首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium pump of the plasma membrane is localized in caveolae   总被引:22,自引:14,他引:22       下载免费PDF全文
《The Journal of cell biology》1993,120(5):1147-1157
The Ca2+ pump in the plasma membrane plays a key role in the fine control of the cytoplasmic free Ca2+ concentration. In the present study, its subcellular localization was examined with immunocytochemical techniques using a specific antibody generated against the erythrocyte membrane Ca2+ pump ATPase. By immunofluorescence microscopy of cultured cells, the labeling with the antibody was seen as numerous small dots, often distributed in linear arrays or along cell edges. Immunogold EM of cryosections revealed that the dots correspond to caveolae, or smooth invaginations of the plasma membrane. The same technique applied to mouse tissues in vivo showed that the Ca2+ pump is similarly localized in caveolae of endothelial cells, smooth muscle cells, cardiac muscle cells, epidermal keratinocytes and mesothelial cells. By quantitative analysis of the immunogold labeling, the Ca2+ pump in capillary endothelial cells and visceral smooth muscle cells was found to be concentrated 18-25-fold in the caveolar membrane compared with the noncaveolar portion of the plasma membrane. In renal tubular and small intestinal epithelial cells, which have been known to contain the Ca2+ pump but do not have many caveolae, most of the labeling was randomly distributed in the basolateral plasma membrane, although caveolae were also positively labeled. The results demonstrate that the caveolae in various cells has the plasmalemmal Ca2+ pump as a common constituent. In conjunction with our recent finding that an inositol 1,4,5-trisphosphate receptor-like protein exists in the caveolae (Fujimoto, T., S. Nakade, A. Miyawaki, K. Mikoshiba, and K. Ogawa. 1992. J. Cell Biol. 119:1507-1513), it is inferred that the smooth plasmalemmal invagination is an apparatus specialized for Ca2+ intake and extrusion from the cytoplasm.  相似文献   

2.
The MDR1 multidrug resistance gene encodes a high molecular weight membrane-spanning cell surface protein, P-glycoprotein, that confers multidrug resistance by pumping various cytotoxic drugs, including vinblastine, doxorubicin or paclitaxel, out of cells. Overexpression of P-glycoprotein in human tumors has been recognized as a major obstacle for successful chemotherapy of cancer. Thus, P-glycoprotein represents an important drug target for pharmacological chemosensitizers. Initially, cell culture models to study the multidrug resistance phenotype were established by selecting drug-sensitive cells in step-wise increasing, sublethal concentrations of chemotherapy agents. P-glycoprotein was found to be overexpressed in many of these models. Multidrug resistant cells can also be generated by transfection of cultured cells with the MDR1 gene, followed by selection with cytotoxic drug at a concentration that kills all untransfected host cells. Transfectants expressing wild-type or mutant recombinant P-glycoprotein have significantly contributed to our understanding of the structure of P-glycoprotein and its molecular and cellular functions. Additionally, the MDR1 gene has also been used as a selectable marker for the transfer and coexpression of non-selectable genes. This article details means for detection of P-glycoprotein in DNA-transfected or retrovirally transduced, cultured cells. Different experimental approaches are described that make use of specific antibodies for detection of P-glycoprotein. Strategies to visualize P-glycoprotein include metabolic labeling using 35S-methionine, labeling with a radioactive photoaffinity analog, and non-radioactive immunostaining after Western blotting.  相似文献   

3.
The urokinase plasminogen activator receptor (uPAR), a glycosylphosphatidylinositol-linked glycoprotein, plays a central role in the regulation of pericellular proteolysis and participates in events leading to cell activation. Here, we demonstrate that uPAR, on a human melanoma cell line, is localized in caveolae, flask-shaped microinvaginations of the plasma membrane found in a variety of cell types. Indirect immunofluorescence with anti-uPAR antibodies on the melanoma cells showed a punctated staining pattern that accumulated to stretches along sides of cell-cell contact and membrane ruffles. uPAR colocalized with caveolin, a characteristic protein in the coat of caveolae, as demonstrated by double staining with specific antibodies. Further, uPAR could be directly localized in caveolae by in vivo immunoelectron microscopy. Both uPAR and its ligand, uPA, were present in caveolae enriched low density Triton X-100 insoluble complexes, as shown by immunoblotting. From such complexes, caveolin could be coprecipitated with uPAR-specific antibodies suggesting a close spatial association between uPAR and caveolin that might have implications for the signal transduction mediated by uPAR. Further, functional studies indicated that the localization of uPAR and its ligand in caveolae enhances pericellular plasminogen activation, since treatment of the cells with drugs that interfere with the structural integrity of caveolae, such as nystatin, markedly reduced cell surface plasmin generation. Thus, caveolae promote efficient cell surface plasminogen activation by clustering uPAR, uPA, and possibly other protease receptors in one membrane compartment.  相似文献   

4.
Presentation of doxorubicin in liposomes has shown to enhance the sensitivity of multidrug resistant CH LZ cells to the drug (Thierry et al. Cancer Commun. 1:311-316, 1989). We confirmed that liposomally encapsulated doxorubicin may partially overcome multidrug resistance in the human ovarian carcinoma SKVLB cell line and that this effect is, at least in part, due to an increase of cellular drug accumulation. When used at high concentration, empty liposomes appear to be specifically cytotoxic in the MDR SKVLB and CH LZ cells. As observed with certain multidrug resistance modulators, empty liposomes inhibited the specific [3H]-vincristine binding to P-glycoprotein-enriched membranes isolated from CH LZ cells (60% at 0.2 mg lipid/ml). Our data suggest that liposomes may alter the P-glycoprotein function by direct interaction.  相似文献   

5.
P-glycoprotein is a plasma membrane efflux pump which is responsible for multidrug resistance of many cancer cell lines. A number of studies have demonstrated the presence of P-glycoprotein molecules, besides on the plasma membrane, also in intracellular sites, such as the Golgi apparatus and the nucleus. In this study, the presence and function of P-glycoprotein in the nuclear membranes of human breast cancer cells (MCF-7 WT) and their multidrug resistant variants (MCF-7 DX) were investigated. Electron and confocal microscopy immunolabelling experiments demonstrated the presence of P-glycoprotein molecules in the nuclear membranes of MCF-7 DX cells. Moreover, the labelling pattern was strongly dependent on pH values of the incubation buffer. At physiological pH (7.2), a strong labelling was detected in the cytoplasm and the nuclear matrix in both sensitive and resistant MCF-7 cells. By raising the pH to 8.0, the P-glycoprotein molecules were easily detected in the cytoplasm (transport vesicles and Golgi apparatus), plasma and nuclear membranes exclusively in MCF-7 DX cells. Furthermore, drug uptake and efflux studies, performed by flow cytometry on isolated nuclei in the presence of the P-glycoprotein inhibitor cyclosporin A, suggested the presence of a functional P-glycoprotein in the nuclear membrane, but not in the nuclear matrix, of drug resistant cells. Therefore, P-glycoprotein in the nuclear envelope seems to represent a further defense mechanism developed by resistant cells against antineoplastic agents.  相似文献   

6.
Resistance to chloroquine in Plasmodium falciparum bears a striking similarity to the multi-drug resistance (MDR) phenotype of mammalian tumor cells which is mediated by overexpression of P-glycoprotein. We show here that the P. falciparum homologue of the P-glycoprotein (Pgh1) is a 160,000-D protein that is expressed throughout the asexual erythrocytic life cycle of the parasite. Quantitative immunoblotting analysis has shown that the protein is expressed at approximately equal levels in chloroquine resistant and sensitive isolates suggesting that overexpression of Pgh1 is not essential for chloroquine resistance. The chloroquine-resistant cloned line FAC8 however, does express approximately threefold more Pgh1 protein than other isolates which is most likely because of the increased pfmdr1 gene copy number present in this isolate. Immunofluorescence and immunoelectron microscopy has demonstrated that Pgh1 is localized on the membrane of the digestive vacuole of mature parasites. This subcellular localization suggests that Pgh1 may modulate intracellular chloroquine concentrations and has important implications for the normal physiological function of this protein.  相似文献   

7.

Background

Cryptococcus neoformans has a predilection for central nervous system infection. C. neoformans traversal of the blood brain barrier, composed of human brain microvascular endothelial cells (HBMEC), is the crucial step in brain infection. However, the molecular mechanism of the interaction between Cryptococcus neoformans and HBMEC, relevant to its brain invasion, is still largely unknown.

Methods

In this report, we explored several cellular and molecular events involving the membrane lipid rafts and caveolin-1 (Cav1) of HBMEC during C. neoformans infection. Immunofluorescence microscopy was used to examine the roles of Cav1. The knockdown of Cav1 by the siRNA treatment was performed. Phosphorylation of Cav1 relevant to its invasion functions was investigated.

Results

We found that the host receptor CD44 colocalized with Cav1 on the plasma membrane, and knockdown of Cav1 significantly reduced the fungal ability to invade HBMEC. Although the CD44 molecules were still present, HBMEC membrane organization was distorted by Cav1 knockdown. Concomitantly, knockdown of Cav1 significantly reduced the fungal crossing of the HBMEC monolayer in vitro. Upon C. neoformans engagement, host Cav1 was phosphorylated in a CD44-dependent manner. This phosphorylation was diminished by filipin, a disrupter of lipid raft structure. Furthermore, the phosphorylated Cav1 at the lipid raft migrated inward to the perinuclear localization. Interestingly, the phospho-Cav1 formed a thread-like structure and colocalized with actin filaments but not with the microtubule network.

Conclusion

These data support that C. neoformans internalization into HBMEC is a lipid raft/caveolae-dependent endocytic process where the actin cytoskeleton is involved, and the Cav1 plays an essential role in C. neoformans traversal of the blood-brain barrier.  相似文献   

8.
Plasma membrane Ca2+-ATPase is involved in the fine-tuned regulation of intracellular Ca2+. In this study, the presence of Ca2+-ATPase in caveolae from kidney basolateral membranes was investigated. With the use of a discontinuous sucrose gradient, we show that Ca2+-ATPase is exclusively located and fully active in caveolin-containing microdomains. Treatment with methyl-beta-cyclodextrin--a cholesterol chelator--leads to a spreading of both caveolin and completely inactive Ca2+-ATPase toward high-density fractions. These data support the view that Ca2+ fluxes mediated by Ca2+-ATPase in kidney epithelial cells occur only in caveolae, being strictly dependent on the integrity of these microdomains.  相似文献   

9.
Studies were undertaken to identify the protein kinase(s) responsible for P-glycoprotein phosphorylation in multidrug-resistant (KB-V1) human carcinoma cells and to elucidate the functional role of phosphorylation. P-glycoprotein migrated on sodium dodecyl sulfate gels with apparent Mr 150,000 and is termed P150. When KB-V1 membrane vesicles were incubated with [gamma-32P] ATP, P150 was phosphorylated by an endogenous kinase that exhibited properties of membrane-inserted protein kinase C (PKC). Both membrane-bound P150 and purified P150 served as effective substrates for highly purified rat brain PKC which incorporated approximately 0.6 mol of phosphate/mol of P150. Enzyme assays showed that KB-V1 cells exhibit 4-fold higher PKC activity compared with the drug-sensitive KB-3 cell line. The basal phosphorylation of P150 observed in 32P-labeled cells was increased 2-fold by phorbol ester (PMA) treatment and reduced 30% by treatment with the isoquinolinsulfonamide H-7. Phosphopeptide maps of partially digested P150, phosphorylated either in vitro with PKC or in intact 32P-labeled control or PMA-stimulated cells, were indistinguishable from one another. Drug accumulation assays revealed that PMA treatment of KB-V1 cells significantly reduced [3H]vinblastine accumulation induced by verapamil or by tetrandrine. The results suggest that PKC is primarily responsible for P150 phosphorylation in KB-V1 cells and that phosphorylation may play a modulatory role in the drug transport process.  相似文献   

10.
Amyloid beta (Aβ) levels are increased in HIV-1 infected brains due to not yet fully understood mechanisms. In the present study, we investigate the role of lipid rafts, functional caveolae, and caveolae-associated signaling in HIV-1-induced Aβ accumulation in HBMEC. Both silencing of caveolin-1 (cav-1) and disruption of lipid rafts by pretreatment with beta-methyl-cyclodextrin (MCD) protected against Aβ accumulation in HBMEC. Exposure to HIV-1 and Aβ activated caveolae-associated Ras and p38. While inhibition of Ras by farnesylthiosalicylic acid (FTS) effectively protected against HIV-1-induced accumulation of Aβ, blocking of p38 did not have such an effect. We also evaluated the role of caveolae in HIV-1-induced upregulation of the receptor for advanced glycation end products (RAGE), which regulates Aβ transfer from the blood stream into the central nervous system. HIV-1-induced RAGE expression was prevented by infecting HBMEC with cav-1 specific shRNA lentiviral particles or by pretreatment of cells with FTS. Overall, the present results indicate that Aβ accumulation in HBMEC is lipid raft and caveolae dependent and involves the caveolae-associated Ras signaling.  相似文献   

11.
Among the different factors which can contribute to CNS alterations associated with HIV infection, Tat protein is considered to play a critical role. Evidence indicates that Tat can contribute to brain vascular pathology through induction of endothelial cell activation. In the present study, we hypothesized that Tat can affect expression of P-glycoprotein (P-gp) in brain microvascular endothelial cells (BMEC). P-gp is an ATP-dependent cellular efflux transporter which is involved in the removal of specific non-polar molecules, including drugs used for highly active antiretroviral therapy (HAART). Treatment of BMEC with Tat(1-72) resulted in P-gp overexpression both at mRNA and protein levels. These alterations were confirmed in vivo in brain vessels of mice injected with Tat(1-72) into the hippocampus. Furthermore, pre-treatment of BMEC with SN50, a specific NF-kappaB inhibitor, protected against Tat(1-72)-stimulated expression of mdr1a gene, i.e. the gene which encodes for P-gp in rodents. Tat(1-72)-mediated changes in P-gp expression were correlated with increased rhodamine 123 efflux, indicating the up-regulation of transporter functions of P-gp. These results suggest that Tat-induced overexpression of P-gp in brain microvessels may have significant implications for the development of resistance to HAART and may be a contributing factor for low efficacy of HAART in the CNS.  相似文献   

12.
The carcinogenic process involves a complex series of genetic and biochemical changes that enables transformed cells to proliferate, migrate to secondary sites and, in some cases, acquire mechanisms that make cancer cells resistant to chemotherapy. This phenomenon in its most common form is known as multidrug resistance (MDR). It is usually mediated by overexpression of P-glycoprotein (P-gp) or other plasma membrane ATPases that export cytotoxic drugs used in chemotherapy, thereby reducing their efficacy. However, additional adaptive changes are likely to be required in order to confer a full MDR phenotype. Recent studies have shown that acquisition of MDR is accompanied by upregulation of lipids and proteins that constitute lipid rafts and caveolar membranes, notably glucosylceramide and caveolin. These changes may be related to the fact that in MDR cells a significant fraction of cellular P-gp is associated with caveolin-rich membrane domains, they may be involved in drug transport and they could have an impact on drug-induced apoptosis and on the phenotypic transformation of MDR cancer cells.  相似文献   

13.
The carcinogenic process involves a complex series of genetic and biochemical changes that enables transformed cells to proliferate, migrate to secondary sites and, in some cases, acquire mechanisms that make cancer cells resistant to chemotherapy. This phenomenon in its most common form is known as multidrug resistance (MDR). It is usually mediated by overexpression of P-glycoprotein (P-gp) or other plasma membrane ATPases that export cytotoxic drugs used in chemotherapy, thereby reducing their efficacy. However, additional adaptive changes are likely to be required in order to confer a full MDR phenotype. Recent studies have shown that acquisition of MDR is accompanied by up-regulation of lipids and proteins that constitute lipid rafts and caveolar membranes, notably glucosylceramide and caveolin. These changes may be related to the fact that in MDR cells a significant fraction of cellular P-gp is associated with caveolin-rich membrane domains, they may be involved in drug transport and they could have an impact on drug-induced apoptosis and on the phenotypic transformation of MDR cancer cells.  相似文献   

14.
Infection of vero cells by BK virus is dependent on caveolae   总被引:3,自引:0,他引:3       下载免费PDF全文
Eash S  Querbes W  Atwood WJ 《Journal of virology》2004,78(21):11583-11590
Polyomavirus-associated nephropathy occurs in approximately 5% of renal transplant recipients and results in loss of graft function in 50 to 70% of these patients. The disease is caused by reactivation of the common human polyomavirus BK (BKV) in the transplanted kidney. The early events in productive BKV infection are unknown. In this report, we focus on elucidating the mechanisms of BKV internalization in its target cell. Our data reveal that BKV entry into permissive Vero cells is slow, is independent of clathrin-coated-pit assembly, is dependent on an intact caveolin-1 scaffolding domain, is sensitive to tyrosine kinase inhibition, and requires cholesterol. BKV colocalizes with the caveola-mediated endocytic marker cholera toxin subunit B but not with the clathrin-dependent endocytic marker transferrin. In addition, BKV infectious entry is sensitive to elevation in intracellular pH. These findings indicate that BKV entry into Vero cells occurs by caveola-mediated endocytosis involving a pH-dependent step.  相似文献   

15.
Two photoactive radiolabeled analogs of colchicine, N-(p-azido[3,5-[3H]benzoyl)aminohexanoyldeacetylcolchicine ([3H]NABC]) and N-(p-azido-[3-125I]salicyl)aminohexanoyldeacetylcolchicine ([125I]NASC) were synthesized and used to identify colchicine-specific acceptor(s) in membrane vesicles from multidrug resistant (MDR) variant DC-3F/VCRd-5L Chinese hamster lung cells. Both [3H]NABC and [125I]NASC specifically photolabeled a prominent 150-180 kDa polypeptide in membrane vesicles from DC-3F/VCRd-5L cells. The photolabeled polypeptide was immunoprecipitated by monoclonal antibody C219 specific for the MDR-related P-glycoprotein (P-gp) indicating the identity of this protein with P-gp. Colchicine at 1000 microM reduced [3H]NABC photolabeling of P-gp by 72%. Furthermore, 100 microM of colchicine, vincristine, vinblastine, doxorubicin and actinomycin D inhibited [125I]NASC photolabeling by 45, 88.8, 91.1, 61.5, and 51% respectively. However, methotrexate did not affect the [125I]NASC photolabeling of P-gp, indicating the multidrug specificity of the P-gp colchicine acceptor for drugs to which these cells are resistant.  相似文献   

16.
Acute administration of 17beta-estradiol (E(2)) exerts antiatherosclerotic effects in healthy postmenopausal women. The vasoprotective action of E(2) may be partly accounted for by a rapid increase in nitric oxide (NO) levels in endothelial cells (ECs). However, the signaling mechanisms producing this rise are unknown. In an attempt to address the short-term effect of E(2) on endothelial NO production, confluent bovine aortic endothelial cells (BAECs) were incubated in the absence or presence of E(2), and NO production was measured. Significant increases in NO levels were detected after only 5 min of E(2) exposure without a change in the protein levels of endothelial NO synthase (eNOS). This short-term effect of estrogen was significantly blunted by various ligands which decrease intracellular Ca(2+) concentration. Furthermore, plasma membrane-impermeable BSA-conjugated E(2) (E(2)BSA) stimulated endothelial NO release, indicating that in the current system the site of action of E(2) is on the plasma membrane rather than the classical nuclear receptor. The partial antagonist tamoxifen did not block E(2)-induced NO production; however, a pure estrogen receptor alpha (ERalpha) antagonist ICI 182,780 completely inhibited E(2)-stimulated NO release. The binding of E(2) to the membrane was confirmed using FITC-labeled E(2)BSA (E(2)BSA-FITC). Western blot analysis showed that plasmalemmal caveolae possess ERalpha in addition to well-known caveolae-associated proteins eNOS and caveolin. This study demonstrates that the nongenomic and short-term effect of E(2) on endothelial NO release is Ca(2+)-dependent and occurs via ERalpha localized in plasmalemmal caveolae.  相似文献   

17.
Several lines of evidence suggest that polymerization of the amyloid beta-peptide (Abeta) into amyloid plaques is a pathogenic event in Alzheimer's disease (AD). Abeta is produced from the amyloid precursor protein as the result of sequential proteolytic cleavages by beta-secretase and gamma-secretase, and it has been suggested that these enzymes could be targets for treatment of AD. gamma-Secretase is an aspartyl protease complex, containing at least four transmembrane proteins. Studies in cell lines have shown that gamma-secretase is partially localized to lipid rafts, which are detergent-resistant membrane microdomains enriched in cholesterol and sphingolipids. Here, we studied gamma-secretase in detergent-resistant membranes (DRMs) prepared from human brain. DRMs prepared in the mild detergent CHAPSO and isolated by sucrose gradient centrifugation were enriched in gamma-secretase components and activity. The DRM fraction was subjected to size-exclusion chromatography in CHAPSO, and all of the gamma-secretase components and a lipid raft marker were found in the void volume (> 2000 kDa). Co-immunoprecipitation studies further supported the notion that the gamma-secretase components are associated even at high concentrations of CHAPSO. Preparations from rat brain gave similar results and showed a postmortem time-dependent decline in gamma-secretase activity, suggesting that DRMs from fresh rat brain may be useful for gamma-secretase activity studies. Finally, confocal microscopy showed co-localization of gamma-secretase components and a lipid raft marker in thin sections of human brain. We conclude that the active gamma-secretase complex is localized to lipid rafts in human brain.  相似文献   

18.
19.
The overexpression of P-glycoprotein (P-gp, ABCB1) in cancer cells often leads to multidrug resistance (MDR) through reduced drug accumulation. However, certain P-gp-positive cells display hypersensitivity, or collateral sensitivity, to certain compounds that are believed to induce Pgp-dependent oxidative stress. We have previously reported that MDR P-gp-positive CHO cells are collaterally sensitive to verapamil (VRP; Laberge et al. (2009) [1]). In this report we extend our previous findings and show that drug resistant CHO cells are also collaterally sensitive to physiologic levels of progesterone (PRO) and deoxycorticosterone (DOC). Both PRO and DOC collateral sensitivities in CHRC5 cells are dependent on P-gp-expression and ATPase, as knockdown of P-gp expression with siRNA or inhibition of P-gp-ATPase with PSC833 reverses PRO- and DOC-induced collateral sensitivity. Moreover, the mitochondrial complexes I and III inhibitors (antimycin-A and rotenone, respectively) synergize with PRO and DOC-induced collateral sensitivity. We also show that VRP inhibits PRO and DOC collateral sensitivity, consistent with earlier findings relating to the VRP’s modulation of PRO and DOC-stimulation of P-gp ATPase. The findings of this study demonstrate a P-gp-dependent collateral sensitivity of MDR cells in the presence of physiologically achievable concentrations of progesterone and deoxycorticosterone.  相似文献   

20.
Rotavirus NSP4, initially characterized as an endoplasmic reticulum intracellular receptor, is a multifunctional viral enterotoxin that induces diarrhea in murine pups. There have been recent reports of the secretion of a cleaved NSP4 fragment (residues 112 to 175) and of the association of NSP4 with LC3-positive autophagosomes, raft membranes, and microtubules. To determine if NSP4 traffics to a specific subset of rafts at the plasma membrane, we isolated caveolae from plasma membrane-enriched material that yielded caveola membranes free of endoplasmic reticulum and nonraft plasma membrane markers. Analyses of the newly isolated caveolae from rotavirus-infected MDCK cells revealed full-length, high-mannose glycosylated NSP4. The lack of Golgi network-specific processing of the caveolar NSP4 glycans supports studies showing that NSP4 bypasses the Golgi apparatus. Confocal imaging showed the colocalization of NSP4 with caveolin-1 early and late in infection, elucidating the temporal and spatial NSP4-caveolin-1 association during infection. These data were extended with fluorescent resonance energy transfer analyses that confirmed the NSP4 and caveolin-1 interaction in that the specific fluorescently tagged antibodies were within 10 nm of each other during infection. Cells transfected with NSP4 showed patterns of staining and colocalization with caveolin-1 similar to those of infected cells. This study presents an endoplasmic reticulum contaminant-free caveola isolation protocol; describes the presence of full-length, endoglycosidase H-sensitive NSP4 in plasma membrane caveolae; provides confirmation of the NSP4-caveolin interaction in the presence and absence of other viral proteins; and provides a final plasma membrane destination for Golgi network-bypassing NSP4 transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号