首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead impacts neuromuscular junction and might induce skeletal muscle weakness. Antioxidants may prevent toxic actions of lead on muscle. In this study, resting membrane potentials, endplate potentials, miniature endplate potentials (MEPPs) and isometric twitch tensions were recorded to investigate effects of alpha-tocopherol (Vitamin E) on lead induced changes at murine dorsiflexor muscle. Moreover, levels of endplate nicotinic receptors were measured by receptor autoradiography. Forty rats were divided into four groups (lead alone, alpha-tocopherol, lead plus alpha-tocopherol and saline). Lead (1 mg/kg, i.p.), was administered daily for 2 weeks and alpha-tocopherol (100 mg/kg, i.p.) was given daily for 3 weeks. Lead treatment significantly reduced twitch tension (from 4.4+/-0.4 to 2.2+/-0.3 g) and delayed half time of decay. MEPP frequencies and quantal content were also significantly reduced after lead treatment. Pretreatment with alpha-tocopherol reversed twitch tension reduction (4.1+/-0.3 g) and modified lead induced delay in half time of decay. Similarly, alpha-tocopherol modified the negative actions of lead exposure on MEPP frequencies and quantal content. Receptor autoradiographic studies revealed significant increase of nicotinic receptor levels at the endplate region of flexor muscle in lead treated mice. However, animals treated with lead plus alpha-tocopherol showed significantly decreased levels of nicotinic receptors. alpha-Tocopherol appears to protect against lead induced neuromuscular dysfunction. These effects of alpha-tocopherol are possibly mediated via a free radical mechanism or modification of calcium homeostasis.  相似文献   

2.
Lead impacts neuromuscular junction and might induce skeletal muscle weakness. Antioxidants may prevent toxic actions of lead on muscle. In this study, resting membrane potentials, endplate potentials, miniature endplate potentials (MEPPs) and isometric twitch tensions were recorded to investigate effects of α-tocopherol (Vitamin E) on lead induced changes at murine dorsiflexor muscle. Moreover, levels of endplate nicotinic receptors were measured by receptor autoradiography. Forty rats were divided into four groups (lead alone, α-tocopherol, lead plus α-tocopherol and saline). Lead (1?mg/kg, i.p.), was administered daily for 2 weeks and α-tocopherol (100?mg/kg, i.p.) was given daily for 3 weeks. Lead treatment significantly reduced twitch tension (from 4.4±0.4 to 2.2±0.3?g) and delayed half time of decay. MEPP frequencies and quantal content were also significantly reduced after lead treatment. Pretreatment with α-tocopherol reversed twitch tension reduction (4.1±0.3?g) and modified lead induced delay in half time of decay. Similarly, α-tocopherol modified the negative actions of lead exposure on MEPP frequencies and quantal content. Receptor autoradiographic studies revealed significant increase of nicotinic receptor levels at the endplate region of flexor muscle in lead treated mice. However, animals treated with lead plus α-tocopherol showed significantly decreased levels of nicotinic receptors. α-Tocopherol appears to protect against lead induced neuromuscular dysfunction. These effects of α-tocopherol are possibly mediated via a free radical mechanism or modification of calcium homeostasis.  相似文献   

3.
The effect of 24 hrs. water deprivation on spontaneous and evoked transmitter release was studied at flexor nerve terminals of control and lead-treated male C57BL mice. Miniature endplate potentials (MEPPs) and endplate potentials (EPPs) were recorded intracellularly from urethane-anesthetized (2 mg/g, i.p.) control and lead exposed mice in both hydrated and dehydrated conditions. Exposure to lead was made by i.p. injection of lead acetate (1.0 mg/kg) dissolved in a 5% glucose solution 24 hrs. prior to the experiment. Unimodal and bimodal MEPP frequencies decreased with dehydration, while small mode MEPPs remained unchanged and large mode MEPPs increased in frequency. EPP amplitude and quantal content were unchanged by dehydration. Lead treatment by itself reduced the frequency of unimodal and bimodal MEPPs but had no effect on the amplitude of EPPs or of quantal content. However a combination of dehydration and acute lead treatment reduced the frequency of unimodal, bimodal and large mode MEPPs and significantly reduced both EPP amplitude and quantal content. Dehydration apparently reveals an underlying neurotoxic action of lead at the neuromuscular junction. This raises a health concern that people subjected to both lead pollution and dehydration are at greater risk to lead poisoning of the neuromuscular junction.  相似文献   

4.
We studied fatigue of rat diaphragm in response to repetitive brief and prolonged electrical stimulation of the phrenic nerve, at 0.2, 1-100 Hz. Low and high frequency of stimulation produced twitch and tetanic contractions in the rat diaphragm. A mean maximum twitch tension of 1.4 +/- 0.1 g was produced at 1 Hz, and a mean maximum tetanic tension of 5.6 +/- 0.3 g was obtained at 100 Hz (means +/- S.E., n = 8). Twitch and tetanic fatigue was produced at all frequencies of stimulations, but with different time scale, or duration, and with different number of stimuli delivered to the muscle. At low rates of stimulation, e.g. 10 Hz, fewer stimuli were needed to fatigue the muscle (3000 in 5 min), whereas at high rates of stimulation, e.g. 50 Hz, more stimuli were needed to fatigue the muscle (6600 in 2.2 min). The amplitude of the tetanic tensions elicited at 10 and 50 Hz, at the end of 5 or 2 min fatiguing stimulation, was 39 +/- 2.7% and 80 +/- 3.1% of their respective control tensions (2.8 +/- 0 2 g and 5.3 +/- 0.5 g, n = 8, P 0.001). It was concluded that fatigue in the rat diaphragm depended on the frequency and duration of stimulation as well as on the number of stimuli delivered to the muscle. Various mechanisms of muscle fatigue are described in the discussion to explain the observations made in the present investigation.  相似文献   

5.
The effect of electromagnetic stimulation on nerve conduction and on muscle contraction was studied in isolated frog sciatic nerve-gastrocnemius muscle preparation. The nerve trunk was passed through an induction copper coil and current was induced from a d.c. source 1.5-4 V at a frequency of 100 min-1, for 20-120 s duration, via an operating switch. Normal indirectly-elicited twitch (0.5 Hz with 0.6 V, supramaximal, and 1 ms pulse duration) tension was elicited, repetitively, and this was interrupted by magnetic induction. Inhibition of the twitch tension was taken as a measure of conduction block. The results showed that magnetic stimulation inhibited or blocked the twitch contractions (control 3.2 +/- 0.1 g, tension, mean +/- s.e., n = 8), in 4-5 min, and hence it blocked nerve conduction in this preparation. Recovery was achieved within 4-5 min, after washing out the preparation in Ringer solution. The mechanism of inhibition was interpreted in terms of an interference with ionic fluxes across the cell membrane. A comparison of electrical and magnetic stimulation was made and this was related to their clinical and experimental implications.  相似文献   

6.
The effect of tetrodotoxin (TTX) (10(-5)-10(-6)M) on the mechanical activity and on the action potential of innervated and denervated muscle of the rat was studied. The twitch tension was reduced to 10 % of the control values within 20 min of TTX 10(-6) introduction. This effect was reversible. The mean twitch tension in the presence of 10(-6)M TTX expressed as a percentage of control was 9.3 +/- 2.4 (SEM) for innervated muscle and 10.9 +/- 2.5 for denervated muscle. The dose-effect twitch relation for denervated muscles was not significantly different from that observed in control innervated muscles in the 10(-3)-10(-6) TTX range. Action potentials of innervated muscles could not be elicited in 10(-6)M TTX. In the presence of this (TTX) fibers of chronically denervated muscles consistently responded to stimulation with action potentials which were slower and smaller but still with overshoot, contrasting with fibrillation potentials that had been described to be blocked by TTX.  相似文献   

7.
The effect of the ant venom neuropeptide--poneratoxin (PoTX)--on neuromuscular transmission in rat diaphragm tissue was studied by means of intracellular recordings of spontaneous miniature endplate potentials (MEPPs) and of nerve evoked endplate potentials (EPPs). A 2 microM concentration of PoTX caused a pronounced but transient increase in MEPPs frequency. Moreover, within the first few minutes of PoTX administration, the area, rise time and half decay time of MEPPs gradually decreased, reaching steady values after 15-20 min. The alteration of the area, rise time and half decay time of EPPs after PoTX application was similar to that observed for MEPPs. We conclude that PoTX affects neuromuscular transmission in rat tissue, and suggest that PoTX could exert both pre- and postsynaptic effects.  相似文献   

8.
Miniature endplate potentials (MEPPs) are regarded as the expression of release of a single quantum of acetylcholine by motor nerve endings in the muscle. Mepp frequency is dependent on the presynaptic mechanism, but MEPP amplitudes and time courses are the result of the characteristics of pre- and postsynaptic structures and of the interaction between them. After post-traumatic reinnervation of skeletal muscles, MEPP frequency increases, reaching slowly normal values. Two groups of male, Sprague Dawley rats were used: in the first group left sciatic nerve was crushed and nerve fibres were allowed to regenerate, whereas the others were regarded as controls. MEPPs were intracellularly recorded in end plates of normal and reinnervated left extensor digitorum longus muscle. MEPPs were sampled and recorded on a personal computer, and, subsequently, amplitude, rise time and half decay time were computed. At early stage after reinnervation, MEPPs showed rise times and decay times longer than normal. Afterwards, we did not find differences between mepp time courses by normal and reinnervated end plates. The possible relationships between the results and changes in acetylcholine receptor number and type, and in acetylcholinesterase activity occurring during denervation and reinnervation are discussed.  相似文献   

9.
Repetitive stimulation of mammalian fast-twitch skeletal muscles will normally result in a positive staircase response. This phenomenon was investigated in the rat gastrocnemius muscle following a 2-week period of tetrodotoxin-induced disuse. Muscle inactivity was imposed by superfusing tetrodotoxin in saline over the left sciatic nerve via an implanted osmotic pump. In situ isometric contractile responses to double pulse stimulation and repetitive stimulation at 10 Hz were determined the day after removal of the pump. Two weeks of disuse resulted in 40% muscle weight loss. A twitch contraction gave the same force when expressed per gram of wet muscle weight in control muscles, 317 +/- 24.6 (means +/- SE) g/g, as compared with tetrodotoxin-treated muscles, 328 +/- 24.2 g/g. Both contraction time and half-relaxation time were prolonged following treatment with tetrodotoxin. Repetitive stimulation at 10 Hz resulted in a positive staircase response in the control muscles, but not in muscles of the tetrodotoxin-treated rats. The observed changes in the time course of the twitch contraction with repetitive stimulation following tetrodotoxin-induced disuse are consistent with alterations in sarcoplasmic reticulum handling of calcium. It is not certain if there is a change following disuse in the mechanism normally associated with staircase or if this mechanism is merely opposed by an early fatigue.  相似文献   

10.
The effects of prostaglandin E2 (PGE2) and indomethacin on excitatory neuro-effector transmission in the human bronchus were investigated by tension recording and microelectrode methods. PGE2 (10(-10)-10(-9)M) suppressed the amplitude of twitch contractions and excitatory junction potentials (e.j.ps) evoked by field stimulation at a steady level of basal tension obtained by the combined application of indomethacin (10(-5) M) and FPL55712 (10(-6) M). In doses over 10(-8)M, PGE2 reduced the muscle tone and dose-dependently suppressed the amplitude of twitch contractions. Indomethacin (10(-5) or 5 x 10(-5) M) reduced the muscle tone and enhanced the amplitude of twitch contractions and e.j.ps evoked by field stimulation in the presence of FPL55712. PGE2 (10(-9) M) had no effect on the post-junctional response of smooth muscle cells to exogenously applied acetylcholine (ACh) (4 x 10(-7) M). However, indomethacin (10(-5) M) significantly enhanced the ACh-induced contraction of the human bronchus. These results indicate that PGE2 in low concentrations has a pre-junctional action to inhibit excitatory neuro-effector transmission in addition to a post-junctional action, presumably by suppressing transmitter release from the vagus nerve terminals in the human bronchial tissues.  相似文献   

11.
In frog twitch muscle fibres, Na-octanoate (NaC8) shifted the relation between potassium induced tension and membrane potential to the right. The present study has been carried out to investigate the effect of this fatty acid on frog tonic fibres. Potassium contractures measured on bundles of 30-40 fibres of ileofibularis muscles were less decreased by NaC8 (2.5-10 mmol/l) than those of twitch fibre bundles. In denervated muscles the sensitivity to NaC8 was increased, probably due to the development of sodium channels in the membranes. Experiments with mixed fibre bundles also showed a lower influence of NaC8 on potassium contracture of tonic fibres. On the other hand, tonic fibres showed a lower threshold of the potassium induced tension as well as a lower K+ concentration for maximal activation. This lower threshold was further lowered by NaC8, corresponding to a shift of the relation between potassium concentration and tension to the left. The membrane resting potentials were -58 +/- 9 mV in tonic fibres and -83 +/- 5 mV in twitch fibres. Five mmol/l NaC8 only induced depolarization of the membrane of tonic fibres. This depolarization (by about 20 mV) may be responsible for the threshold shift to lower K+ concentration in NaC8-exposed tonic fibres. In addition to the effects of NaC8 on sodium channels, interactions with Ca2+ binding sites are discussed.  相似文献   

12.
M C Tsai  M L Chen 《Life sciences》1987,40(23):2229-2236
The effects of phencyclidine(PCP) on the post-tetanic potentiation(PTP) of twitch tension were studied on the isolated mouse phrenic nerve diaphragm preparation. Phencyclidine increased directly elicited twitch tension while it decreased post-tetanic potentiation of the indirectly elicited twitch tension. The maximal depression effect of the PTP was found after higher frequencies and longer durations of stimulation. After repetitive stimulation, the amplitude of endplate potential was potentiated. Phencyclidine decreased the post-tetanic potentiation of the amplitude of endplate potential while the quantal content of the endplate potential was not affected. 4-Aminopyridine increased both directly and indirectly elicited twitch tension while it did not inhibit the post-tetanic potentiation of the twitch tension. It is concluded that phencyclidine suppressed the post-tetanic potentiation of the indirectly elicited twitch tension. The depressant effect may be mainly due to its effect on the acetylcholine receptor-ionic channel complex of the motor endplate.  相似文献   

13.
The 24 h recovery pattern of contractile properties of the triceps surae muscle, following a period of muscle fatigue, was compared in physically active young (25 years, n = 10) and elderly (66 years, n = 7) men. The fatigue test protocol consisted of 10 min of intermittent submaximal 20 Hz tetani. The maximal twitch (Pt) and tetanic force at 3 frequencies (10, 20 and 50 Hz) were determined at baseline and at 15 min, 1, 4 and 24 h after fatiguing the muscle. Maximal voluntary contraction (MVC) and vertical jump (MVJ) were also assessed. The loss of force during the fatigue test was not significantly different between the young (18 +/- 13%) and elderly (22 +/- 15%). Both groups showed similar and significant reductions of Pt (15%), tetanic force (10 to 35%) and rate of force development (dp/dt) (20%) 15 min and 1 h into recovery. The loss of force was greater at the lower stimulation frequencies of 10 and 20 Hz. Time-to-peak tension was unchanged from baseline during recovery in either group. The average rate of relaxation of twitch force (-dPt/dt) was decreased (p less than 0.05) and half-relaxation time significantly increased at 15 min and 1 h in the elderly but not the young. The findings indicate that after fatiguing contractions, elderly muscle demonstrates a slower return to resting levels of the rate and time course of twitch relaxation compared to the young.  相似文献   

14.
The purpose of this study was to evaluate disuse atrophy of skeletal muscle using a hind-limb suspension model, with special reference to energy metabolism. Twenty-four Sprague-Dawley rats were divided into four groups: control group (C), hind-limb suspended for 3 days (HS-3), for 7 days (HS-7) and for 14 days (HS-14). The gastrocnemius-plantaris-soleus (GPS) muscles in each group were subjected to the following measurements. After a 2-min rest, contraction of the GPS muscles was induced by electrical stimulation of the sciatic nerve at 0.25 Hz for 10 min, then the frequency was increased to 0.5 and 1.0 Hz every 10 min. During the stimulation, twitch forces were recorded by a strain gauge, and 31P-MRS was performed simultaneously. Maximum tension was measured at the muscle contraction induced at 0.25 Hz; the wet weight of the whole and each muscle in the GPS muscles was also measured. From the 31P-MR spectra during muscle contraction, the oxidative capacity was calculated and compared among the groups. The weights of the whole GPS muscles in C, HS-3, HS-7 and HS-14, were 2.66 +/- 0.09, 2.39 +/- 0.21, 2.34 +/- 0.21 and 2.18 +/- 0.14 (g) respectively. Thus, the muscle mass significantly decreased with time (p < 0.05). Among the GPS muscles, the decrease in weight of the soleus muscle was especially remarkable; in the HS-14 group its weight decreased to 60% of that in the C group. We evaluated maximum tension and oxidative capacity as the muscle function. The maximum tensions in C, HS-3, HS-7 and HS-14 were 519 +/- 43, 446 +/- 66, 450 +/- 23 and 465 +/- 29 (g), respectively. This was significantly greater in the C group than in any other groups, however there were no significant differences among the three HS groups. The oxidative capacity during muscle contraction in the C group was higher than in any HS group and it did not further decrease even if the suspension of the limbs was prolonged beyond 3 days. The present study showed that in disuse atrophy, muscle mass and muscle function did not change simultaneously. Thus, it is necessary to develop countermeasures to prevent muscle atrophy and muscle function deterioration independently.  相似文献   

15.
Transmural nerve stimulation following sympathetic (guanethidine 10(-4) mol/L, phenoxybenzamine 2 X 10(-5) mol/L, propanolol 2 X 10(-6) mol/L) and muscarinic blockade (atropine 5 X 10(-5) mol/L) produces a relaxatory response in canine saphenous veins contracted with prostaglandin F2 alpha. This relaxatory response was shown previously to be resistant to tetrodotoxin. Transmural nerve stimulation (10 V, 1.0 ms) was applied as intermittent trains of stimuli of 30 s duration at frequencies of 1-32 Hz. The veins showed a frequency dependent relaxation (maximum 2.65 +/- 0.20 g). The stimulations were repeated in the presence of lignocaine (10(-3) mol/L), apamin (10(-8) mol/L), ascorbic acid (10(-4) mol/L), or catalase (50 micrograms/mL). The relaxatory response was unaffected by apamin, scorpion toxin, superoxide dismutase, ascorbic acid, and catalase (p greater than 0.05). However, lignocaine (10(-3) mol/L) reduced significantly the relaxatory response to transmural nerve stimulation in this preparation (p less than 0.05). In a separate group of veins, lignocaine (10(-3) mol/L)l abolished the contractile response to transmural nerve stimulation with little effect upon the contractile response to exogenous noradrenaline and the relaxatory responses to isoprenaline and sodium nitrite. These findings support the proposition that the nonadrenergic, noncholinergic tetrodotoxin-resistant relaxatory response observed with transmural nerve stimulation in the canine saphenous vein is mediated by a neural mechanism.  相似文献   

16.
Electrophysiological and ultrastructural studies were performed on phrenic nerve-hemidiaphragm preparations isolated from wild-type and acetylcholinesterase (AChE) knockout (KO) mice to determine the compensatory mechanisms manifested by the neuromuscular junction to excess acetylcholine (ACh). The diaphragm was selected since it is the primary muscle of respiration, and it must adapt to allow for survival of the organism in the absence of AChE. Nerve-elicited muscle contractions, miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) were recorded by conventional electrophysiological techniques from phrenic nerve-hemidiaphragm preparations isolated from 1.5- to 2-month-old wild-type (AChE+/+) or AChE KO (AChE−/−) mice. These recordings were chosen to provide a comprehensive assessment of functional alterations of the diaphragm muscle resulting from the absence of AChE. Tension measurements from AChE−/− mice revealed that the amplitude of twitch tensions was potentiated, but tetanic tensions underwent a use-dependent decline at frequencies below 70 Hz and above 100 Hz. MEPPs recorded from hemidiaphragms of AChE−/− mice showed a reduction in frequency and a prolongation in decay (37%) but no change in amplitude compared to values observed in age-matched wild-type littermates. In contrast, MEPPs recorded from hemidiaphragms of wild-type mice that were exposed for 30 min to the selective AChE inhibitor 5-bis(4-allyldimethyl-ammoniumphenyl)pentane-3-one (BW284C51) exhibited a pronounced increase in amplitude (42%) and a more marked prolongation in decay (76%). The difference between MEPP amplitudes and decays in AChE−/− hemidiaphragms and in wild-type hemidiaphragms treated with BW284C51 represents effective adaptation by the former to a high ACh environment. Electron microscopic examination revealed that diaphragm muscles of AChE−/− mice had smaller nerve terminals and diminished pre- and post-synaptic surface contacts relative to neuromuscular junctions of AChE+/+ mice. The morphological changes are suggested to account, in part, for the ability of muscle from AChE−/− mice to function in the complete absence of AChE.  相似文献   

17.
Repetitive activation of a skeletal muscle results in potentiation of the twitch contractile response. Incompletely fused tetanic contractions similar to those evoked by voluntary activation may also be potentiated by prior activity. We aimed to investigate the role of stimulation frequency on the enhancement of unfused isometric contractions in rat medial gastrocnemius muscles in situ. Muscles set at optimal length were stimulated via the sciatic nerve with 50-micros duration supramaximal pulses. Trials consisted of 8 s of repetitive trains [5 pulses (quintuplets) 2 times per second or 2 pulses (doublets) 5 times per second] at 20, 40, 50, 60, 70, and 80 Hz. These stimulation frequencies represent a range over which voluntary activation would be expected to occur. When the frequency of stimulation was 20, 50, or 70 Hz, the peak active force (highest tension during a contraction - rest tension) of doublet contractions increased from 2.2 +/- 0.2, 4.1 +/- 0.4, and 4.3 +/- 0.5 to 3.1 +/- 0.3, 5.6 +/- 0.4, and 6.1 +/- 0.7 N, respectively. Corresponding measurements for quintuplet contractions increased from 2.2 +/- 0.2, 6.1 +/- 0.5, and 8.7 +/- 0.7 to 3.2 +/- 0.3, 7.3 +/- 0.6, and 9.0 +/- 0.7 N, respectively. Initial peak active force values were 27 +/- 1 and 61.5 +/- 5% of the maximal (tetanic) force for doublet and quintuplet contractions, respectively, at 80 Hz. With doublets, peak active force increased at all stimulation frequencies. With quintuplets, peak active force increased significantly for frequencies up to 60 Hz. Twitch enhancement at the end of the 8 s of repetitive stimulation was the same regardless of the pattern of stimulation during the 8 s, and twitch peak active force returned to prestimulation values by 5 min. These experiments confirm that activity-dependent potentiation is evident during repeated, incompletely fused tetanic contractions over a broad range of frequencies. This observation suggests that, during voluntary motor unit recruitment, derecruitment or decreased firing frequency would be necessary to achieve a fixed (submaximal) target force during repeated isometric contractions over this time period.  相似文献   

18.
High-frequency electrical stimulation (~20 Hz) of the lateral nerve in abdominal segments of the cricket, Teleogryllus oceanicus, caused an increase in tonus of the abdominal dorsal longitudinal muscle (DLM). This effect persisted for 1–5 min following stimulation. Application of the pentapeptide proctolin (threshold 1–10 nM) mimicked the increase in muscle tonus produced by electrical stimulation. Individual twitches were unaffected or slightly reduced by proctolin. Low-frequency electrical stimulation (<7 Hz) of the lateral nerve counteracted a previously induced increase in muscle tonus, apparently by activation of an inhibitory motoneuron. γ-Aminobutyric acid (GABA) mimicked the effect of low-frequency stimulation and reduced muscle tonus. Octopamine, in concentrations of ≤0.1 mM, was inactive on the abdominal DLM when stimulated at low frequencies (0.5–2 Hz). Application of proctolin to the metathoracic DLM caused an increase in twitch amplitude but had little effect on basal tonus. In conjunction with the previously described responses of the metathoracic DLM to octopamine, these results show that the serially homologous abdominal and metathoracic DLMs have dissimilar responses to the modulators proctolin and octopamine.  相似文献   

19.
In anesthetized in vivo preparations, responses of two types of extraocular muscle fibers have been studied. The small, multiply innervated slow fibers have been shown to be capable of producing propagated impulses, and thus have been labeled slow multi-innervated twitch fibers. Fast and slow multi-innervated twitch fibers are distinguished by impulse conduction velocities, by ranges of membrane potentials, by amplitudes and frequencies of the miniature end plate potentials, by responses to the intravenous administration of succinylcholine, by the frequency of stimulation required for fused tetanus, and by the velocities of conduction of the nerve fibers innervating each of the muscle fiber types.  相似文献   

20.
The properties of the penis retractor muscle of Aplysia have been studied using intracellular, sucrose gap and tension recording. The fibers are of the invertebrate smooth muscle type and exhibit slow contractions which occur spontaneously or in response to stretch in isolated preparations. Individual muscle fibers are innervated by excitatory and inhibitory axons. A variety of sizes of excitatory and inhibitory junctional potentials can be recorded from them. The innervation is probably diffuse and functionally polyneuronal. The fibers are electrically coupled, permeable to potassium and chloride at rest, and exhibit no overshooting active responses. The muscle shows graded responses of depolarization and contraction proportional to strength of nerve stimulation. Facilitation and depression of junctional potentials are seen with various frequencies of nerve stimulation. Post-tetanic potentiation occurs with nerve stimulation at frequencies from 2 to 50 Hz and is suppressed in the presence of increased extracellular calcium concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号