首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mannose 6-phosphate receptor proteins (MPR 300 and 46) in mammals have been shown to mediate transport of lysosomal enzymes to lysosomes intracellularly. Both receptors are also expressed on the plasma membrane. Only MPR 300 protein on the plasma membrane has been shown to be a multifunctional protein which in addition to binding mannose 6-phosphate containing proteins also binds human insulin-like growth factor-II (IGF-II) causing its internalization [Hille-Rehfeld, A. (1995) Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim. Biophys. Acta. 1241: 177–194]. This property has been shown to be exhibited by other mammalian receptors but not by the chicken and frog receptors. In a recent study however it was shown that the fish embryo MPR 300 binds human IGF-II. [Mendez, E., Planas, J.V., Castillo, J., Navarro, I. and Gutierrez, J. (2001) Identification of a type II insulin-like growth factor receptor in fish embryos. Endocrinology, 142: 1090–1097]. In the present study, we demonstrate that the purified goat and chicken liver receptors bind human IGF-II by employing cross-linking experiments (purified receptors and radiolabeled IGF-II) and by ligand blotting (using purified receptors and biotinylated IGF-II). Further CEF cells (chicken embryonic fibroblasts) that are known to contain the putative MPR 300 protein were employed to demonstrate that the CEF cell receptor binds human IGF-II.  相似文献   

2.
Two mannose 6-phosphate receptors (MPR 300 and MPR 46) are involved in transport of lysosomal enzymes. Both receptors are expressed in all mammalian species studied so far and in chicken. Here we present the first report on affinity purification of both MPRs from the liver tissues of reptiles and amphibians using Sepharose divinyl sulfone phosphomannan at pH 7.0. MPR 300 from both species show similar electrophoretic mobility as mammalian MPR 300 and cross-react with an antibody directed against MPR 300 from goat liver. Furthermore, MPR 46 from reptilian liver and amphibian oocytes cross-react with peptide-specific antibodies against the cytoplasmic domain of human MPR 46 (anti-MSC1).  相似文献   

3.
4.
Mammalian mannose 6-phosphate receptors (MPR 300 and 46) mediate transport of lysosomal enzymes to lysosomes. Recent studies established that the receptors are conserved throughout vertebrates. Although we purified the mollusc receptors and identified only a lysosomal enzyme receptor protein (LERP) in the Drosophila melanogaster, little is known about their structure and functional roles in the invertebrates. In the present study, we purified the putative receptors from the highly evolved invertebrate, starfish, cloned the cDNA for the MPR 46, and expressed it in mpr(−/−) mouse embryonic fibroblast cells. Structural comparison of starfish receptor sequences with other vertebrate receptors gave valuable information on its extensive structural homology with the vertebrate MPR 46 proteins. The expressed protein efficiently sorts lysosomal enzymes within the cells establishing a functional role for this protein. This first report on the invertebrate MPR 46 further confirms the structural and functional conservation of the receptor not only in the vertebrates but also in the invertebrates.  相似文献   

5.
6.
The Mannose 6-phosphate receptor (MPR’s) proteins are important for transporting lysosomal enzymes from trans-golgi to the pre-lysosomal compartment. These are conserved in the vertebrates from fish to mammals. We have cloned the full length cDNA for the goat MPR 46 protein and compared its sequences to the other known vertebrate MPR 46 proteins. In the present study the full-length cDNA for the goat MPR 46 protein was expressed in MPR deficient cells. The expressed protein was purified on the multivalent phosphomannan gel in the presence of divalent metal ions. The apparent molecular mass of the expressed protein was found to be ∼46 kDa and also exhibits oligomeric nature as observed in the other species, by using an MSC1 antibody (that recognizes the MPR 46 from molluscs to mammals) as well as with a peptide specific antibody corresponding to amino acid residues (218–237) of the cytoplasmic tail of human MPR 46 protein. Furthermore the distribution of the expressed protein was visualized by immunofluorescence using MSC1 and LAMP1 antibody. Additionally in the goat MPR 46 expressing cells, the sorting function of the expressed protein to sort cathepsin D to lysosomes was studied by confocal microscopy using cathepsin D antiserum and LAMP1 antibody. The binding of goat MPR 46 to cathepsin D was shown in far Western blotting and the mannose 6-phosphate dependent binding was shown by co-immunoprecipitation.  相似文献   

7.
Mannose 6-phosphate receptor (MPR 300) protein was earlier affinity purified on phosphomannan gel from the membrane extracts of whole animal acetone powder of a mollusc, unio, in the presence of EDTA (Udaya Lakshmi, Y., Radha, Y., Hille-Rehfeld, A., von Figura, K., and Siva Kumar, N. (1999) Biosci. Rep. 19:403–409). In the present study we demonstrate that the unio also contains the putative mannose 6-phosphate receptor (MPR 46) that can be purified on the same gel in presence of divalent metal ions (10 mM each of calcium, manganese, and magnesium), and in the absence of sodium chloride and at pH 6.5. Chicken and Fish cell MPR 46 proteins were purified under these conditions (Siva Kumar, N., Udaya Lakshmi, Y., Hille-Rehfeld, A., and von Figura, K. (1999) Comp. Biochem. & Physiol. 123B:261–265). The authenticity of the receptor is further confirmed by its ability to react with the MSC1 antibody that is specific for MPR 46 protein. Additional evidence for the presence of MPR 46 in molluscs could be obtained by metabolic labeling of mollusc cells Biomphalaria glabrata (Bg cells) with [35S] methionine and cysteine, and passing the labeled membrane extract on phosphomannan gel (at pH 6.5 and 7.0). On elution with mannose 6-phosphate, followed by immunoprecipitation of the column fractions, we identified the putative MPR 46 protein in the Bg cells. When Bg cell MPR 46 was deglycosylated along with chicken MPR 46 (control) both species yielded a single polypeptide corresponding to molecular mass of 26 kDa, suggesting that both contain the same receptor protein.  相似文献   

8.
3-Methyladenine (3-MA), a well-known inhibitor of autophagic sequestration, can also prevent class III phosphatidylinositide (PI) 3-kinase activity, which is required for many processes in endosomal membrane trafficking. Although much is known about the effects of other PI 3-kinase inhibitors, such as wortmannin and LY294002, on endosomal membrane trafficking, little is known about those of 3-MA. Here we show that the treatment of cells with 3-MA results in a specific redistribution of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (MPR300) from the trans-Golgi network (TGN) to early/recycling endosomal compartments containing internalized transferrin. Importantly, in contrast to wortmannin and LY294002, 3-MA did not cause the enlargement of late endosomal/lysosomal compartments. The results suggest that the effect of 3-MA is restricted to the retrieval of MPR300 from early/recycling endosomes.  相似文献   

9.
The mammalian cation-independent mannose 6-phosphate/insulin-like growth factor (IGF)-II receptor binds IGF-II with high affinity. Ligands transported by the MPR 300/IGF-IIR include IGF-II and mannose 6-phosphate-modified proteins. By targeting IGF-II to lysosomal degradation, it plays a key role in the maintenance of correct IGF-II levels in the circulation and in target tissues. Although, from our studies we found homologous receptor in calotes but its functional significance was not known. We present here the first report on the calotes MPR 300/IGF-IIR binds IGF-II with Kd of 12.02 nM; these findings provide new and strong evidence that MPR 300/IGF-IIR in Calotes versicolor binds IGFII with high affinity.  相似文献   

10.
11.
Mammalian mannose 6-phosphate receptors (MPR 300 and 46) are involved in the targeting of newly synthesized lysosomal enzymes and only MPR 300 also participates in the endocytosis of various exogenous ligands. The present study describes for the first time the MPR 300 dependent pathway of lysosomal enzyme sorting in the Biomphalaria glabrata embryonic (Bge) cells. Lysosomal enzymes (arylsulfatase A, β-hexosaminidase and α-fucosidase) were identified by their enzymatic activities and by immunoprecipitation with specific antisera. Exposure of Bge cells to unio MPR 300 antiserum resulted in a dramatic loss of MPR 300 protein with a shortened half life of ∼20 min as compared to control cells exposed to preimmune serum in which the half life of MPR 300 was of ∼13 h. Loss of receptor proteins resulted in a significant misrouting of newly synthesized lysosomal enzymes and their secretion in cell culture medium as demonstrated by immunoprecipitation. The ability of Bge cells to uptake and internalize labeled arylsulfatase A, β-hexosaminidase and α-fucosidase enzymes contained in cell secretion products also indicated the role of B. glabrata MPR 300 (CIMPR) protein in internalization and targeting of lysosomal enzymes. M6P dependent binding of lysosomal enzymes to MPR 300 was shown by confocal microscopy and coimmunoprecipitation experiments.  相似文献   

12.
Sun G  Zhao H  Kalyanaraman B  Dahms NM 《Glycobiology》2005,15(11):1136-1149
The 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) plays an essential role in the biogenesis of lysosomes by diverting newly synthesized mannose 6-phosphate (Man-6-P)-containing lysosomal enzymes from the secretory pathway to acidified endosomes. Previous crystallographic studies of the CD-MPR have identified 11 amino acids within its carbohydrate binding pocket. These residues were evaluated quantitatively by assaying the binding affinity of mutant receptors containing a single amino acid substitution toward a lysosomal enzyme. The results show that substitution of Gln-66, Arg-111, Glu-133, or Tyr-143 results in a >800-fold decrease in affinity, demonstrating these four amino acids are essential for carbohydrate recognition by the CD-MPR. Solution binding and surface plasmon resonance analyses demonstrated that the presence of Mn2+ enhanced the affinity of the CD-MPR for a lysosomal enzyme by 2- to 4-fold and increased the stoichiometry of the interaction between a heterogeneous population of a lysosomal enzyme and the receptor by approximately 3-fold. In contrast, substitution of Asp-103 results in a protein that no longer exhibits enhanced binding affinities or altered stoichiometry in the presence of cations, and electron spin resonance demonstrated that the D103S mutant exhibits a 6-fold lower affinity for Mn2+ than the wild-type receptor (Kd = 3.7 6 1.4 mM versus 0.6 6 0.1 mM). Chemical cross-linking revealed that Mn2+ influences the stoichiometry of interaction between the CD-MPR and lysosomal enzymes by increasing the oligomeric state of the receptor from dimer to higher order oligomers. Taken together, these studies provide the molecular basis for high affinity carbohydrate recognition by the CD-MPR. Furthermore, Asp-103 has been identified as the key residue which mediates the effects of divalent cations on the binding properties of the CD-MPR.  相似文献   

13.
Fructan is an important class of non-structural carbohydrates present in cool-season grasses. Sucrose: fructan 6-fructosyltransferase (6-SFT, EC 2.4.1.10), one of the enzymes thought to be involved in grass fructan biosynthesis, catalyzes the initiation and extension of 2,6-linked fructans.Myo-inositol is a central component in several metabolic pathways in higher plants.Myo-inositol 1-phosphate synthase (MIPS) (EC 5.5.1.4), the first enzyme in inositolde novo biosynthesis, catalyzes the formation ofmyo-inositol 1-phosphate (MIP) from glucose-6-phosphate. The expression of 6-SFT and MIPS genes is compared in barley (Hordeum vulgare L.) leaves under various conditions. In cool temperature treatments, both 6-SFT and MIPS mRNAs accumulate within two days and then decline after four days. Under warm temperatures and continuous illumination, the amount of 6-SFT and MIPS mRNA gradually accumulated in detached leaves and increased significantly by 8 h. In contrast, we observed no significant changes over time in attached (control) leaves. Treating detached leaves with glucose or sucrose in the dark resulted in accumulations of both 6-SFT and MIPS mRNA. Homologous expression patterns for 6-SFT and MIPS genes suggest that they may be similarly regulated in barley leaves. Although sucrose and glucose may play important roles in the expression of 6-SFT and MIPS genes, regulation likely involves multiple factors.  相似文献   

14.
Mammalian alpha-fucosidase (EC 3.2.1.51) is a lysosomal enzyme that catalyzes the removal of fucose residues from glycosphingolipids and its absence in humans results in a rare metabolic disorder called fucosidosis. Among the invertebrates in the molluscs (Unio) two forms of the enzyme have been reported, a 68 kDa non-glycosylated form and a 56 kDa glycosylated form. The glycosylated form has been purified from the seminal fluid of Unio [Biochem. Biophys. Res. Commun. 234 (1997) 54]. In the present study, the 56 kDa glycosylated form has been purified to homogeneity from the whole body tissue of Unio using a series of chromatographic steps. The purified enzyme migrated as a single protein species in 10% SDS-PAGE. Antibodies to the purified enzyme were raised in a rabbit in order to study its biochemical and immunological properties. The purified enzyme is a glycoprotein that exhibits strong binding to Con A-Sepharose gel and can be deglycosylated by PNGase F enzyme suggesting it to be N-glycosylated. The enzyme has been shown to specifically interact with the mannose 6-phosphate receptor protein (MPR 300) purified from goat and Unio. This specific interaction is discussed in view of its possible in vivo binding partners.  相似文献   

15.
F. D. Macdonald  J. Preiss 《Planta》1986,167(2):240-245
The cytoplasm was identified as the probable location of pyrophosphate-fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90) in suspension-cultured cells of soybean (Glycine max L.). The characteristics of the partially purified enzyme were investigated. The activity was strongly dependent on the presence of fructose 2,6-bisphosphate and this activator exerted its effects through a dramatic increase in the affinity of the enzyme for its substrates, fructose 6-phosphate and inorganic pyrophosphate. Saturation curves for all substrates were hyperbolic. The apparent molecular weight of the partially purified enzyme was 183000 by gel filtration chromatography and 128000 by sucrose-density-gradient centrifugation. The activation by fructose 2,6-bisphosphate was not accompanied by any measurable change in molecular weight. The possible role of this enzyme in the metabolism of non-photosynthetic sink tissues is discussed.Abbreviations PFP pyrophosphate-fructose-6-phosphate 1-phosphotransferase - Pi phosphate - PPi pyrophosphate  相似文献   

16.
Two different glyceraldehyde-3-phosphate (G3P) dehydrogenase (phosphorylating) activities, namely NAD- and NADP-dependent, have been found in cell extracts of the cyanelle-bearing photosynthetic protist Cyanophora paradoxa. Whereas the two G3P dehydrogenase activities were detected with similar specific activity levels (0.1 to 0.2 U/mg of protein) in extracts of the photosynthetic organelles (cyanelles), only the NAD-dependent activity was found in the cytosol. Thus, a differential intracellular localization occurred. The perfect overlapping of the two G3P dehydrogenase activity peaks of the cyanelle in both hydrophobic interaction chromatography and subsequent FPLC (fast protein liquid chromatography) gel filtration indicated that the two activities were due in fact to a single NAD(P)-dependent G3P dehydrogenase (EC 1.2.1.-) with a molecular mass of 148,000. SDS-PAGE of active fractions from FPLC gel filtration showed that the intensity of the major protein band (molecular mass, 38,000) of the enzyme preparation clearly paralleled the activity elution profile, thus suggesting a tetrameric structure for the cyanelle dehydrogenase. On the other hand, FPLC gel filtration analysis of the cytoplasmic fraction revealed a NAD-dependent G3P dehydrogenase with a native molecular mass of 142,000, being equivalent to the classical glycolytic enzyme (EC 1.2.1.12) present in the cytosol of all the organisms so far studied. The significance of these results is discussed taking into account that the cyanobacteria, photosynthetic prokaryotes which share many structural and biochemical features with cyanelles and are considered as their ancestors, have a similar NAD(P)-dependent G3P dehydrogenase.Abbreviation FPLC Fast protein liquid chromatography  相似文献   

17.
Rapid assessment of structural relationships between yeast glucose-6-phosphate dehydrogenases and other eukaryotic types of this enzyme is described. Separation and size estimation of large fragments by sodium dodecylsulfate/polyacrylamide gel electrophoresis, electroblotting onto disks, and sequencer analysis provide data that permit alignment of the segments thus characterized with the related proteins, and utilize existing structural knowledge to assess new enzyme structures. Affinity labeling allows further correlations. The results establish the overall structural arrangements of the new proteins, including the location of the active-site lysine residue, even though the yeast enzyme structures are found to differ markedly from the few previously characterized glucose-6-phosphate dehydrogenases.  相似文献   

18.
The glucose-6-phosphate dehydrogenase (EC 1.1.1.49) gene (zwf) of the cyanobacterium Synechococcus PCC 7942 was cloned on a 2.8 kb Hind III fragment. Sequence analysis revealed an ORF of 1572 nucleotides encoding a polypeptide of 524 amino acids which exhibited 41% identity with the glucose-6-phosphate dehydrogenase of Escherichia coli.  相似文献   

19.
6-磷酸葡萄糖脱氢酶催化6-磷酸葡萄糖生成6-磷酸葡萄糖酸,并生成NADPH,是微生物胞内磷酸戊糖途径(PPP)的关键酶。本研究以食品安全菌米曲霉CICC2012为材料,克隆获得6-磷酸葡萄糖脱氢酶基因(GenBank登录号:JN123468)。序列分析表明,该酶是由222个氨基酸组成的亲水性蛋白;128~134位氨基酸序列DHYLGKE为活性区域;170~176位氨基酸序列GTEGRGG可能为辅因子结合位点。进化树分析表明,米曲霉6-磷酸葡萄糖脱氢酶同其他丝状真菌及酵母的G6PDH较相似。  相似文献   

20.
The aim of this work was to examine the role of sucrose-6-phosphate phosphatase (SPP; EC 3.1.3.24) in photosynthetic carbon partitioning. SPP catalyzes the final step in the pathway of sucrose synthesis; however, until now the importance of this enzyme in plants has not been studied by reversed-genetics approaches. With the intention of conducting such a study, transgenic tobacco plants with reduced SPP levels were produced using an RNA interference (RNAi) strategy. Transformants with less than 10% of wild-type SPP activity displayed a range of phenotypes, including those that showed inhibition of photosynthesis, chlorosis, and reduced growth rates. These plants had strongly reduced levels of sucrose and hexoses but contained 3–5 times more starch than the control specimens. The leaves were unable to export transient starch during extended periods of darkness and as consequence showed a starch- and maltose-excess phenotype. This indicates that no alternative mechanism for carbon export was activated. Inhibition of SPP resulted in an approximately 1,000-fold higher accumulation of sucrose-6-phosphate (Suc6P) compared to wild-type leaves, whereas the content of hexose-phosphates was reduced. Although the massive accumulation of Suc6P in the cytosol of transgenic leaves was assumed to impair phosphate-recycling into the chloroplast, no obvious signs of phosphate-limitation of photosynthesis became apparent. 3-Phosphoglycerate (3-PGA) levels dropped slightly and the ATP/ADP ratio was not reduced in the transgenic lines under investigation. It is proposed that in SPP-deficient plants, long-term compensatory responses give rise to the observed acceleration of starch synthesis, increase in total cellular Pi content, decrease in protein content, and related reduction in photosynthetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号