首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperosmotic stress initiates adaptive responses, including phosphorylation of myosin light chain (MLC) and concomitant activation of Na+-K+-Cl- cotransporter (NKCC). Because the small GTPase Rho is a key regulator of MLC phosphorylation, we investigated 1) whether Rho is activated by hyperosmotic stress, and if so, what the triggering factors are, and 2) whether the Rho/Rho kinase (ROK) pathway is involved in MLC phosphorylation and NKCC activation. Rho activity was measured in tubular epithelial cells by affinity pulldown assay. Hyperosmolarity induced rapid (<1 min) and sustained (>20 min) Rho activation that was proportional to the osmotic concentration and reversed within minutes upon restoration of isotonicity. Both decreased cell volume at constant ionic strength and elevated total ionic strength at constant cell volume were capable of activating Rho. Changes in [Na+] and [K+] at normal total salinity failed to activate Rho, and Cl- depletion did not affect the hyperosmotic response. Thus alterations in cellular volume and ionic strength but not individual ion concentrations seem to be the critical triggering factors. Hyperosmolarity induced mono- and diphosphorylation of MLC, which was abrogated by the Rho-family blocker Clostridium toxin B. ROK inhibitor Y-27632 suppressed MLC phosphorylation under isotonic conditions and prevented its rise over isotonic levels in hypertonically stimulated cells. ML-7 had a smaller inhibitory effect. In contrast, it abolished the hypertonic activation of NKCC, whereas Y-27632 failed to inhibit this response. Thus hyperosmolarity activates Rho, and Rho/ROK pathway contributes to basal and hyperosmotic MLC phosphorylation. However, the hypertonic activation of NKCC is ROK independent, implying that the ROK-dependent component of MLC phosphorylation can be uncoupled from NKCC activation.  相似文献   

2.
We investigatedwhether Rho activation is required for Ca2+-insensitivepaxillin phosphorylation, myosin light chain (MLC) phosphorylation, andcontraction in tracheal muscle. Tyrosine-phosphorylated proteins havebeen implicated in the Ca2+-insensitive contractileactivation of smooth muscle tissues. The contractile activation oftracheal smooth muscle increases tyrosine phosphorylation of thecytoskeletal proteins paxillin and focal adhesion kinase. Paxillin isimplicated in integrin-mediated signal transduction pathways thatregulate cytoskeletal organization and cell motility. In fibroblastsand other nonmuscle cells, paxillin tyrosine phosphorylation depends onthe activation of Rho and is inhibited by cytochalasin, an inhibitor ofactin polymerization. In permeabilized muscle strips, we found that AChinduced Ca2+-insensitive contraction, MLC phosphorylation,and paxillin tyrosine phosphorylation. Ca2+-insensitivecontraction and MLC phosphorylation induced by ACh were inhibited by C3transferase, an inhibitor of Rho activation; however, C3 transferasedid not inhibit paxillin tyrosine phosphorylation. Ca2+-insensitive paxillin tyrosine phosphorylation was alsonot inhibited by the Rho kinase inhibitor Y-27632, by cytochalasin D,or by the inhibition of MLC phosphorylation. We conclude that, intracheal smooth muscle, Rho mediates Ca2+-insensitivecontraction and MLC phosphorylation but that Rho is not required forCa2+-insensitive paxillin tyrosine phosphorylation.Paxillin phosphorylation also does not require actomyosin activation,nor is it inhibited by the actin filament capping agent cytochalasin D.

  相似文献   

3.
The G protein-coupled receptor agonistsangiotensin II (ANG II) and lysophosphatidic acid (LPA) rapidly inducetyrosine phosphorylation of the cytosolic proline-rich tyrosine kinase2 (Pyk2) in IEC-18 intestinal epithelial cells. The combined Pyk2tyrosine phosphorylation induced by phorbol 12,13-dibutyrate, a directagonist of protein kinase C (PKC), and ionomycin, a Ca2+ionophore, was equal to that induced by ANG II. Inhibition of eitherPKC or Ca2+ signaling attenuated the effect of ANG II andLPA, although simultaneous inhibition of both pathways failed tocompletely abolish Pyk2 tyrosine phosphorylation. Cytochalasin D, whichdisrupts stress fibers, strongly inhibited the response of Pyk2 to ANGII or LPA. The distinct Rho-associated kinase (ROK) inhibitors HA-1077and Y-27632, as well as the Rho inhibitor Clostridiumbotulinum C3 exoenzyme, also significantly attenuated ANG II- andLPA-stimulated Pyk2 tyrosine phosphorylation. Simultaneous inhibitionof PKC, Ca2+, and either actin assembly or ROK completelyabolished the Pyk2 response. Together, these results show that ANG IIand LPA rapidly induce Pyk2 tyrosine phosphorylation in intestinalepithelial cells via separate Ca2+-, PKC-, and Rho-mediated pathways.

  相似文献   

4.
Fibroblasts form fibers when grown inculture medium containing native type 1 collagen. The contractileforces generated can be precisely quantified and used to analyze thesignal transduction pathways regulating fibroblast contraction. Calfserum (30%) induces a sustained contraction that is accompanied by atransient increase in intracellular calcium([Ca2+]i). W-7, a calmodulin inhibitor,KN-62, an inhibitor of calcium/calmodulin-dependent protein kinase, andML-7, a myosin light-chain kinase inhibitor, had no effects on eitherthe contraction or the [Ca2+]i responses.Neither genistein, a tyrosine kinase inhibitor, nor calphostin C, aprotein kinase C inhibitor, had major effects on force or[Ca2+]i. In contrast, the Rho kinaseinhibitors(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and HA1077 depressed the contraction in a dose-dependent manner without affecting the [Ca2+]iresponse. Stress fiber formation was also suppressed by Y-27632. Surprisingly, calf serum, Y-27632, and calf serum plus Y-27632 did notalter mono- or diphosphorylation of the myosin regulatory light chain(MRLC) compared with control untreated fibers. These results suggestthat the sustained contraction of NIH 3T3 fibroblast fibers induced bycalf serum is mediated by Rho kinase but is independent of a sustainedincrease in [Ca2+]i, calcium/calmodulin- orprotein kinase C-dependent pathways, or increases in MRLC phosphorylation.

  相似文献   

5.
Uterine contractility is generated by contractions of myometrial smooth muscle cells (SMCs) that compose most of the myometrial layer of the uterine wall. Calcium ion (Ca2+) entry into the cell can be initiated by depolarization of the cell membrane. The increase in the free Ca2+ concentration within the cell initiates a chain of reactions, which lead to formation of cross bridges between actin and myosin filaments, and thereby the cell contracts. During contraction the SMC shortens while it exerts forces on neighboring cells. A mathematical model of myometrial SMC contraction has been developed to study this process of excitation and contraction. The model can be used to describe the intracellular Ca2+ concentration and stress produced by the cell in response to depolarization of the cell membrane. The model accounts for the operation of three Ca2+ control mechanisms: voltage-operated Ca2+ channels, Ca2+ pumps, and Na+/Ca2+ exchangers. The processes of myosin light chain (MLC) phosphorylation and stress production are accounted for using the cross-bridge model of Hai and Murphy (Am J Physiol Cell Physiol 254: C99–C106, 1988) and are coupled to the Ca2+ concentration through the rate constant of myosin phosphorylation. Measurements of Ca2+, MLC phosphorylation, and force in contracting cells were used to set the model parameters and test its ability to predict the cell response to stimulation. The model has been used to reproduce results of voltage-clamp experiments performed in myometrial cells of pregnant rats as well as the results of simultaneous measurements of MLC phosphorylation and force production in human nonpregnant myometrial cells. cellular calcium control mechanisms; myometrial contractions; myosin light chain phosphorylation  相似文献   

6.
Contractile stimuli can sensitize myosin to Ca2+ by activating RhoA kinase (ROK) and PKC that inhibit myosin light chain phosphatase (MLCP) activity. Relaxant stimuli, acting through PKA and PKG (cyclic nucleotide-dependent protein kinases), and pretreatment with contractile agents such as phenylephrine (PE), can desensitize myosin to Ca2+. It is unknown precisely how these stimuli cause Ca2+ desensitization. To test the hypothesis that PKA, PKG, and PE pretreatment signaling systems converge to cause relaxation by inhibition of ROK in intact, isolated tissues, we examined the effects of forskolin (FSK; PKA activation), 8-bromo-cGMP (8br-cGMP; PKG activation), and PE pretreatment on KCl-induced force maintenance in rabbit arteries, a response nearly completely dependent on ROK activation. PE pretreatment and agents activating PKA and PKG caused Ca2+ desensitization by inhibiting KCl-induced tonic force and MLC phosphorylation without inhibiting intracellular [Ca2+]. At pCa 5 in -escin-permeabilized muscle, FSK and 8b-cGMP accelerated the relaxation rate when tissues were returned to pCa 9, suggesting that both agents can elevate MLCP activity. However, a component of the Ca2+ desensitization attributed to PKG activation in intact tissues appeared to involve a MLC phosphorylation-independent component. Inhibition of KCl-induced tonic force by the ROK inhibitor, Y-27632, and by PE pretreatment, were synergistically potentiated by 8b-cGMP, but not FSK. FSK and PE pretreatment, but not 8b-cGMP, inhibited the KCl-induced increase in site-specific myosin phosphatase target protein-1 phosphorylation at Thr853. These data support the hypothesis that PKA and PE pretreatment converge on a common Ca2+-desensitization pathway, but that PKG can act by a mechanism different from that activated by PKA and PE pretreatment. vascular smooth muscle; Ca2+ sensitization; RhoA kinase; signal transduction  相似文献   

7.
Rho-kinase-mediated Ca2+-independent contraction in rat embryo fibroblasts   总被引:5,自引:0,他引:5  
Thus far, determining the relative contribution of Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and Ca2+-independent Rho-kinase pathways to myosin II activation and contraction has been difficult. In this study, we characterize the role of Rho-kinase in a rat embryo fibroblast cell line (REF-52), which contains no detectable MLCK. No endogenous MLCK could be detected in REF-52 cells by either Western or Northern blot analysis. In the presence or absence of Ca2+, thrombin or lysophosphatidic acid (LPA) increased RhoA activity and Rhokinase activity, correlating with isometric tension development and myosin II regulatory light chain (RLC) phosphorylation. Resting tension is associated with a basal phosphorylation of 0.31 ± 0.02 mol PO4/mol RLC, whereas upon LPA or thrombin treatment myosin II RLC phosphorylation increases to 1.08 ± 0.05 and 0.82 ± 0.05 mol PO4/mol RLC, respectively, within 2.5 min. Ca2+ chelation has minimal effect on the kinetics and magnitude of isometric tension development and RLC phosphorylation. Treatment of REF-52 cells with the Rho-kinase-specific inhibitor Y-27632 abolished thrombin- and LPA-stimulated contraction and RLC phosphorylation. These results suggest that Rho-kinase is sufficient to activate myosin II motor activity and contraction in REF-52 cells. myosin light chain kinase; RhoA; myosin II regulatory light chain phosphorylation  相似文献   

8.
Myosin light-chain (MLC) kinase (MLCK)-dependent increase in MLC phosphorylation has been proposed to be a key mediator of the hyperosmotic activation of the Na+-K+-2Cl cotransporter (NKCC). To address this hypothesis and to assess whether MLC phosphorylation plays a signaling or permissive role in NKCC regulation, we used pharmacological and genetic means to manipulate MLCK, MLC phosphorylation, or myosin ATPase activity and followed the impact of these alterations on the hypertonic stimulation of NKCC in porcine kidney tubular LLC-PK1 epithelial cells. We found that the MLCK inhibitor ML-7 suppressed NKCC activity independently of MLC phosphorylation. Notably, ML-7 reduced both basal and hypertonically stimulated NKCC activity without influencing MLC phosphorylation under these conditions, and it inhibited NKCC activation by Cl depletion, a treatment that did not increase MLC phosphorylation. Furthermore, prevention of the osmotically induced increase in MLC phosphorylation by viral induction of cells with a nonphosphorylatable, dominant negative MLC mutant (AA-MLC) did not affect the hypertonic activation of NKCC. Conversely, a constitutively active MLC mutant (DD-MLC) that mimics the diphosphorylated form neither stimulated isotonic nor potentiated hypertonic NKCC activity. Furthermore, a depolarization-induced increase in endogenous MLC phosphorylation failed to activate NKCC. However, complete abolition of basal MLC phosphorylation by K252a or the inhibition of myosin ATPase by blebbistatin significantly reduced the osmotic stimulation of NKCC without suppressing its basal or Cl depletion-triggered activity. These results indicate that an increase in MLC phosphorylation is neither a sufficient nor a necessary signal to stimulate NKCC in tubular cells. However, basal myosin activity plays a permissive role in the optimal osmotic responsiveness of NKCC. proline-alanine-rich STE20-related kinase  相似文献   

9.
Ca2+-sensitization of smooth muscle occurs through inhibition of myosin light chain phosphatase (MLCP) leading to an increase in the MLCK:MLCP activity ratio. MLCP is inhibited through phosphorylation of its regulatory subunit (MYPT-1) following activation of the RhoA/Rho kinase (ROK) pathway or through phosphorylation of the PP1c inhibitory protein, CPI-17, by PKC delta or ROK. Here, we explore the crosstalk between these two modes of MLCP inhibition in a smooth muscle of a natural CPI-17 knockout, chicken amnion. GTPgammaS elicited Ca2+-sensitized force which was relaxed by GDI or Y-27632, however, U46619, carbachol and phorbol ester failed to induce Ca2+-sensitized force, but were rescued by recombinant CPI-17, and were sensitive to Y-27632 inhibition. In the presence, but not absence, of CPI-17, U46619 also significantly increased GTP.RhoA. There was no affect on MYPT-1 phosphorylation at T695, however, T850 phosphorylation increased in response to GTPgammaS stimulation. Together, these data suggest a role for CPI-17 upstream of RhoA activation possibly through activation of another PP1 family member targeted by CPI-17.  相似文献   

10.
Heating locally the hypocotyl of Bidens pilosa L. elicits awave of depolarization. The mechanism of the wave has been investigatedby means of microelectrophysiological techniques. The amplitudeof the transmembrane potential variation induced by an extracellularion concentration change (K+, Na+, Ca2+, Cl) was thesame in the resting conditions as during the slow wave. At pH4.0, the amplitude of the slow wave was reduced by 56% comparedwith the control performed at pH 7.0. In the presence of theuncoupler CCCP, the slow wave was not observed. The Ca2+ -chelatorEGTA and the Ca22+ -channel blocker La3+ reduced, respectively,the amplitude of the slow wave by 78% and 68%. These resultsindicate the involvement of Ca2+ in triggering the slow wave.A transient modification of the electrogenic H+ pump activity(inactivation-activation) and of the transmembrane H+ flux inthe slow wave are discussed. Key words: Slow wave (of depolarization), wounding, electrogenic pump, calcium, Bidens pilosa L  相似文献   

11.
KCl causes smooth muscle contraction by elevating intracellular free Ca2+, whereas receptor stimulation activates an additional mechanism, termed Ca2+ sensitization, that can involve activation of RhoA-associated kinase (ROK) and PKC. However, recent studies support the hypothesis that KCl may also increase Ca2+ sensitivity. Our data showed that the PKC inhibitor GF-109203X did not, whereas the ROK inhibitor Y-27632 did, inhibit KCl-induced tonic (5 min) force and myosin light chain (MLC) phosphorylation in rabbit artery. Y-27632 also inhibited BAY K 8644- and ionomycin-induced MLC phosphorylation and force but did not inhibit KCl-induced Ca2+ entry or peak ( approximately 15 s) force. Moreover, KCl and BAY K 8644 nearly doubled the amount of ROK colocalized to caveolae at 30 s, a time that preceded inhibition of force by Y-27632. Colocalization was not inhibited by Y-27632 but was abolished by nifedipine and the calmodulin blocker trifluoperazine. These data support the hypothesis that KCl caused Ca2+ sensitization via ROK activation. We discuss a novel model for ROK activation involving translocation to caveolae that is dependent on Ca2+ entry and involves Ca2+-calmodulin activation.  相似文献   

12.

Background

Total steroidal saponins extracted from the rhizome of Paris polyphylla Sm. var. yunnanensis (TSSPs) have been widely used in China for the treatment of abnormal uterine bleeding. We previously studied the main active constituents of TSSPs and their structure-activity relationships with respect to rat myometrial contractions. Tg (pennogenin tetraglycoside) was identified as one of the active ingredients in TSSPs able to induce rat myometrial contractions. However, the mechanisms underlying the pharmacological actions on uterine activity have not been described clearly.

Methods

Here Tg was screened for effects on contractile activity in isolated uterine strips from estrogen-primed rats and on MLC20 phosphorylation and related signaling pathways in cultured rat myometrial cells as determined by Western blot. Intracellular calcium ([Ca2+]i) was monitored under a confocal microscope using Fluo-4 AM-loaded myometrial cells.

Results

Tg dose-dependently stimulated rat myometrial contractions as well as MLC20 phosphorylation in vitro, which could be completely suppressed by an inhibitor of myosin light chain kinase (MLCK). Use of Ca2+ channel blockers and kinase inhibitors demonstrated that Tg-induced myometrial contractions are mediated by activation of the phospholipase C (PLC)-inositol triphosphate (IP3) signaling pathway, resulting in increased MLC20 phosphorylation. Furthermore, Y27632, a specific inhibitor of Rho kinase (ROK), notably suppressed Tg-stimulated myometrial contractions and decreased MLC20 phosphorylation.

Conclusions

These data provide evidence that rat myometrial contractility induced by Tg results from enhanced MLC20 phosphorylation, while both PLC-IP3 and RhoA/ROK signaling pathways mediate the process. These mechanisms may be responsible for the therapeutic effects of TSSPs on abnormal uterine bleeding.  相似文献   

13.
Phosphorylation of endothelial myosin light chains (MLC) is a key mechanism in control of endothelial contractile machinery. Extracellular ATP influences endothelial MLC phosphorylation by either activation of Ca2+-dependent MLC kinase or Ca2+-independent MLC phosphatase. Here, the role of the MEK/MAPK pathway in this signaling was investigated in porcine aortic endothelial cells. Phosphorylation of ERK2 and phosphorylation of MLC were analyzed in cultured aortic endothelial cells. ATP (10 µM) increased ERK2 phosphorylation from basal 17 ± 3 to 53 ± 4%, an effect suppressed in the presence of the MEK inhibitors PD-98059 (20 µM) or U0126 (10 µM). Phosphorylation of ERK2 was not dependent on the ATP-induced cytosolic Ca2+ rise, because it was unaltered when this was suppressed by the Ca2+ chelator BAPTA (10 µM) or xestospongin C (3 µM), an inhibitor of the inositol 1,4,5-trisphosphate-sensitive Ca2+ release mechanism of the endoplasmic reticulum. Phosphorylation of ERK2 was neither induced by the adenosine analog 5'-(N-ethylcarboxamido)adenosine (1 µM) nor inhibited in the presence of the adenosine receptor antagonist 8-phenyltheophylline (10 µM). ATP increased MLC kinase activity, and this was blocked in presence of PD-98059. ATP also increased MLC phosphatase activity, which was not inhibited by PD-98059. The MEK/MAPK pathway is a Ca2+-independent part of ATP signaling toward MLC kinase but not of ATP signaling toward MLC phosphatase. mitogen-activated protein kinase; contractile machinery; myosin light chain kinase; myosin light chain phosphatase  相似文献   

14.
As previously shown, constitutive activation of the small GTPase Rho and its downstream target Rho-kinase is crucial for spontaneous migration of Walker carcinosarcoma cells. We now show that after treatment of cells with either the Rho inhibitor C3 exoenzyme or the Rho-kinase inhibitor Y-27632, constitutive myosin light chain (MLC) phosphorylation is significantly decreased, correlating with inhibition of cell polarization and migration. Transfection with a dominant-negative Rho-kinase mutant similarly inhibits cell polarization and MLC phosphorylation. Transfection with a dominant-active Rho-kinase mutant leads to significantly increased MLC phosphorylation, membrane blebbing, and inhibition of cell polarization. This Rho-kinase-induced membrane blebbing can be inhibited by Y-27632, ML-7, and blebbistatin. Unexpectedly, overactivation of RhoA has similar effects as its inhibition. Introduction of a bacterially expressed constitutively activated mutant protein (but not of wild-type RhoA) into the cells or transfection of cells with a constitutively active RhoA mutant both inhibit polarization and decrease MLC phosphorylation. Transfection of cells with constitutively active or dominant-negative Rac both abrogate polarity, and the latter inhibits MLC phosphorylation. Our findings suggest an important role of Rac, Rho/Rho-kinase, and MLCK in controlling myosin activity in Walker carcinosarcoma cells and show that an appropriate level of RhoA, Rac, and Rho-kinase activity is required to regulate cell polarity and migration.  相似文献   

15.
Antagonists of myosin light chain (MLC) kinase (MLCK) and Rho kinase (ROK) are thought to inhibit hypoxic pulmonary vasoconstriction (HPV) by decreasing the concentration of phosphorylated MLC at any intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMC); however, these antagonists can also decrease [Ca(2+)](i). To determine whether MLCK and ROK antagonists alter Ca(2+) signaling in HPV, we measured the effects of ML-9, ML-7, Y-27632, and HA-1077 on [Ca(2+)](i), Ca(2+) entry, and Ca(2+) release in rat distal PASMC exposed to hypoxia or depolarizing concentrations of KCl. We performed parallel experiments in isolated rat lungs to confirm the inhibitory effects of these agents on pulmonary vasoconstriction. Our results demonstrate that MLCK and ROK antagonists caused concentration-dependent inhibition of hypoxia-induced increases in [Ca(2+)](i) in PASMC and HPV in isolated lungs and suggest that this inhibition was due to blockade of Ca(2+) release from the sarcoplasmic reticulum and Ca(2+) entry through store- and voltage-operated Ca(2+) channels in PASMC. Thus MLCK and ROK antagonists might block HPV by inhibiting Ca(2+) signaling, as well as the actin-myosin interaction, in PASMC. If effects on Ca(2+) signaling were due to decreased phosphorylated myosin light chain concentration, their diversity suggests that MLCK and ROK antagonists may have acted by inhibiting myosin motors and/or altering the cytoskeleton in a manner that prevented achievement of required spatial relationships among the cellular components of the response.  相似文献   

16.
The Rho/Rho-associated kinase (ROK) pathway has been shown to modulate volume-regulated anion channels (VRAC) in cultured calf pulmonary artery endothelial (CPAE) cells. Since Rho/ROK can increase myosin light chain phosphorylation, we have now studied the effects of inhibitors of myosin light chain kinase (MLCK) or myosin light chain phosphatase (MLCP) on VRAC in CPAE. Application of ML-9, an MLCK inhibitor, inhibited VRAC, both when applied extracellularly or when dialyzed into the cell. A similar inhibitory effect was obtained by dialyzing the cells with AV25, a specific MLCK inhibitory peptide. Conversely, NIPP1(191-210), an MLCP inhibitory peptide, potentiated the activation of VRAC by a 25% hypotonic stimulus. These data indicate that activation of VRAC is modulated by MLC phosphorylation.  相似文献   

17.
《Cell calcium》2013,53(6):413-421
In addition to its role in artery contraction, Rho kinase (ROCK) is reported to be involved in the Ca2+ response to vasoconstrictor agonist in rat aorta. However the signaling pathway mediated by ROCK had not been investigated so far and it was not known whether ROCK also contributed to Ca2+ signaling in cultured vascular smooth muscle cells (VSMC), which undergo profound phenotypic changes. Our results showed that in VSMC, ROCK inhibition by Y-27632 or H-1152 had no effect on the Ca2+ response to vasopressin, while in aorta the vasopressin-induced Ca2+ entry was significantly decreased. The inhibition of myosin light chain kinase (MLCK) by ML-7 depressed the vasopressin-induced Ca2+ signal in aorta but not in VSMC. The difference in ROCK sensitivity of vasopressin-induced Ca2+ entry between aorta and VSMC was not related to an alteration of the RhoA/ROCK pathway. However, MLCK expression and activity were depressed in cultured cells compared to aorta. We concluded that the regulation of vasopressin-induced Ca2+ entry by ROCK in aorta could involve the myosin cytoskeleton and could be prevented by the downregulation of MLCK in VSMC. These results underline the important differences in Ca2+ regulation between whole tissue and cultured cells.  相似文献   

18.
ROCK mediates thrombin's endothelial barrier dysfunction   总被引:6,自引:0,他引:6  
Thrombin-induced endothelial monolayer hyperpermeability is thought toresult from increased F-actin stress fiber-related contractile tension,a process regulated by the small GTP-binding protein Rho. We testedwhether this process was dependent on the Rho-associated proteinkinase, ROCK, using a specific ROCK inhibitor, Y-27632. The effects ofY-27632 on thrombin-induced myosin light chain phosphorylation (MLCP)and tyrosine phosphorylation of p125 focal adhesion kinase(p125FAK) and paxillin were measured by Western blotting.F-actin organization and content were analyzed by digital imaging, andendothelial monolayer permeability was measured in bovine pulmonaryartery endothelial cell (EC) monolayers using a size-selectivepermeability assay. Y-27632 enhanced EC monolayer barrier function dueto a decline in small-pore number that was associated with increased ECsurface area, reduced F-actin content, and reorganization of F-actin to-catenin-containing cell-cell adherens junctions. Although Y-27632prevented thrombin-induced MLCP, stress fiber formation, and theincreased phosphotyrosine content of paxillin and p125FAK,it attenuated but did not prevent the thrombin-induced formation oflarge paracellular holes. These data indicate that thrombin-induced stress fiber formation is ROCK dependent. In contrast, thrombin-induced paracellular hole formation occurs in a ROCK-independent manner, whereas thrombin-induced monolayer hyperpermeability appears to bepartially ROCK dependent.

  相似文献   

19.
Tight junctions serve as the rate-limiting barrier to passivemovement of hydrophilic solutes across intestinal epithelia. Afteractivation of Na+-glucosecotransport, the permeability of intestinal tight junctions isincreased. Because previous analyses of this physiological tightjunction regulation have been restricted to intact mucosae, dissectionof the mechanisms underlying this process has been limited. Tocharacterize this process, we have developed a reductionist modelconsisting of Caco-2 intestinal epithelial cells transfected with theintestinal Na+-glucosecotransporter, SGLT1. Monolayers of SGLT1 transfectants demonstratephysiological Na+-glucosecotransport. Activation of SGLT1 results in a 22 ± 5% fall intransepithelial resistance (TER) (P < 0.001). Similarly, inactivation of SGLT1 by addition of phloridzinincreases TER by 24 ± 2% (P < 0.001). The increased tight junction permeability is size selective,with increased flux of small nutrient-sized molecules, e.g., mannitol,but not of larger molecules, e.g., inulin. SGLT1-dependent increases intight junction permeability are inhibited by myosin light-chain kinaseinhibitors (20 µM ML-7 or 40 µM ML-9), suggesting that myosinregulatory light-chain (MLC) phosphorylation is involved in tightjunction regulation. Analysis of MLC phosphorylation showed a 2.08-foldincrease after activation of SGLT1 (P < 0.01), which was inhibited by ML-9(P < 0.01). Thus monolayersincubated with glucose and myosin light-chain kinase inhibitors arecomparable to monolayers incubated with phloridzin. ML-9 also inhibitsSGLT1-mediated tight junction regulation in small intestinal mucosa(P < 0.01). These data demonstrate that epithelial cells are the mediators of physiological tight junctionregulation subsequent to SGLT1 activation. The intimate relationshipbetween tight junction regulation and MLC phosphorylation suggests thata critical step in regulation of epithelial tight junction permeabilitymay be myosin ATPase-mediated contraction of the perijunctionalactomyosin ring and subsequent physical tension on the tight junction.

  相似文献   

20.
ATP induces dephosphorylation of myosin light chain in endothelial cells   总被引:1,自引:0,他引:1  
In cultured porcine aortic endothelial monolayers, theeffect of ATP on myosin light chain (MLC) phosphorylation, whichcontrols the endothelial contractile machinery, was studied. ATP (10 µM) reduced MLC phosphorylation but increased cytosolicCa2+ concentration ([Ca2+]i).Inhibition of the ATP-evoked [Ca2+]i rise byxestospongin C (10 µM), an inhibitor of the inositol trisphosphate-dependent Ca2+ release from endoplasmicreticulum, did not affect the ATP-induced dephosphorylation of MLC. MLCdephosphorylation was prevented in the presence of calyculin A (10 nM),an inhibitor of protein phosphatases PP-1 and PP-2A. Thus ATP activatesMLC dephosphorylation in a Ca2+-independent manner. In thepresence of calyculin A, MLC phosphorylation was incremented afteraddition of ATP, an effect that could be abolished when cellswere loaded with the Ca2+ chelator1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester (10 µM). Thus ATP also activates aCa2+-dependent kinase acting on MLC. In summary, ATPsimultaneously stimulates a functional antagonism toward bothphosphorylation and dephosphorylation of MLC in which thedephosphorylation prevails. In endothelial cells, ATP is the firstphysiological mediator identified to activate MLC dephosphorylation bya Ca2+-independent mechanism.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号