首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functionally mature human T lymphocytes express a cell-surface receptor for antigen (T cell receptor (TCR)-CD3) composed of at least six polypeptides (TCR-alpha and -beta; T3-gamma, -delta, -epsilon, and -zeta). Immature thymocytes and variants of T cell lines lacking one of the TCR.CD3 polypeptide chains fail to express surface receptor and accumulate the other chains intracellularly. Here we show that the assembly of the TCR.CD3 complex within the endoplasmic reticulum (ER) began with a core of CD3-gamma, -delta, and -epsilon to which TCR-alpha and -beta bound. A recently described intracellular protein, CD3-omega, participated in the assembly since it was found to be associated with the free TCR-alpha or -beta chains or with the CD3 chains. CD3-omega dissociated as TCR.CD3 complexes were formed in the ER. Association of non-disulfide-linked TCR-alpha and -beta chains with CD3 was detected before that of disulfide-bridged TCR-alpha/beta heterodimers. These data suggest that during assembly, the association of TCR-alpha and -beta chains with the CD3 complex precedes the formation of a TCR-alpha/beta dimer. The existence of intermediates consisting of CD3-gamma, -delta, and -epsilon chains and a single TCR-alpha or -beta chain was also confirmed by using a series of variant T cell lines lacking the TCR-beta or -alpha chain, respectively. Once the single TCR-alpha and -beta chains were associated with CD3, disulfide linkages were formed, and a 70-kDa form of the TCR was detected within the ER. This intracellular precursor of the TCR.CD3 complex was subsequently processed into the mature 90-kDa TCR as the TCR.CD3 complex passed through the Golgi apparatus. Assembly of the TCR.CD3 complex is a rather rapid process, whereas export from the ER occurs at a slow rate. After 1 h, 75% of the receptor complex remained within the ER.  相似文献   

2.
The T cell antigen receptor on most mature T cells consists of at least seven chains (the variable, clone-specific alpha and beta chains, and five constant chains, CD3-gamma, -delta, -epsilon, and -zeta 2). These chains assemble rapidly after synthesis in the endoplasmic reticulum. In this paper we describe an additional protein termed TRAP (T cell receptor associated protein) that is transiently associated with at least some of the newly synthesized murine receptor chains. TRAP remains bound to receptor subunits as they assemble for about 10-20 min after synthesis. Rapid dissociation of TRAP ensues. This can be blocked by manipulations that inhibit endoplasmic reticulum to Golgi transport or with agents that inhibit organelle acidification. In mutant T cells that fail to synthesize the beta chains, the partial complex fails to reach the Golgi system. Despite this, TRAP dissociates with kinetics similar to those observed in the parental T cells. Thus, our studies indicate that the dissociation of TRAP occurs in a pre-Golgi compartment by a process that requires an acidic intraorganellar pH.  相似文献   

3.
In the absence of ligand, the T cell receptor (TCR)/CD3 complex is continuously internalized and recycled to the cell surface, whereas receptor engagement results in its down-regulation. The present study shows that the TCR and CD3 components follow different fates accompanying their constitutive internalization. Although the CD3 moiety is recycled to the cell surface, the TCR heterodimer is degraded and replaced by newly synthesized chains. Since the TCR heterodimer cannot reach the cell membrane on its own, we propose a model in which recycling CD3 is transported along a retrograde pathway to the endoplasmic reticulum, where it associates with newly made TCR. Interestingly, engagement of the TCR.CD3 complex by superantigen resulted not only in the down-regulation of the TCR and CD3 components but also caused a transient stabilization of the TCR heterodimer. This suggests that TCR engagement diverts the TCR heterodimer from a degradation to a recycling pathway. Contrary to CD3, the intracellular fate of the TCR heterodimer is thus regulated, providing a mechanism for rapidly replacing nonfunctional TCR during intrathymic development of T cells.  相似文献   

4.
The T-cell receptor (TCR) zeta subunit is an important component of the TCR complex, involved in signal transduction events following TCR engagement. In this study, we showed that the TCR zeta chain is constitutively tyrosine phosphorylated to similar extents in thymocytes and lymph node T cells. Approximately 35% of the tyrosine-phosphorylated TCR zeta (phospho zeta) precipitated from total cell lysates appeared to be surface associated. Furthermore, constitutive phosphorylation of TCR zeta in T cells occurred independently of antigen stimulation and did not require CD4 or CD8 coreceptor expression. In lymph node T cells that constitutively express tyrosine-phosphorylated TCR zeta, there was a direct correlation between surface TCR-associated protein tyrosine kinase (PTK) activity and expression of phospho zeta. TCR stimulation of these cells resulted in an increase in PTK activity that coprecipitated with the surface TCR complex and a corresponding increase in the levels of phospho zeta. TCR ligations also contributed to the detection of several additional phosphoproteins that coprecipitated with surface TCR complexes, including a 72-kDa tyrosine-phosphorylated protein. The presence of TCR-associated PTK activity also correlated with the binding of a 72-kDa protein, which became tyrosine phosphorylated in vitro kinase assays, to tyrosine phosphorylated TCR zeta. The cytoplasmic region of the TCR zeta chain was synthesized, tyrosine phosphorylated, and conjugated to Sepharose beads. Only tyrosine-phosphorylated, not nonphosphorylated, TCR zeta beads were capable of immunoprecipitating the 72-kDa protein from total cell lysates. This 72-kDa protein is likely the murine equivalent of human PTK ZAP-70, which has been shown to associate specifically with phospho zeta. These results suggest that TCR-associated PTK activity is regulated, at least in part, by the tyrosine phosphorylation status of TCR zeta.  相似文献   

5.
Most subunits of the alphabeta deltaepsilon gammaepsilon zetazeta T cell antigen receptor (TCR) complex associate with the molecular chaperone calnexin shortly after their synthesis in the endoplasmic reticulum, including clonotypic TCRalpha,beta molecules and invariant CD3gamma,delta,epsilon chains. While calnexin interaction is suggested to be important for the stability of newly synthesized TCRalpha subunits, the role of calnexin in the survival and assembly of remaining TCR components is unknown. Here we evaluated the expression of TCR proteins in CEM T cells and the calnexin-deficient CEM variant CEM.NK(R). We found that CEM and CEM.NK(R) cells constitutively synthesized all TCR subunits except for TCRalpha and that CD3gamma,delta,epsilon components and CD3-beta complexes were effectively assembled together in both cell types. The stability and folding of core CD3epsilon chains were similar in CEM and CEM.NK(R) cells. Interestingly, TCRalpha synthesis was differentially induced by phorbol myristate acetate treatment in CEM and CEM.NK(R) cells and TCRalpha proteins synthesized in CEM.NK(R) cells showed reduced survival compared to those made in CEM cells. Importantly, these data show that TCR complexes were inducibly expressed on CEM.NK(R) cells in the absence of calnexin synthesis. These results demonstrate that TCR complexes can be expressed in the absence of calnexin and suggest that the role of calnexin in the quality control of TCR assembly is primarily restricted to the stabilization of newly synthesized TCRalpha proteins.  相似文献   

6.
An early event in T cell antigen receptor (TCR)-mediated signal transduction is the activation of a protein tyrosine kinase (PTK) pathway. An unidentified PTK activity and a kinase substrate termed ZAP-70 have previously been shown to associate with TCR zeta upon cross-linking of TCR beta. Here we report that TCR activation, by antibody cross-linking of either TCR beta or CD3 epsilon, results in the association of a PTK activity with both CD3 and TCR zeta. A number of in vitro PTK substrates are also associated with CD3 and TCR zeta, including CD3 epsilon, TCR zeta, p60fyn, p62yes, and a predominant 70-kDa protein (ZAP-70). The shared PTK activity and PTK substrates suggest that both CD3 and TCR zeta are involved in signal transduction via a shared pathway. We used [alpha-32P]gamma-azidoanilido ATP, a photoreactive analogue of ATP, to detect CD3-associated proteins that bound ATP upon TCR activation, reasoning that such proteins could represent PTKs. A 70-kDa protein bound [alpha-32P]gamma-azidoanilido ATP only upon TCR activation, and we propose that this protein and the 70-kDa PTK substrate are the same protein. Furthermore, we propose that this protein is responsible for the PTK activity observed to be associated with TCR zeta and CD3 upon TCR activation.  相似文献   

7.
The TCR for Ag, on the majority of human T cells, is a disulfide-linked heterodimer composed of TCR-alpha and -beta chains noncovalently associated with the monomorphic CD3 complex composed of the CD3-gamma, -delta, -epsilon, and -zeta chains. The interactions involved in the assembly of the various components of this multimeric protein complex are not fully understood. In this report, a variant of the human leukemic T cell line Jurkat that synthesized all of the known components of the TCR/CD3 complex but fails to express the TCR/CD3 complex at the cell surface is further characterized. This variant, J79, has a mutated TCR-alpha chain that does not affect the assembly of the pentameric form (TCR-alpha beta-CD3-gamma delta epsilon) of the TCR/CD3 complex but inhibits the assembly of the CD3-zeta homodimer with the rest of the complex (TCR-alpha beta-CD3-gamma delta epsilon----TCR-alpha beta-CD3-gamma delta epsilon zeta 2). Transfecting a wild-type TCR-alpha gene into J79 reconstituted expression of a complete functionally competent TCR/CD3 complex at the cell surface. The results indicate that the TCR-alpha chain plays a crucial role in the assembly of the CD3-zeta homodimer with the pentameric form of the TCR/CD3 complex.  相似文献   

8.
The T cell antigen receptor (TCR) is a multisubunit membrane complex. It consists of two disulfide-linked polymorphic chains (either alpha-beta or gamma-delta heterodimers) which are noncovalently linked to five invariant chains. The CD3-gamma and CD3-delta chains bear N-linked carbohydrates and the CD3-epsilon and zeta chains are nongly-cosylated. Further analysis of the zeta chain in murine T cells demonstrates that it can exist as either a homodimer or disulfide linked to an additional protein with an apparent Mr of 22,000. The partial peptide map of this 22-kDa protein is different than zeta and all of the CD3 components. Like zeta, it has no apparent N-linked carbohydrate chains. We have chosen to refer to this subunit as the eta chain of the TCR. Ninety percent of zeta in cloned and nonclonal populations of T cells exist as a homodimer, and the remainder is found linked to the eta chain. The tight regulation of the zeta-zeta to zeta-eta ratio suggests an important functional role for these structural components of the TCR.  相似文献   

9.
《The Journal of cell biology》1988,107(6):2149-2161
We have examined the fate of newly synthesized T cell antigen receptor (TCR) subunits in a T cell hybridoma deficient in expression of the clonotypic beta chain. Synthesis and assembly of the remaining chains proceed normally but surface expression of TCR chains is undetectable in these cells. A variety of biochemical and morphological techniques has been used to show that the TCR chains in these cells fail to be transported to any of the Golgi cisternae. Instead, they are retained in a pre-Golgi compartment which is either part of or closely related to the endoplasmic reticulum. The CD3-delta chain is degraded by a non- lysosomal process that is inhibited at temperatures at or below 27 degrees C. By contrast, the remaining chains (CD3-epsilon, CD3-gamma, and zeta) are very stable over 7 h. We propose possible mechanisms that may explain the differential fate of TCR chains retained in a pre-Golgi compartment.  相似文献   

10.
The TCR/CD3 complex is a multimeric protein complex composed of a minimum of seven transmembrane chains (TCR alpha beta-CD3 gamma delta epsilon zeta 2). Whereas earlier studies have demonstrated that both the TCR-alpha and -beta chains are required for the cell surface expression of the TCR/CD3 complex, the role of the CD3 chains for the TCR/CD3 expression have not been experimentally addressed in human T cells. In this study the function of the CD3-zeta chain for the assembly, intracellular processing, and expression of the TCR/CD3 complex in the human leukemic T cell line Jurkat was investigated. The results indicate that: 1) CD3-zeta is required for the cell surface expression of the TCR/CD3 complex; 2) the pentameric form (TCR alpha beta-CD3 gamma delta epsilon) of the TCR/CD3 complex and single TCR chains associated with CD3 (TCR alpha-CD3 gamma delta epsilon and TCR beta-CD3 gamma delta epsilon) are produced in the endoplasmic reticulum in the absence of CD3-zeta; 3) the CD3-zeta does not associate with TCR alpha-CD3 gamma delta epsilon or TCR beta-CD3 gamma delta epsilon complexes; 4) CD3-zeta associate with the pentameric form of the TCR/CD3 complex in the endoplasmic reticulum to form the heptameric complex (TCR alpha beta-CD3 gamma delta epsilon----TCR alpha beta-CD3 gamma delta epsilon 2); and 5) CD3-zeta is required for the export of the TCR/CD3 complex from the endoplasmic reticulum to the Golgi apparatus for subsequent processing.  相似文献   

11.
Antiphosphotyrosine immunoblots were used to characterize tyrosine phosphorylated proteins after stimulation of the human TCR. Increased tyrosine phosphorylation was evident on at least 12 substrates within 2 min after ligation of the TCR with mAb. Analysis of the time course for increased tyrosine phosphorylation revealed distinct patterns. Increased phosphorylation of 135-kDa and 100-kDa substrates was evident within 5 s, whereas increased phosphorylation of the TCR-zeta-chain required several minutes after treatment with anti-CD3 mAb. This rapid cellular tyrosine phosphorylation occurred independent of the cell cycle, as it occurred after stimulation of resting T cells, T cell blasts, and the Jurkat T cell leukemia line. When the TCR complex was cross-linked together with the CD4 receptor by heteroconjugate anti-CD3/CD4 mAb, an increased magnitude of tyrosine phosphorylation occurred, although no new substrates could be detected. The increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates was specific in that anti-HLA class I, anti-CD6, anti-CD7, and anti-CD28 antibodies did not cause increased tyrosine phosphorylation. Anti-CD4 stimulation of resting T cells did not cause increased tyrosine phosphorylation of pp100 and pp135, suggesting that the CD4-associated kinase, lck, does not account for the tyrosine phosphorylation observed after TCR stimulation. Similarly, pharmacologic treatment of cells with phorbol ester and calcium ionophore did not cause increased tyrosine phosphorylation of these substrates, indicating that activation of protein kinase C or phospholipase C does not account for these early increases in tyrosine phosphorylation. The time of onset of pp100 phosphorylation, and the magnitude of phosphorylation correlated with the magnitude of calcium mobilization when cells were stimulated with different forms of TCR stimulation. When cells were labeled with [3H]myoinositol and analyzed after stimulation by anti-CD3 mAb, increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates preceded the activation of phospholipase C, as measured by the appearance of inositol 1,4,5-trisphosphate. This occurred in both T cell blasts and in the Jurkat T cell line. Thus, these findings show that increased tyrosine phosphorylation is the earliest yet detected signal observed after ligation of the TCR complex, and furthermore suggest that tyrosine phosphorylation might link the TCR to the phosphatidylinositolbisphosphate hydrolysis signaling pathway.  相似文献   

12.
K P Kearse  D B Williams    A Singer 《The EMBO journal》1994,13(16):3678-3686
The alpha beta T-cell antigen receptor (TCR) is a multisubunit transmembrane complex composed of at least six different proteins (alpha, beta, gamma, delta, epsilon and zeta) that are assembled in the endoplasmic reticulum (ER). In this report we have examined the role of oligosaccharide processing on survival and assembly of nascent TCR proteins within the ER and their associations with molecular chaperone proteins important in TCR assembly. We found that treatment of BW5147 T cells with the glucosidase inhibitor castanospermine resulted in markedly accelerated degradation of nascent TCR alpha proteins with a half-life of approximately 20 min. Accelerated degradation was unique to TCR alpha proteins, as the stability of nascent TCR beta and CD3 gamma,epsilon chains was unaltered. Consistent with a requirement for glucose (Glc) trimming for survival of nascent TCR alpha proteins within the ER, we found that newly synthesized TCR alpha chains were innately unstable in the glucosidase II-deficient BW5147 mutant cell line PHAR2.7. In addition to destabilizing nascent TCR alpha proteins we found that persistence of Glc residues on core oligosaccharides markedly interfered with association of both TCR alpha and TCR beta glycoproteins with the molecular chaperone calnexin. Finally, using 2B4 T hybridoma cells in which TCR complexes are efficiently assembled, we found that rapid degradation of nascent TCR alpha proteins induced by impaired Glc trimming severely limits assembly of TCR alpha proteins with TCR beta proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The T cell antigen receptor (TCR) plays a key role in the process of antigen recognition. It is a complex of at least seven peptide chains (alpha beta gamma delta epsilon zeta-zeta). It is found on the surface of mature T cells and functions in antigen binding in the presence of the major histocompatibility complex. It has been known for some time that physical associations between the CD3 proteins and the TCR chains are essential for efficient transport of either component to the surface of T cells. For example, T cells that lack either the alpha, beta, or delta chains synthesize partial complexes that are eventually degraded. cDNAs encoding the six chains of receptor have become available recently. We have used transfection techniques to generate a panel of Chinese hamster ovary cells that contain partial receptor complexes of known composition and also cells that express all six subunits of the TCR.CD3 complex. Cells in this panel were analyzed for the ability to form alpha-beta heterodimers and also an ability to transport the synthesized chains to the plasma membrane. These studies have allowed us to define the minimum requirements for TCR.CD3 expression on the cell surface.  相似文献   

14.
The human T acute lymphocytic leukemia cell line, SUP-T13, is a mosaic of TCR/CD3+ and TCR/CD3- cells. Individual SUP-T13 cells can spontaneously switch on and off surface TCR/CD3 expression. This switching was demonstrated by culturing and analysis of single cell clones that were TCR/CD3+ or TCR/CD3-. The rate of switching is about 10(-2)/cell per generation in either direction. This is too high to be due to a spontaneous mutation event. Furthermore, switched cells can revert at similar rates, as demonstrated by repeated cloning and reanalysis. This makes it likely that a regulatory change is responsible for switching. In support of this, all known TCR/CD3 proteins are found intracellularly in TCR/CD3- cells, and they associate with each other as in TCR/CD3+ cells. Furthermore, no structural abnormalities of the TCR/CD3 chains can be seen in TCR/CD3- cells using two-dimensional electrophoresis. However, in these cells, the chains accumulate in great excess intracellularly. This accumulation is specific to the TCR/CD3 complex, as other glycoproteins are still expressed normally on the cell surface. Thus, there is regulation of TCR expression at a posttranslational level. These TCR/CD3- cells may lead to the identification of novel protein(s) involved in glycosylating, processing, or transporting the TCR/CD3 complex. Potential loss of TCR/CD3 expression may also limit the feasibility of TCR-based therapies for T cell leukemias.  相似文献   

15.
T cell hybridomas were generated from CD3+, CD4-, CD8- splenocytes and fetal thymocytes. V gamma 1-expressing proteins present on these murine TCR-gamma delta hybridomas were identified by using an anti-TCR V gamma 1 peptide serum. This antiserum specifically immunoprecipitated 41-kDa TCR V gamma-C gamma 4 chains and 31-kDa TCR V gamma-C gamma 1/2 chains from distinct heterodimers expressed on the TCR-gamma delta T cell hybridomas. The RNA from a hybridoma with a 31-kDa TCR-gamma chain hybridized with a V gamma 1 probe but failed to hybridize with a V gamma 2 probe. In contrast, the RNA from a hybridoma with a 32-kDa TCR-gamma chain hybridized with a V gamma 2 probe. This 32-kDa TCR-gamma chain was not immunoprecipitated by the anti-V gamma 1 serum. These data were consistent with the conclusion that the 31-kDa protein was the product of a V gamma 1 to C gamma 2 rearrangement, whereas the 32-kDa protein was the product of a V gamma 2 to C gamma 1 rearrangement. Furthermore, Southern analyses confirmed that the 32-kDa protein was the product of a V gamma 1.2-J gamma 2 rearrangement, and all three of the 41-kDa TCR-gamma chains were the results of V gamma 1.1-J gamma 4 rearrangements. This was the first demonstration at the clonal level of TCR-gamma proteins which use members of the V gamma 1 gene family, as well as the C gamma 2 constant region. Additional biochemical analyses of the TCR-gamma and -delta proteins from three independently derived C gamma 4-bearing T cell hybridomas suggested that most of the molecular mass diversity observed in the bulk subpopulation of peripheral C gamma 4-containing heterodimers may be contributed by the TCR-delta chains.  相似文献   

16.
The T cell antigen receptor (TCR) is a multisubunit complex composed of at least seven transmembrane chains. The predominant species in most T cells has the composition alpha beta gamma delta epsilon zeta 2. The roles of subunit assembly in transport out of the ER and in the recently described process of pre-Golgi degradation of newly synthesized TCR chains were analyzed in a T-cell line deficient in the synthesis of delta chains (delta 2) and in COS-1 fibroblasts transfected with genes encoding individual TCR chains. Studies with the delta-deficient T-cell line showed that, in the absence of delta, the other TCR chains were synthesized at normal rates, but, instead of being transported to the cell surface, they were retained in the ER. Analysis of the fate of TCR chains retained in the ER showed that they were degraded at vastly different rates by a nonlysosomal pathway. Whereas the alpha chains were degraded rapidly, gamma, zeta, and epsilon were relatively long-lived. To analyze whether this selective degradation was because of different intrinsic susceptibility of the individual chains to degradation or to the formation of resistant oligomers, TCR chains were expressed alone or in combinations in COS-1 fibroblasts. These studies showed that (a) individual TCR chains were degraded at different rates when expressed alone in COS-1 cells, and (b) sensitive chains could be stabilized by coexpression with a resistant chain. Taken together, these observations indicate that both intrinsic sensitivity and subunit assembly play a role in determining the rates at which newly synthesized TCR chains are degraded in the ER.  相似文献   

17.
We investigated early activation events after T cell triggering via the Ag receptor (TCR/CD3) complex as compared to activation via the CD2 surface molecule. To this end, resting peripheral human T lymphocytes were preincubated with 32P-orthophosphate and subsequently exposed to mitogenic mAb directed at either TCR/CD3 or CD2 for varying time periods. Cells were lysed and postnuclear lysates subjected to two-dimensional-gel electrophoresis (IEF and SDS-PAGE). As early as 10 min after stimulation through CD2, dephosphorylation of a cytosolic 19-kDa protein was observed. In contrast, this protein remained phosphorylated in unstimulated as well as CD3 activated T cells. Phosphoprotein (pp) 19 dephosphorylation was transient because, at later time points (2-4 h) after CD2 triggering, this protein was phosphorylated again. Phosphoaminoacid analysis indicated that pp19 is dephosphorylated on serine residues. Identical results were obtained using a CD2+ but TCR/CD3- human NK cell clone indicating that pp19 dephosphorylation occurs independent of surface expression of a TCR/CD3 complex. These data show that, in addition to protein phosphorylation events, serine dephosphorylation is involved in T cell triggering. More important, a selective signaling mechanism appears to be linked to T cell activation through the CD2 pathway.  相似文献   

18.
19.
The T cell receptor (TCR) is a molecular complex formed by at least seven transmembrane proteins: the antigen/major histocompatibility complex recognition unit (Ti alpha-beta heterodimer) and the invariant CD3 chains (gamma, delta, epsilon, zeta, and eta). In addition to targeting partially assembled Ti alpha-beta CD3 gamma delta epsilon TCR complexes to the cell surface, CD3 zeta appears to be essential for interleukin-2 production after TCR stimulation with antigen/major histocompatibility complex. The gamma chain of the high affinity Fc receptor for IgE (Fc epsilon RI gamma) has significant structural homology to CD3 zeta and the related CD3 eta subunit. To identify the functional significance of sequence homologies between CD3 zeta and Fc epsilon RI gamma in T cells, we have transfected a Fc epsilon RI gamma cDNA into a T cell hybridoma lacking CD3 zeta and CD3 eta proteins. Herein we show that a Fc epsilon RI gamma-gamma homodimer associates with TCR components to up-regulate TCR surface expression. A TCR composed of Ti alpha-beta CD3 gamma delta epsilon Fc epsilon RI gamma-gamma is sufficient to restore the coupling of TCR antigen recognition to the interleukin-2 induction pathway, demonstrating the functional significance of structural homology between the above receptor subunits. These results, in conjunction with the recent finding that CD3 zeta, CD3 eta, and Fc epsilon RI gamma are coexpressed in certain T cells as subunits of an unusual TCR isoform, suggest that Fc epsilon RI gamma is likely to play a role in T cell lineage function.  相似文献   

20.
TCR gene therapy is adversely affected by newly formed TCRalphabeta heterodimers comprising exogenous and endogenous TCR chains that dilute expression of transgenic TCRalphabeta dimers and are potentially self-reactive. We have addressed TCR mispairing by using a modified two-chain TCR that encompasses total human CD3zeta with specificities for three different Ags. Transfer of either TCRalpha:CD3zeta or beta:CD3zeta genes alone does not result in surface expression, whereas transfer of both modified TCR chains results in high surface expression, binding of peptide-MHC complexes and Ag-specific T cell functions. Genetic introduction of TCRalphabeta:zeta does not compromise surface expression and functions of an endogenous TCRalphabeta. Flow cytometry fluorescence resonance energy transfer and biochemical analyses demonstrate that TCRalphabeta:CD3zeta is the first strategy that results in highly preferred pairing between CD3zeta-modified TCRalpha and beta chains as well as absence of TCR mispairing between TCR:CD3zeta and nonmodified TCR chains. Intracellular assembly and surface expression of TCR:CD3zeta chains is independent of endogenous CD3gamma, delta, and epsilon. Taken together, our data support the use of TCRalphabeta:CD3zeta to prevent TCR mispairing, which may provide an adequate strategy to enhance efficacy and safety of TCR gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号