background at each backcross. The strategy resulted in 87% fixation of the elite genetic background on average at the BC2F1 generation and successfully introduced all of the chromosome segments containing FHB, Sm1 and Lr21 resistance genes. The molecular breeding strategy was completed in 25 months, at an equal pace to conventional crossing and selection of spring wheat.  相似文献   

8.
Journal of Plant Biochemistry and Biotechnology - Agrobacterium-mediated in-planta transformation method allows efficient plant transformation without tissue culture. In the present study, a tissue...  相似文献   

9.
We have developed a method for the accelerated production of fertile transgenic wheat (Triticum aestivum L.) that yields rooted plants ready for transfer to soil in 8–9 weeks (56–66 days) after the initiation of cultures. This was made possible by improvements in the procedures used for culture, bombardment, and selection. Cultured immature embryos were given a 4–6 h pre-and 16 h post-bombardment osmotic treatment. The most consistent and satisfactory results were obtained with 30 g of gold particles/bombardment. No clear correlation was found between the frequencies of transient expression and stable transformation. The highest rates of regeneration and transformation were obtained when callus formation after bombardment was limited to two weeks in the dark, with or without selection, followed by selection during regeneration under light. Selection with bialaphos, and not phosphinothricin, yielded more vigorously growing transformed plantlets. The elongation of dark green plantlets in the presence of 4–5 mg/l bialaphos was found to be reliable for identifying transformed plants. Eighty independent transgenic wheat lines were produced in this study. Under optimum conditions, 32 transformed wheat plants were obtained from 2100 immature embryos in 56–66 days, making it possible to obtain R3 homozygous plants in less than a year.  相似文献   

10.
The aims of this study were to describe the distribution of magnesium (Mg) and its retranslocation within wheat, in order to develop diagnostic procedures for Mg deficiency. Plants were grown in solution culture with both constant supply (0, 5, 10, 20, 40, 80, 160 MMg) and discontinued supply (40 M and 160 M decreased to nil).Magnesium was depleted from old leaves when Mg supply to the roots was halted. However, initial deficiency symptoms occurred on young leaves under constant but inadequate supply, contrasting with previous reports. Magnesium concentrations were also lower in young leaves compared to old leaves. Symptoms of yellowing and necrosis occurred if the leaf tissue contained <1194 gg–1, irrespective of leaf age. The minimum Mg concentration in whole shoots associated with maximum shoot weight was 932 gg–1; for the youngest emerged blade (YEB) it was 861 gg–1. Symptoms were apparent on the young leaf before a reduction in shoot weight was measurable. The concentration of Mg in the YEB and whole shoot were better related to solution Mg concentration than was the Mg concentration in the old leaf.  相似文献   

11.
12.
Understanding the origin of cultivated wheats would further their genetic improvement. The hexaploid bread wheat (Triticum aestivum L., AABBDD) is believed to have originated through one or more rare hybridization events between Aegilops tauschii (DD) and the tetraploid T. turgidum (AABB). Progenitor, of the A-genome of the tetraploid and hexaploid wheats has generally been accepted to be T. urartu. In spite of the large number of attempts and published reports about the origin of the B-genome in cultivated wheats, the donor of the B-genome is still relatively unknown and controversial and, hence, remains open. This genome has been found to be closely related to the S-genome of the Sitopsis section (Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, and Ae. bicornis) of the genus Aegilops L. Among Sitopsis species, the most positive evidence has been accumulated for Ae. speltoides as the progenitor of the B-genome. Therefore, one or more of the Sitopsis species were proposed frequently as the B-genome donor. Although several reviews have been written on the origin of the genomes of wheat over the years, this paper will attempt for the first time to review the immense literature on the subject, with a particular emphasis on the B-genome which has attracted a huge attention over some 100 years. The ambiguity and conflicting results in most of the methods employed in deducing the precise B-genome donor/s to bread wheat are also discussed.  相似文献   

13.
The isolation of viable egg cells of wheat (Triticum aestivum L.)   总被引:4,自引:4,他引:0  
The isolation of viable egg cells of wheat has been achieved without enzymatic maceration of the ovules. 2,4-D applied to the stigmas resulted 3 to 7 days later in soft ovule tissues which disintegrated upon mechanical manipulation. The isolated egg cells were viable even 2 h after isolation. Their morphology corresponded to that of the in situ egg cells. The mean isolation frequency was 20% (two egg cells per ten ovules).  相似文献   

14.
Herbivory damage leads to induction of rapid signals and responses in plants such as oxidative burst, accumulation of secondary metabolites and defensive proteins. Response of various defensive enzymes and secondary metabolites in flag leaf samples of six bread wheat varieties against aphid feeding was investigated. Six bread wheat varieties, namely PBW 621 and HD 2967 (timely sown irrigated), PBW 590 and PBW 658 (late sown irrigated), and PBW 644 and PBW 660 (timely sown rainfed) were grown under the aphid infested and uninfested conditions and were sampled at a regular interval to analyze the biochemical changes caused by aphid feeding. A tremendous increase in the overall activity of various enzymes namely superoxide dismutase, glutathione reductase, phenylalanine ammonia lyase and polyphenol oxidase was observed, all of which play an important role in plants defense towards aphid feeding. Each wheat genotype showed an overall difference in their defensive activity towards aphid feeding. However, certain genotypes under different conditions showed significantly less susceptibility towards aphid damage.

Abbreviations: GR: glutathione reductase; HPR: host plant resistance; PAL: phenylalanine ammonia lyase; PPO: poly phenol oxidase; POD: peroxidase; SOD: superoxide dismutase  相似文献   


15.
Summary The ability of immature embryos of wheat (Triticum aestivum L.) to respond to tissue culture has been shown to involve the group 2 chromosomes. The available group 2 ditelosomic and nullisomic-tetrasomic lines of Chinese Spring wheat were used to determine the chromosome arm location and chromosome dosage effect associated with the expression of tissue culture response (TCR). Significant differences were found between the aneuploid lines and the euploid control for the expression of both regenerable callus formation and callus growth rate. A model is proposed suggesting that a major TCR gene is located on 2DL and that 2AL and 2BS possess minor TCR genes. Furthermore, a major regulatory gene controlling the expression of TCR genes may be located on chromosome 2BL.  相似文献   

16.
Nullisomic analysis of waxy (Wx) protein of hexaploid wheat (Triticum aestivum L.) cv. “Chinese Spring” using two-dimensional polyacrylamide gel electrophoresis revealed that threeWx loci,Wx-A1, Wx-B1, andWx-D1, located on chromosome arms 7AS, 4AL, and 7DS, produce three distinct Wx subunit groups, subunit group-A (SGA), SGB, and SGD, respectively. SGA has a higher molecular weight and a more basic isoelectric point (pI) than the other two. SGB and SGD have the same molecular weight but a slightly different pI range. Owing to the detection of these three subunit groups, we were able to identify the expression of three waxy genes in wheat endosperm and to find two types of mutants among Japanese wheat cultivars, one lacking SGA and the others SGB. These results suggest the possibility of breeding a waxy wheat.  相似文献   

17.
18.
The flag leaf of wheat was examined for changes in quantity and activity of ribulose-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39), in the proteolytic degradation of RuBPCase and other native proteins, and in the ultrastructure of the leaf cells during grain development. Proteolytic degradation of RuBPCase at pH 4.8 increased until 8–10 d after anthesis, then declined, and increased again 16–18 d after anthesis. The second peak coincided with the onset of a preferential loss of immunologically recognizable RuBPCase. The specific activity and number of active sites per molecule of RuBPCase did not change during senescence. Examination of ultrastructure with the electron microscope showed little change in the appearance of the mitochondria as the flag leaf aged. Prominent cristae were still evident 35 d after anthesis. In contrast, the chloroplasts showed a progressive disruption of the thylakoid structure and an increasing number of osmiophilic glubules. The double membrane envelope surrounding the chloroplast appeared intact until at least 20 d after anthesis. The tonoplast also appeared intact up to 20 d. At later stages of senescence of the leaf the outer membrane of the chloroplast adjacent to the tonoplast appeared to break but the inner membrane of the envelope appeared intact until at least 35 d after anthesis.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase (EC. 4.1.1.39) I=Waters et al. 1980  相似文献   

19.
Plant small RNAs are emerging as significant components of epigenetic processes and of gene networks involved in development and homeostasis. In this paper, to identify small RNAs in wheat, 2,076 small RNAs were identified in a small RNA library from leaf, root, and spike. These small RNAs mapped to non-coding regions the CDS region of protein-coding genes and 5' UTR and 3' UTR regions. The expression of small RNAs in seedling leaves, roots, and spikes were analyzed by northern blot, which indicates that some small RNAs were responsive to abiotic stress treatments including heat, cold, salt and dehydration.  相似文献   

20.
The activity of a range of endo- and exopeptidase enzymes have been measured in the glumes, flag leaf and stem during the period of grain development in wheat. The enzymes show a sequential pattern of appearance with activity peaks occurring at a number of intervals from anthesis until just prior to the cessation of grain growth. Of the enzymes studied only the haemoglobin- and casein-degrading activity and alanylglycine-dipeptidase activity increased during the period of rapid protein loss, while aminopeptidase, carboxypeptidase and leucyltyrosine dipeptidase reached maximum activity prior to this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号