首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human bone and cartilage specimens were evaluated for acid and alkaline phosphatase localization following varying fixation periods for fresh or frozen tissue. Formalin fixations of up to 183 hr were followed by embedment in methyl methacrylate; frozen tissue was examined either without fixation or following fixation for up to 1 hr and subsequent glycol or methyl methacrylate embedding. The humeral epiphysis of a young patient with osteogenic sarcoma showed optimum acid and alkaline phosphatase localization following fixation for periods up to 15 hr and embedding in methyl methacrylate. Frozen costochondral junction from a newborn with osteogenesis imperfecta type II showed optimum acid and alkaline phosphatase localization following 30 min fixation in formalin and embedding in methyl methacrylate or after 5 min fixation and embedding in glycol methacrylate.  相似文献   

2.
Summary Bone alkaline (AlP) and acid phosphatase (AcP) activities were simultaneusly demonstrated in tissue sections obtained from mice, rats, and humans. The method involved tissue fixation in ethanol, embedding in glycol methacrylate (GMA), and demonstration of AlP and AcP activities employing a simultaneous coupling azo dye technique using substituted naphthol phosphate as a substrate. AlP activity was demonstrated first followed by AcP activity. Both enzyme activities were demonstrated in tissue sections from bones fixed and/or stored in acetone or 70% ethanol for up to 14 days or stored in GMA for 2 months. AlP activity in tissue sections from bones fixed in 10% formalin, 2% glutaraldehyde, or formal-calcium, however, was markedly inhibited after 3–7 days and was no longer detectable after 14 days of fixation. Moreover, AlP activity was diminished in tissue sections from bones fixed in 70% ethanol or 10% formalin and subsequently demineralized in 10% EDTA (pH7) for 2 days, and the activity was completely abolished in tissue sections from bones subsequently demineralized in 5% formic acid: 20% sodium citrate (1:1, pH 4.2) for 2 days. Methyl methacrylate (MMA) embedding at concentrations above 66% completely inhibited AlP activity. AcP activity, however, was only partially inhibited by formalin, glutaraldehyde, or formal-calcium after 7 or 14 days of fixation or by MMA embedding and was unaffected by the demineralizing agent formic acid-citrate for 2 days. While AcP activity was preserved in bones fixed in formalin and subsequently demineralized in EDTA, the activity was completely abolished when EDTA demineralization was carried out on bones previously fixed in 70% ethanol. These results indicate that bone AlP and AcP activities can be demonstrated simultaneously in the same section using a simple tissue preparation technique and that the activities are retained in tissues fixed and/or stored in acetone, 70% ethanol or GMA, but are differentially inactivated by other fixatives studied, and by EDTA, formic acid-citrate, and MMA embedding.Abbreviations AcP acid phosphatase - AlP alkaline phosphatase - GMA glycol methacrylate - MMA methyl methacrylate - EDTA ethylenediaminetetraacetic acid  相似文献   

3.
Glycol methacrylate as an embedding medium for bone   总被引:5,自引:0,他引:5  
A simple and reliable procedure for embedding undecalcified trabecular bone tissue in noncommercial glycol methacrylate (GMA) has been developed. The embedding mixture includes a monomer, methacrylic acid hydroxyethyl ester; a copolymer, methacrylic acid butyl ester; a cross-linker, ethylene glycol dimethacrylate; a catalyst, Luperco; a chemical initiator (N,N-dimethylaniline) and, to avoid excessive elevation of temperature during polymerization, a heat moderator, alpha-terpinene. The appropriate proportions of these components have been selected to give specimens which can be easily sectioned with classical microtomes and which do not swell but spread evenly on a water surface. Since polymerization occurs at -4 C, the method allows demonstration of such enzymatic activities as acid and alkaline phosphatase and carbonic anhydrase. It provides excellent preservation of bone tissue and in studies of bone metabolism allows histomorphometry as well as visualization of fluorescent labeling and radioactive markers. The cost is significantly less than available commercial kits. In our hands glycol methacrylate is at present more useful than methyl methacrylate and is used in our laboratory for routine embedding of bone tissue.  相似文献   

4.
Synopsis The advantages of the water-soluble glycol methacrylate (GMA) embedding procedure make it highly applicable for use with fragile early embryonic material. Not only can one obtain tissue sections containing excellent histological detail, but numerous enzymes are retained for subsequent histochemical localization. For the purpose of establishing a methodology whereby concomitant histology and histochemistry could be obtainable, various fixatives and fixation times have been evaluated on GMA embedded chick embryonic mesonephros and gonad. It was found that fixing the tissues for 1 h in a solution of 95% ethanol, 5% acetic acid and 10% neutralbuffered formalin resulted in the retention of not only excellent histology but also alkaline and acid phosphatase. Thus, with this procedure, more specific investigations of early embryonic tissue can be performed.  相似文献   

5.
Bone alkaline (AlP) and acid phosphatase (AcP) activities were simultaneously demonstrated in tissue sections obtained from mice, rats, and humans. The method involved tissue fixation in ethanol, embedding in glycol methacrylate (GMA), and demonstration of AlP and AcP activities employing a simultaneous coupling azo dye technique using substituted naphthol phosphate as a substrate. AlP activity was demonstrated first followed by AcP activity. Both enzyme activities were demonstrated in tissue sections from bones fixed and/or stored in acetone or 70% ethanol for up to 14 days or stored in GMA for 2 months. AlP activity in tissue sections from bones fixed in 10% formalin, 2% glutaraldehyde, or formal-calcium, however, was markedly inhibited after 3-7 days and was no longer detectable after 14 days of fixation. Moreover, AlP activity was diminished in tissue sections from bones fixed in 70% ethanol or 10% formalin and subsequently demineralized in 10% EDTA (pH 7) for 2 days, and the activity was completely abolished in tissue sections from bones subsequently demineralized in 5% formic acid: 20% sodium citrate (1:1, pH 4.2) for 2 days. Methyl methacrylate (MMA) embedding at concentrations above 66% completely inhibited AlP activity. AcP activity, however, was only partially inhibited by formalin, glutaraldehyde, or formal-calcium after 7 or 14 days of fixation or by MMA embedding and was unaffected by the demineralizing agent formic acid-citrate for 2 days. While AcP activity was preserved in bones fixed in formalin and subsequently demineralized in EDTA, the activity was completely abolished when EDTA demineralization was carried out on bones previously fixed in 70% ethanol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Fixed, undecalcified mouse long bones were embedded in glycol methacrylate (GMA), sectioned, and incubated for acid phosphatase in the presence or absence of tartrate, to investigate the feasibility of tartrate-resistant acid phosphatase as a histochemical marker for osteoclast identification. Naphthol AS-BI phosphate was used as the substrate and hexazonium pararosanaline as coupler. Cytocentrifuge preparations of mouse, rat, and quail bone marrow or frozen and GMA sections of mouse splenic tissue were used as controls to specify acid phosphatase activity. After adequate fixation, acid phosphatase activity sensitive to tartrate inhibition (TS-AP) was demonstrated in macrophages from spleen, bone marrow, and loose connective tissue surrounding bone rudiments. Acid phosphatase activity resistant to tartrate inhibition (TR-AP), was detected in multi-nuclear osteoclasts and in some mononuclear cells from bone marrow and periosteum. In cytocentrifuge preparations and frozen sections of mouse spleen, TR-AP was demonstrated after simultaneous incubation with substrate and tartrate. In GMA sections, however, TR-AP could only be demonstrated after pre-incubation with tartrate before application of substrate. We suggest that histochemical demonstration of TR-AP versus TS-AP on GMA-embedded bone sections by means of a pre-incubation method can be used as an identification marker of (pre)osteoclasts. Plastic embedding is recommended for its excellent preservation of morphology and enzyme activity.  相似文献   

7.
A fixative for use in muscle histochemistry   总被引:1,自引:0,他引:1  
A fixative solution that preserves the activity of some relevant enzymes in muscle histochemistry is described. Portions of human muscle biopsy specimens and selected murine muscles were fresh frozen or placed in the fixative at room temperature for up to 1 month before freezing. Cryostat sections of fresh frozen and fixed frozen tissue were assayed for nicotinamide adenine dinucleotide phosphate (NADH)-tetrazolium reductase (NADH), several adenosine triphosphatases (ATPases), myoadenylate deaminase (MD), and phosphorylase. NADH, ATPase, and MD activity were preserved following fixation but phosphorylase was not preserved. Murine spleen and kidney were similarly tested for acid phosphatase (acid phos), alkaline phosphatase (alk phos), and nonspecific esterase (NSE). Alk phos activity was preserved but acid phos and NSE activity were significantly reduced following fixation. This fixative is useful in some circumstances for processing or shipping human muscle biopsy specimens and experimental tissues.  相似文献   

8.
We have used glycol methacrylate to study undecalcified skeletal growth plate and subchondral bone. Minor modifications of the original technique including dehydration in glycol methacrylate vacuum infiltration and polymerization in the cold make it quite suitable for embedding of such tissues. Moreover, specimens can be processed quickly and the morphologic and biochemical integrity of the tissue retained so that histochemical procedures can be readily applied. Collagen, glycosaminoglycan, glycogen, lipid, calcium and the activity of alkaline and acid phosphatase were localized. This technique appears to be very useful for studying skeletal tissues.  相似文献   

9.
We have used glycol methacrylate to study undecalcified skeletal growth plate and subchondral bone. Minor modifications of the original technique including dehydration in glycol methacrylate vacuum infiltration and polymerization in the cold make it quite suitable for embedding of such tisssues. Moreover, specimens can be processed quickly and the morphologic and biochemical integrity of the tissue retained so that histochemical procedures can be readily applied. Collagen, glycosaminoglycan, glycogen, lipid, calcium and the activity of alkaline and acid phosphatase were localized. This technique appears to be very useful for studying skeletal tissues.  相似文献   

10.
We have developed a method for histochemical demonstration of a wide range of enzymes in freeze-dried, resin-embedded tissue. Freeze-dried tissue specimens were embedded without fixation at low temperature (4 degrees C or -20 degrees C) in glycol methacrylate resin or LR Gold resin. Enzyme activity was optimally preserved by embedding the freeze-dried tissue in glycol methacrylate resin. All enzymes studied (oxidoreductases, esterases, peptidases, and phosphatases), except for glucose-6-phosphatase, were readily demonstrated. The enzymes displayed high activity and were accurately localized without diffusion when tissue sections were incubated in aqueous media, addition of colloid stabilizers to the incubating media not being required. Freeze-drying combined with low-temperature resin embedding permits the demonstration of a wide range of enzymes with accurate enzyme localization, high enzyme activity, and excellent tissue morphology.  相似文献   

11.
Summary A method has been developed for the histochemical demonstration of a variety of dehydrogenases in freeze-dried or fixed resin-embedded tissue. Seven dehydrogenases were studied. Lactate dehydrogenase, NADH dehydrogenase and NADPH tetrazolium reductase were all demonstrable in sections of paraformaldehyde-fixed resin-embedded tissue. Freeze-dried specimens were embedded, without fixation, in glycol methacrylate resin or LR Gold resin at either 4°C or –20°C. All the dehydrogenases except succinate dehydrogenase retained their activity in freeze-dried, resin-embedded tissue. Enzyme activity was maximally preserved by embedding the freeze-dried tissue specimens in glycol methacrylate resin at –20°C. The dehydrogenases were accurately localized without any diffusion when the tissue sections were incubated in aqueous media. Addition of a colloid stabilizer to the incubating medium was not required. Freeze-drying combined with low-temperature resin embedding permits accurate enzyme localization without diffusion, maintenance of enzyme activity and excellent tissue morphology.  相似文献   

12.
H W Volk  P Kugler 《Histochemistry》1987,86(5):525-529
We applied cytochemical procedures to demonstrate the presence of acid and alkaline phosphatase in the visceral yolk-sac endoderm of rats using frozen, aldehyde-fixed tissue with cerium as the capture agent. This procedure allowed more detailed topochemical localization than was possible using unfrozen tissue or with lead as the capture agent. Acid phosphatase was found to be present in lysosomes as well as in a small number of apical canaliculi, which are thought to be recycling structures of the cell membranes in endodermal cells. Reaction products of alkaline phosphatase were observed on the outer surface of apical, lateral, and basal cell membranes. In addition, some apical vacuoles contained alkaline phosphatase, and more apical canaliculi were positive for alkaline phosphatase than for acid phosphatase. However, most of the apical canaliculi were negative for both enzymes. It is suggested that acid and alkaline phosphatase are taken up by different numbers of apical canaliculi during the detachment of apical canaliculi from lysosomes and resorption vacuoles.  相似文献   

13.
A mixture of pure and anhydrous glycol methacrylate and methyl methactylate is used as an embedding medium for iliac bone biopsies. Infiltration is carried out at -20 C with the embedding medium and a cold inactivated catalyst-initiator system. Raising the temperature to 4 C initiates polymerization and limits the peak temperature of polymerization to 25 C. In this way, such thermolabile enzymes as osteoclastic acid phosphatase are preserved. After staining, sections are dehydrated in polyethylene glycol 400 30% in 2-propanol. This gives flat sections and improves staining properties.  相似文献   

14.
A simple protocol of tissue preparation was sought, which would enable marker enzymes of bone cells and extracellular matrix antigens to be localized in the same tissue section with high optical resolution. For this purpose, snap-frozen samples of rat fetal skeletal tissues were dried in a FDU 010 freeze-drying unit (Balzers) for 8-12 h at -50 to -40 degrees C and 0.02 bar. Freeze-dried tissues were either vacuum-infiltrated at 45 degrees C and embedded undemineralized in Paraplast, or vacuum-infiltrated overnight at 4 degrees C and embedded undemineralized in glycol methacrylate. These procedures enabled enzyme cytochemistry for alkaline phosphatase and tartrate-resistant acid phosphatase, and immunocytochemical staining for collagen types I, III, and laminin to be performed on the same sections. No pretreatment of the sections was necessary to reveal collagen antigenicity. This study reveals the possibility of complementing immunocytochemical studies of extracellular matrix with enzyme cytochemistry and, above all, with the excellent tissue preservation and high resolution afforded by plastic embedding.  相似文献   

15.
In the present investigation the localization and activity of alkaline, neutral, and acid hydrolases of the thymus were studied during development of rats and mice and of various adult species using histochemical methods. If different procedures of tissue pretreatment were employed, several inhibition effects and morphological as well as enzyme histochemical artifacts occurred dependent on the mode of tissue pretreatment. After embedding in glycol methacrylate, sections of the thymus showed a better structural preservation than cryostat sections but were accompanied by a drastic decrease of activity and low localization quality of the final reaction products especially in the case of protease studies with 4-methoxy-2-naphthylamine peptides as substrates. Smears of thymic cells facilitated the allocation of enzymes to mobile or fixed cells in the stroma of the thymus. The perivascular localization of aminopeptidase M could only be shown with combined techniques. In comparison, primarily the proteases yielded information on the thymic stroma and in this context especially on the epithelial reticular cells and the stroma proper but also on thymocytes (lymphocytes) and enabled a species-dependent subdivision of the thymic reticulum already in the light microscope. Enzyme histochemically the development of the rat and mouse thymus could be subdivided into an early period and perinatal (pre- and postnatal) period of functional differentiation. Morphological (proliferation of cortical lymphocytes) and enzyme histochemical changes (disappearance of dipeptidylpeptidase IV, significant loss of alkaline phosphatase activity and beginning activity increase of aminopeptidase M) occurred primarily at the transition from the early to the prenatal period. During the postnatal phase, a significant activation of lysosomal enzymes in the thymic medulla and general enzymatic differentiation of the cortical epithelial reticular cells were found. Species differences and species similarities for the respective enzymes and their localization as well as for the thymic cells were noticed for adult rats, mice, guinea-pigs, hamsters, and marmoset monkeys. Differences were true especially for the thymocytes; less species differences were seen for the epithelial reticular cells; capsular and perivascular connective tissue and the macrophages behaved rather similarly. Species-independently certain medullary epithelial reticular cells showed high and typically localized alkaline phosphatase activities and species-dependently also high activities of neutral hydrolases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
C C Liu 《Stain technology》1987,62(3):155-159
A simplified method for low temperature methyl methacrylate embedding with inhibited methyl methacrylate monomer is demonstrated using proper concentrations of benzoyl peroxide and N,N-dimethylaniline. The polymerized tissue blocks cut well and the tissue sections obtained show excellent acid phosphatase activity when demonstrated with the newly improved technique and Goldner's staining. Likewise, double tetracycline labels are well revealed by fluorescence microscopy.  相似文献   

17.
A simplified method for low temperature methyl methacrylate embedding with inhibited methyl methacrylate monomer is demonstrated using proper concentrations of benzoyl peroxide and N,N-dimethylaniline. The polymerized tissue blocks cut well and the tissue sections obtained show excellent acid phosphatase activity when demonstrated with the newly improved technique and Goldner's staining. Likewise, double tetracycline labels are well revealed by fluorescence microscopy.  相似文献   

18.
Polyester fibers are not dissolved by either glycol methacrylate or methyl methacrylate. Commercial polyester wadding is consequently an advantageous material to use in getting precise orientation of tissue specimens during embedding in methacrylate.  相似文献   

19.
Cells in the spleen in DNA-synthesis were labelled with tritiated thymidine. Tissue was fixed for 12 hr in 10% neutral formalin, washed for 4 hr in tap water and dehydrated through 70% and absolute ethanol. The tissue blocks were infiltrated overnight with a mixture consisting of glycol methacrylate, 80 ml; polyethylene glycol 400, 12 ml; and benzoyl peroxide, 0.27 gm. Specimens were cast in BEEM capsules with the final embedding medium consisting of 42 parts of the infiltration medium and 1 part of an acceleration mixture. This mixture consisted of N,N-dimethylaniline, 1 part and polyethylene glycol 400, 15 parts. The blocks hardened in 30 min and were sectioned with an ultramicrotome fitted with glass knives. Sections were coated with Ilford K5 liquid emulsion and exposed for 2 wk. Methyl green-pyronin staining of autoradiographs was carried out at pH 4.1 in acetate buffer containing 0.5% methyl green (Allied Chemicals) and 0.2% pyronin GS (Chroma). Staining was for 30-60 min, after which sections were washed for 1 min in water, blotted, allowed to dry, and mounted in Canada balsm. The procedure resulted in good quality autoradiographs in which the degree of basophilia of labelled cells could be assessed.  相似文献   

20.
We examined the effect of time delay in tissue fixation on enzyme histochemically detectable enzyme activity and its localization in term human placental trophoblasts. Four placental enzymes, alkaline phosphatase, acid phosphatase, glucose-6-phosphatase, and cytochrome c oxidase, were studied. A fixation delay of 15 min did not markedly alter the activity or distribution pattern of the four enzymes, excepted for a slight reduction in cytochrome c oxidase activity and the appearance of dilated endoplasmic reticula positive for glucose-6-phosphatase. A fixation delay of 60 min abolished cytochrome c oxidase activity, but the activities of the other three enzymes remained positive. When the placental tissue was stored at 4 degrees C without cutting for 24 h before fixation, cell degeneration occurred. However, alkaline phosphatase activity was still clearly demonstrable. In enzyme histochemistry, ,,immediate" fixation is superior, but even if this cannot be performed, the placentas, especially when they are from patients with rare disorders, should not be discarded. Observations made here will be useful for clinician's attempting enzyme histochemistry in organs other than the placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号