首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coevolution has been hypothesized as the main driving force for the remarkable diversity of insect-plant associations. Dating of insect and plant phylogenies allows us to test coevolutionary hypotheses and distinguish between the contemporaneous radiation of interacting lineages vs. insect 'host tracking' of previously diversified plants. Here, we used nuclear DNA to reconstruct a molecular phylogeny for 100 species of Phyllonorycter leaf-mining moths and 36 outgroup taxa. Ages for nodes in the moth phylogeny were estimated using a combination of a penalized likelihood method and a Bayesian approach, which takes into account phylogenetic uncertainty. To convert the relative ages of the moths into dates, we used an absolute calibration point from the fossil record. The age estimates of (a selection of) moth clades were then compared with fossil-based age estimates of their host plants. Our results show that the principal radiation of Phyllonorycter leaf-mining moths occurred well after the main radiation of their host plants and may represent the dominant associational mode in the fossil record.  相似文献   

2.
Abstract— As the only direct evidence of past organismic history, the fossil record has always figured importantly in the reconstruction of phylogeny. But the incomplete nature of the fossil record has also been cited as a basis for claiming that fossils play only a secondary role in developing phylogenetic hypotheses that encompass extant taxa. The reliability of fossil data in such applications is a function of the degree of fit between superpositional relationships and the sequence of phylogenetic events. Thirty-eight vertebrate cases are examined for the fit between age data based on fossil first occurrences and phylogenetic results based on cladistic analysis. A general correspondence between superpositional and cladistic information is observed, although the degree of fit varies widely among cases. Horses, certain other ungulates, synapsids and basal archosaurs, which show very high correlations, are taxa characterized by an abundance of superpositional and cladistic data. Other groups, such as primates, show very poor correlations because certain major clades have either unreasonably short fossil durations or no fossil record at all. Correlations are also diminished when either fossil records or cladistic sequences are poorly resolved. In most cases, cladistic resolution was observed to exceed superpositional resolution. Correlations can be enhanced by more precise (e.g. radiometric) age dates, but these also place a high expectation on the fit between fossil first occurrence and cladistic results. Stratigraphic occurrence does not always provide a precise reflection of independently derived phylogenies, but the correspondence between age and cladistic information is remarkably high in a notable number of vertebrate examples.  相似文献   

3.
Fossil carpoids possess a unique anatomy that is difficult to interpret; as a result, there are a number of competing phylogenetic hypotheses for carpoid taxa. Stratigraphic congruence indices provide a quantitative means of evaluating alternative cladograms where character coding is contentious; trees that show a statistically significant fit between stratigraphy and phylogeny are better supported by the fossil record. We here test the agreement between stratigraphic and cladistic data for 27 carpoid cladograms (24 have previously been published, three are novel). The results demonstrate that in analyses of subsets of carpoid taxa, the stratigraphic congruence of trees is not strongly affected by the interpretative model followed. However, when studying the relationships of carpoids with other deuterostomes, assuming that carpoids should be interpreted by reference to chordates/hemichordates (rather than echinoderms) leads to a poorer fit with the known stratigraphic ranges of taxa. Thus, the disputed calcichordate hypothesis (carpoids interpreted as stem and crown-group chordates and stem-group hemichordates) is much less congruent with stratigraphy than alternative models interpreting carpoids as stem or crown-group echinoderms.  相似文献   

4.
Comments on the Manhattan Stratigraphic Measure   总被引:1,自引:0,他引:1  
The Manhattan stratigraphic measure was proposed as a measure of congruence between temporal information retrieved from the fossil record and a phylogenetic hypothesis. This index is based on the fit of a Sankoff character representing the stratigraphic ages of terminal taxa and is calculated in a way analogous to the consistency index. Sample cases are analyzed in which this measure is insensitive to increasing amounts of conflict between stratigraphic and topological temporal information. A simple modification of the step matrix upon which the measure is based is proposed. The modified index, MSM*, overcomes the observed problem and is based on the measurement of the number and extent of ghost lineages.  相似文献   

5.
The stratigraphic record of first appearances provides an independent source of data for evaluating and comparing phylogenetic hypotheses that include taxa with fossil histories. However, no standardized method exists for calculating these metrics for polytomous phylogenies, restricting their applicability. Previously proposed methods insufficiently deal with this problem because they skew or restrict the resulting scores. To resolve this issue, we propose a standardized method for treating polytomies when calculating these metrics: the Comprehensive Polytomy approach (ComPoly). This approach accurately describes how phylogenetic uncertainty, indicated by polytomies, affects stratigraphic consistency scores. We also present a new program suite (Assistance with Stratigraphic Consistency Calculations) that incorporates the ComPoly approach and simplifies the calculation of absolute temporal stratigraphic consistency metrics. This study also demonstrates that stratigraphic consistency scores calculated from strict consensus trees can be overly inclusive and those calculated from less‐than‐strict consensus trees inaccurately describe the phylogenetic signal present in the source most‐parsimonious trees (MPTs). Therefore, stratigraphic consistency scores should be calculated directly from the source MPTs whenever possible to ensure their accuracy. Finally, we offer recommendations for standardizing comparisons between molecular divergence dates and the stratigraphic record of first appearances, a promising new application of these methods. © The Willi Hennig Society 2010.  相似文献   

6.
Molecular estimates of the age of angiosperms have varied widely, and many greatly predate the Early Cretaceous appearance of angiosperms in the fossil record, but there have been few attempts to assess confidence limits on ages. Experiments with rbcL and 18S data using maximum likelihood suggest that previous angiosperm age estimates were too old because they assumed equal rates across sites-use of a gamma distribution of rates to correct for site-to-site variation gives 10-30 my (million years) younger ages-and relied on herbaceous angiosperm taxa with high rates of molecular evolution. Ages based on first and second codon positions of rbcL are markedly older than those based on third positions, which conflict with the fossil record in being too young, but all examined data partitions of rbcL and 18S depart substantially from a molecular clock. Age estimates are surprisingly insensitive to different views on seed-plant relationships. Randomization schemes were used to quantify confidence intervals due to phylogenetic uncertainty, substitutional noise, and lineage effects (deviations from a molecular clock). Estimates of the age of crown-group angiosperms range from 68 to 281 mya (million years ago), depending on data, tree, and assumptions, with most ~140-190 mya (Early Jurassic-earliest Cretaceous). Approximate 95% confidence intervals on ages are wider for rbcL than 18S, ranging up to 160 my for phylogenetic uncertainty, 90 my for substitutional noise, and 70 my for lineage effects. These intervals overlap the oldest occurrences of angiosperms in the fossil record, as well as some estimates from previous molecular studies.  相似文献   

7.
Cladistic analysis strongly depends on accurate character choice. Usually, characters include morphology or molecules, but other sources of evidence are also employed. These include stratigraphic ages of taxa and behavioural data. The inclusion of time is a controversial issue, which has no Darwinian basis. However, the cladistic treatment of stratigraphic age has the potential to resolve problematic phylogenies. Here, it is proposed that the use of stratigraphic data in phylogenetic inference should be seen as a temporary shortcut, to resolve complex phylogenies in the wait for new character and taxonomic samplings, because phylogenetic hypotheses should be based on biological evidence only. Archaeologists working on toolmaking can provide behavioural data in human prehistory. In fact, while a tool itself is not biological evidence, the movements of hands and arms needed to prepare it are biological evidence and can be compared and scored for cladistic analysis. Such an approach has been formalized in studies on functional morphology of some vertebrates. The taxonomic data set to be used in cladistic analysis should include as many taxa as possible, and also very incomplete specimens should be used. In many cases, incomplete specimens had the potential to resolve complex phylogenies by adding new character combinations that cannot be scored in molecule-based phylogenetic studies.  相似文献   

8.
The selection of fossil data to use as calibration age priors in molecular divergence time estimates inherently links neontological methods with paleontological theory. However, few neontological studies have taken into account the possibility of a taphonomic bias in the fossil record when developing approaches to fossil calibration selection. The Sppil-Rongis effect may bias the first appearance of a lineage toward the recent causing most objective calibration selection approaches to erroneously exclude appropriate calibrations or to incorporate multiple calibrations that are too young to accurately represent the divergence times of target lineages. Using turtles as a case study, we develop a Bayesian extension to the fossil selection approach developed by Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibrations points. Am. Nat. 171:726-742) that takes into account this taphonomic bias. Our method has the advantage of identifying calibrations that may bias age estimates to be too recent while incorporating uncertainty in phylogenetic parameter estimates such as tree topology and branch lengths. Additionally, this method is easily adapted to assess the consistency of potential calibrations to any one calibration in the candidate pool.  相似文献   

9.
Because phylogenies can be estimated without stratigraphic data and because estimated phylogenies also infer gaps in sampling, some workers have used phylogeny estimates as templates for evaluating sampling from the fossil record and for "correcting" historical diversity patterns. However, it is not known how sampling intensity (the probability of sampling taxa per unit time) and completeness (the proportion of taxa sampled) affect the accuracy of phylogenetic inferences, nor how phylogenetically inferred estimates of sampling and diversity respond to inaccurate estimates of phylogeny. Both issues are addressed with a series of simulations using simple models of character evolution, varying speciation patterns, and various rates of speciation, extinction, character change, and preservation. Parsimony estimates of simulated phylogenies become less accurate as sampling decreases, and inaccurate trees chronically underestimate sampling. Biotic factors such as rates of morphologic change and extinction both affect the accuracy of phylogenetic estimates and thus affect estimated gaps in sampling, indicating that differences in implied sampling need not reflect actual differences in sampling. Errors in inferred diversity are concentrated early in the history of a clade. This, coupled with failure to account for true extinction times (i.e., the Signor-Lipps effect), inflates relative diversity levels early in clade histories. Because factors other than differences in sampling predict differences in the numbers of gaps implied by phylogeny estimates, inferred phylogenies can be misleading templates for evaluating sampling or historical diversity patterns.  相似文献   

10.
Methods improving the performance of molecular dating of divergence time of clades have improved dramatically in recent years. The calibration of molecular dating using the first appearance of a clade in the fossil record is a crucial step towards inferring the minimal diversification time of various groups and the choice of extinct taxa can strongly influence the molecular dates. Here, we evaluate the uncertainty on the phylogenetic position of extinct taxa through non‐parametric bootstrapping. The recognition of phylogenetic uncertainty resulted in the definition of the Bootstrap Uncertainty Range (BUR) for the age of first appearance of a given clade. The BUR is calculated as the interval of geological time in which the diversification of a given clade can be inferred to have occurred, based on the temporal information of the fossil record and the topologies of the bootstrap trees. Divergence times based on BUR analyses were calculated for three clades of turtles: Testudines, Pleurodira and Cryptodira. This resulted in extensive uncertainty ranges of topology‐dependent minimal divergence dates for these clades.  相似文献   

11.
Three measures intended to assess the fit of stratigraphic age to the fossil record have been suggested previously: the Spearman Rank Correlation (SRC), the Stratigraphic Consistency Index (SCI) and the Relative Completeness Index (RCI). The original formulation of SRC is intractable to all but pectinate trees and the corrective pruning procedure that circumvents this precludes whole-tree estimates of fit. SCI, though it has been claimed otherwise, is strongly biased by tree shape, particularly as one adds more information. RCI is a measure of the amount of gap in the fossil record but has awkward consequences for evolutionary biology when it is maximized. A new approach, the Manhattan Stratigraphic Measure, uses the Manhattan distance between stratigraphic ages to determine fit to a tree. It is not biased by tree shape, it is sensitive to the magnitude of age discrepancy and there is an obvious significance test.  相似文献   

12.
An understanding of the evolution of modern terrestrial ecosystems requires an understanding of the dynamics associated with angiosperm evolution, including the timing of their origin and diversification into their extraordinary present-day diversity. Molecular estimates of angiosperm age have varied widely, and many substantially predate the Early Cretaceous fossil appearance of the group. In this study, the effect of different genes, codon positions, and chronological constraints on node ages are examined on divergence time estimates across seed plants, with a special focus on angiosperms. Penalized likelihood was used to estimate divergence times on a phylogenetic hypothesis for seed plants derived from Bayesian analysis, with branch lengths estimated with maximum likelihood. The plastid genes atpB, psaA, psbB, and rbcL were used individually and in combination, using first and second, third, and the three codon positions, including and excluding age constraints on 20 nodes derived from a critical examination of the land-plant fossil record. The optimal level of rate smoothing according to each unconstrained and constrained dataset was obtained with penalized likelihood. Tests for a molecular clock revealed significantly unclocklike rates in all datasets. Addition of fossil constraints resulted in even greater departures from constancy. Consistently with significant deviations from a clock, estimated optimal smoothing values were low, but a strict correlation between rate heterogeneity and optimal smoothing value was not found. Age estimates for nodes across the phylogeny varied, sometimes substantially, with gene and codon position. Nevertheless, estimates based on the four concatenated genes are very similar to the mean of the four individual gene estimates. For any given node, unconstrained age estimates are more variable than constrained estimates and are frequently younger than well-substantiated fossil members of the clade. Constrained estimates of ages of clades are older than unconstrained estimates and oldest fossil representatives, sometimes substantially so. Angiosperm age estimates decreased as rate smoothing increased. Whereas the range of unconstrained angiosperm age estimates spans the fossil age of the clade, the range of constrained estimates is narrower (and older) than the earliest angiosperm fossils. Results unambiguously indicate the relevance of constraints in reducing the variability of ages derived from different partitions of the data and diminishing the effect of the smoothing parameter. Constrained optimizations of divergence times and substitution rates across the phylogeny suggest appreciably different evolutionary dynamics for angiosperms and for gymnosperms. Whereas the gymnosperm crown group originated shortly after the origin of seed plants, a long time elapsed before the origin of crown group angiosperms. Although absolute age estimates of angiosperms and angiosperm clades are older than their earliest fossils, the estimated pace of phylogenetic diversification largely agrees with the rapid appearance of angiosperm lineages in stratigraphic sequences.  相似文献   

13.
Were molecular data available for extinct taxa, questions regarding the origins of many groups could be settled in short order. As this is not the case, various strategies have been proposed to combine paleontological and neontological data sets. The use of fossil dates as node age calibrations for divergence time estimation from molecular phylogenies is commonplace. In addition, simulations suggest that the addition of morphological data from extinct taxa may improve phylogenetic estimation when combined with molecular data for extant species, and some studies have merged morphological and molecular data to estimate combined evidence phylogenies containing both extinct and extant taxa. However, few, if any, studies have attempted to estimate divergence times using phylogenies containing both fossil and living taxa sampled for both molecular and morphological data. Here, I infer both the phylogeny and the time of origin for Lissamphibia and a number of stem tetrapods using Bayesian methods based on a data set containing morphological data for extinct taxa, molecular data for extant taxa, and molecular and morphological data for a subset of extant taxa. The results suggest that Lissamphibia is monophyletic, nested within Lepospondyli, and originated in the late Carboniferous at the earliest. This research illustrates potential pitfalls for the use of fossils as post hoc age constraints on internal nodes and highlights the importance of explicit phylogenetic analysis of extinct taxa. These results suggest that the application of fossils as minima or maxima on molecular phylogenies should be supplemented or supplanted by combined evidence analyses whenever possible.  相似文献   

14.

Background

Caviidae is a diverse group of caviomorph rodents that is broadly distributed in South America and is divided into three highly divergent extant lineages: Caviinae (cavies), Dolichotinae (maras), and Hydrochoerinae (capybaras). The fossil record of Caviidae is only abundant and diverse since the late Miocene. Caviids belongs to Cavioidea sensu stricto (Cavioidea s.s.) that also includes a diverse assemblage of extinct taxa recorded from the late Oligocene to the middle Miocene of South America (“eocardiids”).

Results

A phylogenetic analysis combining morphological and molecular data is presented here, evaluating the time of diversification of selected nodes based on the calibration of phylogenetic trees with fossil taxa and the use of relaxed molecular clocks. This analysis reveals three major phases of diversification in the evolutionary history of Cavioidea s.s. The first two phases involve two successive radiations of extinct lineages that occurred during the late Oligocene and the early Miocene. The third phase consists of the diversification of Caviidae. The initial split of caviids is dated as middle Miocene by the fossil record. This date falls within the 95% higher probability distribution estimated by the relaxed Bayesian molecular clock, although the mean age estimate ages are 3.5 to 7 Myr older. The initial split of caviids is followed by an obscure period of poor fossil record (refered here as the Mayoan gap) and then by the appearance of highly differentiated modern lineages of caviids, which evidentially occurred at the late Miocene as indicated by both the fossil record and molecular clock estimates.

Conclusions

The integrated approach used here allowed us identifying the agreements and discrepancies of the fossil record and molecular clock estimates on the timing of the major events in cavioid evolution, revealing evolutionary patterns that would not have been possible to gather using only molecular or paleontological data alone.  相似文献   

15.
Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates.  相似文献   

16.
Fossils, molecules, divergence times, and the origin of lissamphibians   总被引:6,自引:0,他引:6  
A review of the paleontological literature shows that the early dates of appearance of Lissamphibia recently inferred from molecular data do not favor an origin of extant amphibians from temnospondyls, contrary to recent claims. A supertree is assembled using new Mesquite modules that allow extinct taxa to be incorporated into a time-calibrated phylogeny with a user-defined geological time scale. The supertree incorporates 223 extinct species of lissamphibians and has a highly significant stratigraphic fit. Some divergences can even be dated with sufficient precision to serve as calibration points in molecular divergence date analyses. Fourteen combinations of minimal branch length settings and 10 random resolutions for each polytomy give much more recent minimal origination times of lissamphibian taxa than recent studies based on a phylogenetic analyses of molecular sequences. Attempts to replicate recent molecular date estimates show that these estimates depend strongly on the choice of calibration points, on the dating method, and on the chosen model of evolution; for instance, the estimate for the date of the origin of Lissamphibia can lie between 351 and 266 Mya. This range of values is generally compatible with our time-calibrated supertree and indicates that there is no unbridgeable gap between dates obtained using the fossil record and those using molecular evidence, contrary to previous suggestions.  相似文献   

17.
Fossil tip‐dating allows for the inclusion of morphological data in divergence time estimates based on both extant and extinct taxa. Neoselachii have a cartilaginous skeleton, which is less prone to fossilization compared to skeletons of Osteichthyans. Therefore, the majority of the neoselachian fossil record is comprised of single teeth, which fossilize more easily. Neoselachian teeth can be found in large numbers as they are continuously replaced. Tooth morphologies are of major importance on multiple taxonomic levels for identification of shark and ray taxa. Here, we review dental morphological characters of squalomorph sharks and test these for their phylogenetic signal. Subsequently, we combine DNA sequence data (concatenated exon sequences) with dental morphological characters from 85 fossil and extant taxa to simultaneously infer the phylogeny and re‐estimate divergence times using information of 61 fossil tip‐dates as well as eight node age calibrations of squalomorph sharks. Our findings show that the phylogenetic placement of fossil taxa is mostly in accordance with their previous taxonomic allocation. An exception is the phylogenetic placement of the extinct genus ?Protospinax , which remains unclear. We conclude that the high number of fossil taxa as well as the comprehensive DNA sequence data for extant taxa may compensate for the limited number of morphological characters identifiable on teeth, serving as a backbone for reliably estimating the phylogeny of both extinct and extant taxa. In general, tip‐dating mostly estimates older node ages compared to previous studies based on calibrated molecular clocks.  相似文献   

18.
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock'', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue ‘Dating species divergences using rocks and clocks’.  相似文献   

19.
Time‐calibrated phylogenies that contain only living species have been widely used to study the dynamics of speciation and extinction. Concerns about the reliability of phylogenetic extinction estimates were raised by Rabosky (2010), where I suggested that unaccommodated heterogeneity in speciation rate could lead to positively biased extinction estimates. In a recent article, Beaulieu and O'Meara (2015a) correctly point out several technical errors in the execution of my 2010 study and concluded that phylogenetic extinction estimates are robust to speciation rate heterogeneity under a range of model parameters. I demonstrate that Beaulieu and O'Meara underestimated the magnitude of speciation rate variation in real phylogenies and consequently did not incorporate biologically meaningful levels of rate heterogeneity into their simulations. Using parameter values drawn from the recent literature, I find that modest levels of heterogeneity in speciation rate result in a consistent, positive bias in extinction estimates that are exacerbated by phylogenetic tree size. This bias, combined with the inherent lack of information about extinction in molecular phylogenies, suggests that extinction rate estimates from phylogenies of extant taxa only should be treated with caution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号