首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secretion of beta-lactamase requires the carboxy end of the protein   总被引:67,自引:0,他引:67  
D Koshland  D Botstein 《Cell》1980,20(3):749-760
Synthesis and secretion of beta-lactamase were studied in Salmonella typhimurium infected with P22 phage carrying the structural gene for beta-lactamase (the bla gene) in mutant or wild-type form. The wild-type gene was shown to specify two forms of beta-lactamase which differ in molecular weight by about 2500 daltons. This difference is consistent with removal, predicted on other grounds, of 23 amino-terminal residues (the "signal" sequence). All bla- mutants, including chain-terminating mutants lacking as much as 50% or as little as 10% of the protein, were apparently unaffected in this processing step. Pulse-chase experiments showed that more than 85% of the wild-type (as well as mutant) proteins are synthesized as complete overlength precursors before being processed to their mature forms. Virtually all the mature wild-type protein appears in the periplasmic space whereas a large fraction of the precursor appears in the cytoplasm. In contrast, both the precursor and processed forms of beta-lactamase proteins synthesized by chain-terminating mutants (including one which lacks only 10% of its residues from the carboxy end) are not secreted and apparently remain soluble in the cytoplasm. These results show that the carboxy-terminal amino acid sequence (at least) of beta-lactamase is essential to successful transport across the cytoplasmic membrane, and suggest that the presence (and probably also the act of removal) of the signal sequence does not suffice to ensure secretion.  相似文献   

2.
The synthesis and export of aerolysin, an extracellular protein toxin released by the gram-negative bacterium Aeromonas hydrophila, was studied by pulse-labeling with [35S]methionine. The toxin was synthesized as a higher-molecular-weight precursor. This was processed cotranslationally, resulting in the appearance within the cell of the mature protein, which was then exported to the supernatant. Precursor aerolysin accumulated in cells incubated in the presence of carbonyl cyanide m-chlorophenyl hydrazone, a substance which also inhibited the export of mature aerolysin from the cell. The entrapped mature toxin could not be shocked from the cells, although it could be digested by protease applied to shocked cells. The toxin was processed and translocated across the inner membrane of pleiotropic export mutants and accumulated in the periplasm. The results indicate that more than one step is required for the export of the protein and that aerolysin does not cross the inner and outer membranes simultaneously.  相似文献   

3.
In previous investigations, we have examined the effect of OmpA signal peptide mutations on the secretion of the two heterologous proteins TEM beta-lactamase and nuclease A. During these studies, we observed that a given signal peptide mutation could affect differentially the processing of precursor OmpA-nuclease or precursor OmpA-lactamase. This observation led us to further investigate the influence of the mature region of a precursor protein on protein export. Preexisting OmpA signal peptide mutations of known secretion phenotype when directing heterologous protein export (nuclease A or beta-lactamase) were fused to the homologous mature OmpA protein. Four signal peptide mutations that have previously been shown to prevent export of nuclease A and beta-lactamase were found to support OmpA protein export, albeit at reduced rates. This remarkable retention of export activity by severely defective precursor OmpA signal peptide mutants may be due to the ability of mature OmpA to interact with the cytoplasmic membrane. In addition, these same signal peptide mutations can affect the level of OmpA synthesis as well as its proper assembly in the outer membrane of Escherichia coli. Two signal peptide mutations dramatically stimulate the rate of precursor OmpA synthesis three- to fivefold above the level observed when a wild-type signal peptide is directing export. The complete removal of the OmpA signal peptide does not result in increased OmpA synthesis. This finding suggests that the signal peptide mutations function positively to stimulate OmpA synthesis, rather than bypass a down-regulatory mechanism effected by a wild-type signal peptide. Overproduction of wild-type precursor OmpA or precursors containing signal peptide mutations which lead to relatively minor kinetic processing defects results in accumulation of an improperly assembled OmpA species (imp-OmpA). In contrast, signal peptide mutations which cause relatively severe processing defects accumulate no or only small quantities of imp-OmpA. All mutations result in equivalent levels of properly assembled OmpA. Thus, a strong correlation between imp-OmpA accumulation and cell toxicity was observed. A mutation in the mature region of OmpA which prevents the proper outer membrane assembly of OmpA was suppressed when export was directed by a severely defective signal peptide. These findings suggest that signal peptide mutations indirectly influence OmpA assembly in the outer membrane by altering both the level and rate of OmpA secretion across the cytoplasmic membrane.  相似文献   

4.
Mutations in the β-lactamase structural gene that alter the signal peptide were used to study secretion into the periplasm of Salmonella typhimurium. Processing and cellular location of mutant gene products were followed by pulse-chase and cell-fractionation experiments and by trypsin accessibility in intact and lysed spheroplasts. The precursor proteins examined never appear as a free species in the periplasm. Two of the signal-sequence mutants accumulate a precursor form that is trypsin-accessible in intact spheroplasts; the precursors synthesized by the remaining mutants resemble wild-type in that they remain trypsin-inaccessible. One of the latter mutants does produce mature protein, but at a very reduced rate. It thus appears that signal-sequence mutations can affect more than one step in the secretion process, and that processing of the signal peptide is not required for the protein to be translocated (at least partially) across the inner membrane.  相似文献   

5.
The lysis protein of the colicinogenic operon is essential for colicin release and its main function is to activate the outer membrane phospholipase A (OMPLA) for the traverse of colicin across the cell envelope. However, little is known about the involvement of the lysis protein in the translocation of colicin across the inner membrane into the periplasm. The introduction of specific point mutations into the lipobox or sorting signal sequence of the lysE7 gene resulted in the production of various forms of lysis proteins. Our experimental results indicated that cells with wild-type mature LysE7 protein exhibited higher efficiency of colicin E7 translocation across the inner membrane into the periplasm than those with premature LysE7 protein. Moreover, the degree of permeability of the inner membrane induced by the mature LysE7 protein was significantly increased as compared to the unmodified LysE7 precursor. These results suggest that the efficiency of colicin movement into the periplasm is correlated with the increase in inner membrane permeability induced by the LysE7 protein. Thus, we propose that mature LysE7 protein has two critical roles: firstly mediating the translocation of colicin E7 across the inner membrane into the periplasm, and secondly activating the OMPLA to allow colicin release.  相似文献   

6.
7.
Efficient in vivo translocation of the precursor of Escherichia coli outer membrane protein PhoE across the inner membrane is shown to depend on SecB protein. A set of mutants, carrying internal deletions in the phoE gene, was used to locate a possible SecB-binding site and/or a site that makes the protein dependent on SecB for export. Except for two small mutant PhoE proteins, the in vivo and in vitro translocation of all mutant proteins was more efficient in the presence of SecB. The interaction of SecB protein with wild-type and mutant PhoE proteins, synthesized in vitro, was further studied in co-immunoprecipitation experiments with anti-SecB protein serum. The efficiencies of co-immunoprecipitation of precursor and mature PhoE were very similar, indicating the absence of a SecB-binding site in the signal sequence. Moreover, all mutant proteins with deletions in the mature moiety of the PhoE protein were co-immunoprecipitated in these assays, albeit mostly with reduced efficiency. Taken together, these results indicate the existence of multiple SecB-binding sites in the mature portion of the PhoE protein.  相似文献   

8.
9.
Transport of iron(III) hydroxamates across the inner membrane ofEscherichia coli depends on a binding protein-dependent transport system composed of the FhuB,C and D proteins. The FhuD protein, which is synthesized as a precursor and exported through the cytoplasmic membrane, represents the periplasmic binding protein of the system, accepting as substrates a number of hydroxamate siderophores and the antibiotic albomycin. A FhuD derivative, carrying an N-terminal His-tag sequence instead of its signal sequence and therefore not exported through the inner membrane, was purified from the cytoplasm. Functional activity, comparable to that of wild-type FhuD, was demonstrated for this His-tag-FhuD in vitro by protease protection experiments in the presence of different substrates, and in vivo by reconstitution of iron transport in afhuD mutant strain. The experimental data demonstrate that the primary sequence of the portion corresponding to the mature FhuD contains all the information required for proper folding of the polypeptide chain into a functional solute-binding protein. Moreover, purification of modified periplasmic proteins from the cytosol may be a useful approach for recovery of many polypeptides which are normally exported across the inner membrane and can cause toxicity problems when overproduced.  相似文献   

10.
Certain beta-lactam antibiotics induce the chromosomal ampC beta-lactamase of many gram-negative bacteria. The natural inducer, though not yet unequivocally identified, is a cell wall breakdown product which enters the cell via the AmpG permease component of the murein recycling pathway. Surprisingly, it has been reported that beta-lactamase is not induced by cefoxitin in the absence of FtsZ, which is required for cell division, or in the absence of penicillin-binding protein 2 (PBP2), which is required for cell elongation. Since these results remain unexplained, we examined an ftsZ mutant and other cell division mutants (ftsA, ftsQ, and ftsI) and a PBP2 mutant for induction of beta-lactamase. In all mutants, beta-lactamase was not induced by cefoxitin, which confirms the initial reports. The murein precursor, UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-diaminopimelic acid-D-Ala-D-Ala (UDP-MurNAc-pentapeptide), has been shown to serve as a corepressor with AmpR to repress beta-lactamase expression in vitro. Our results suggest that beta-lactamase is not induced because the fts mutants contain a greatly increased amount of corepressor which the inducer cannot displace. In the PBP2(Ts) mutant, in addition to accumulation of corepressor, cell wall turnover and recycling were greatly reduced so that little or no inducer was available. Hence, in both cases, a high ratio of repressor to inducer presumably prevents induction.  相似文献   

11.
alpha-tectorin is an extracellular matrix molecule of the inner ear. Mice homozygous for a targeted deletion in a-tectorin have tectorial membranes that are detached from the cochlear epithelium and lack all noncollagenous matrix, but the architecture of the organ of Corti is otherwise normal. The basilar membranes of wild-type and alpha-tectorin mutant mice are tuned, but the alpha-tectorin mutants are 35 dB less sensitive. Basilar membrane responses of wild-type mice exhibit a second resonance, indicating that the tectorial membrane provides an inertial mass against which outer hair cells can exert forces. Cochlear microphonics recorded in alpha-tectorin mutants differ in both phase and symmetry relative to those of wild-type mice. Thus, the tectorial membrane ensures that outer hair cells can effectively respond to basilar membrane motion and that feedback is delivered with the appropriate gain and timing required for amplification.  相似文献   

12.
Signal sequence mutants of beta-lactamase   总被引:4,自引:0,他引:4  
The function of the NH2-terminal signal peptide in the translocation of beta-lactamase across the inner membrane of Escherichia coli has been studied by characterization of 15 signal sequence mutants. Three amino acid substitutions (Pro 20 to Ser, Pro 20 to Phe, and Cys 18 to Tyr) in the 23-amino acid signal sequence each cause, to varying degrees, a defect in the proteolytic processing of pre-beta-lactamase, abnormal growth of the host strain, and a severe reduction in the expression of beta-lactamase in vivo but not in vitro. The results are consistent with a model for protein secretion in E. coli that parallels the pathway proposed for translocation across the endoplasmic reticulum in eucaryotic cells.  相似文献   

13.
To determine which amino acids in TEM-1 beta-lactamase are important for its structure and function, random libraries were previously constructed which systematically randomized the 263 codons of the mature enzyme. A comprehensive screening of these libraries identified several TEM-1 beta-lactamase core positions, including F66 and L76, which are strictly required for wild-type levels of hydrolytic activity. An examination of positions 66 and 76 in the class A beta-lactamase gene family shows that a phenylalanine at position 66 is strongly conserved while position 76 varies considerably among other beta-lactamases. It is possible that position 76 varies in the gene family because beta-lactamase mutants with non-conservative substitutions at position 76 retain partial function. In contrast, position 66 may remain unchanged in the gene family because non-conservative substitutions at this location are detrimental for enzyme structure and function. By determining the beta-lactam resistance levels of the 38 possible mutants at positions 66 and 76 in the TEM-1 enzyme, it was confirmed that position 76 is indeed more tolerant of non-conservative substitutions. An analysis of the Protein Data Bank files for three class A beta-lactamases indicates that volume constraints at position 66 are at least partly responsible for the low tolerance of substitutions at this position.  相似文献   

14.
In Escherichia coli, three different types of proteins engage the SecY translocon of the inner bacterial membrane for translocation or insertion: 1) polytopic membrane proteins that prior to their insertion into the membrane are targeted to the translocon using the bacterial signal recognition particle (SRP) and its receptor; 2) secretory proteins that are targeted to and translocated across the SecY translocon in a SecA- and SecB-dependent reaction; and 3) membrane proteins with large periplasmic domains, requiring SRP for targeting and SecA for the translocation of the periplasmic moiety. In addition to its role as a targeting device for membrane proteins, a function of the bacterial SRP in the export of SecB-independent secretory proteins has also been postulated. In particular, beta-lactamase, a hydrolytic enzyme responsible for cleavage of the beta-lactam ring containing antibiotics, is considered to be recognized and targeted by SRP. To examine the role of the SRP pathway in beta-lactamase targeting and export, we performed a detailed in vitro analysis. Chemical cross-linking and membrane binding assays did not reveal any significant interaction between SRP and beta-lactamase nascent chains. More importantly, membrane vesicles prepared from mutants lacking a functional SRP pathway did block the integration of SRP-dependent membrane proteins but supported the export of beta-lactamase in the same way as that of the SRP-independent protein OmpA. These data demonstrate that in contrast to previous results, the bacterial SRP is not involved in the export of beta-lactamase and further suggest that secretory proteins of Gram-negative bacteria in general are not substrates of SRP.  相似文献   

15.
The rate of folding of the precursor of beta-lactamase is not influenced by the presence of SecB under conditions in which GroEL/ES retards the folding. Wild-type beta-lactamase and several mutants in the signal or the mature protein, affecting either transport or enzyme kinetics and probably folding, were examined for total expression, total enzymatic activity, and transported beta-lactamase (in vivo resistance) in secB- and secB+ strains. We conclude that there is no indication of any relevant interaction between SecB and pre-beta-lactamase in vitro, nor did the secB- mutation affect the transport of wild-type beta-lactamase or any of the mutant in vivo. Thus, putative Escherichia coli "folding modulators' must be of limited specificity.  相似文献   

16.
An expression system has been developed that allows high levels of production of TEM-1 beta-lactamase with ease of biosynthetic incorporation of nuclear isotopes. The gene for mature TEM-1 beta-lactamase fused to the leader sequence of the ompA protein was subcloned into the pET-24a(+) vector by introduction of an NdeI restriction site at the first codon of the fused genes and transformed into Escherichia coli BL21 (DE3) cells. With protein induction at 25 degrees C supported by LB medium supplemented with osmolytes (300 mM sucrose and 2.5 mM betaine), the extracellular, mature form of wild-type TEM-1 beta-lactamase was recovered at a level of 140 mg/L. The production level of E166N, E240C, E104C, and M272C mutants depended on the mutation but was invariably higher than reported by others for expression systems of the wild-type enzyme. Comparison of different carbon sources on the efficiency of biosynthetic incorporation of covalent deuterium showed maximal (90%) incorporation with minimal medium containing 99% (2)H(2)O and sodium d(3)-acetate (99 atom% (2)H). The yield of deuterium-enriched wild-type enzyme was 80 mg/L with yields for mutants proportionally reduced. The high level of protein deuteration achieved with this system allowed detection of the hyperfine coupling between the paramagnetic nitroxyl group of a spin-labeled penicillin substrate and hydrogens on the penicillin moiety in a cryokinetically isolated acylenzyme reaction intermediate because of the decrease in overlapping resonances of active site residues. The overexpression system is readily adaptable for other target proteins and facilitates studies requiring large quantities of protein in isotopically enriched forms.  相似文献   

17.
In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.  相似文献   

18.
Functional chvA and chvB genes are required for attachment of Agrobacterium tumefaciens to plant cells, an early step in crown gall tumor formation. Strains defective in these loci do not secrete normal amounts of cyclic beta-1,2-glucan. Whereas chvB is required for beta-1,2-glucan synthesis, the role of chvA in glucan synthesis or export has not been clearly defined. We found that cultures of chvA mutants contained as much neutral beta-1,2-glucan in the cell pellets as did the wild type, with no detectable accumulation of glucan in the culture supernatant. The cytoplasm of chvA mutant cells contained over three times more soluble beta-1,2-glucan than did the cytoplasm of the wild-type parent. Unlike the wild type, chvA mutants contained no detectable periplasmic glucan. The amino acid sequence of chvA is highly homologous to the sequences of bacterial and eucaryotic export proteins, as observed previously in the case of ndvA, a rhizobial homolog of chvA. Strong sequence homology within this family of export proteins is concentrated in the carboxy-terminal portions of the proteins, but placement of consensus ATP-binding sites, internal signal sequences, and hydrophobic domains are conserved over their entire lengths. These data suggest a model for beta-1,2-glucan synthesis in A. tumefaciens in which glucan is synthesized inside the inner membrane with the participation of ChvB and transported across the inner membrane with the participation of ChvA.  相似文献   

19.
Phosphatidylglycerol, the most abundant acidic phospholipid in Escherichia coli, is considered to play specific roles in various cellular processes that are essential for cell viability. A null mutation of pgsA, which encodes phosphatidylglycerophosphate synthase, does indeed confer lethality. However, pgsA null mutants are viable if they lack the major outer membrane lipoprotein (Lpp) (lpp mutant) (S. Kikuchi, I. Shibuya, and K. Matsumoto, J. Bacteriol. 182:371-376, 2000). Here we show that Lpp expressed from a plasmid causes cell lysis in a pgsA lpp double mutant. The envelopes of cells harvested just before lysis could not be separated into outer and inner membrane fractions by sucrose density gradient centrifugation. In contrast, expression of a mutant Lpp (LppdeltaK) lacking the COOH-terminal lysine residue (required for covalent linking to peptidoglycan) did not cause lysis and allowed for the clear separation of the outer and inner membranes. We propose that in pgsA mutants LppdeltaK could not be modified by the addition of a diacylglyceryl moiety normally provided by phosphatidylglycerol and that this defect caused unmodified LppdeltaK to accumulate in the inner membrane. Although LppdeltaK accumulation did not lead to lysis, the accumulation of unmodified wild-type Lpp apparently led to the covalent linking to peptidoglycan, causing the inner membrane to be anomalously anchored to peptidoglycan and eventually leading to lysis. We suggest that this anomalous anchoring largely explains a major portion of the nonviable phenotypes of pgsA null mutants.  相似文献   

20.
ureI encodes an inner membrane protein of Helicobacter pylori. The role of the bacterial inner membrane and UreI in acid protection and regulation of cytoplasmic urease activity in the gastric microorganism was studied. The irreversible inhibition of urease when the organism was exposed to a protonophore (3,3',4', 5-tetrachlorsalicylanide; TCS) at acidic pH showed that the inner membrane protected urease from acid. Isogenic ureI knockout mutants of several H. pylori strains were constructed by replacing the ureI gene of the urease gene cluster with a promoterless kanamycin resistance marker gene (kanR). Mutants carrying the modified ureAB-kanR-EFGH operon all showed wild-type levels of urease activity at neutral pH in vitro. The mutants resisted media of pH > 4.0 but not of pH < 4.0. Whereas wild-type bacteria showed high levels of urease activity below pH 4.0, this ability was not retained in the ureI mutants, resulting in inhibition of metabolism and cell death. Gene complementation experiments with plasmid-derived H. pylori ureI restored wild-type properties. The activation of urease activity found in structurally intact but permeabilized bacteria treated with 0.01% detergent (polyoxy-ethylene-8-laurylether; C12E8), suggested a membrane-limited access of urea to internal urease at neutral pH. Measurement of 14C-urea uptake into Xenopus oocytes injected with ureI cRNA showed acid activation of uptake only in injected oocytes. Acceleration of urea uptake by UreI therefore mediates the increase of intracellular urease activity seen under acidic conditions. This increase of urea permeability is essential for H. pylori survival in environments below pH 4.0. ureI-independent urease activity may be sufficient for maintenance of bacterial viability above pH 4.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号