首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Morphogenetically Specific Mutability in DROSOPHILA ANANASSAE   总被引:8,自引:6,他引:2       下载免费PDF全文
Hinton CW 《Genetics》1984,106(4):631-653
A stock exhibiting hypermutability with respect to visible mutants (Om) affecting optic morphology was subjected to genetic analysis. The production of Om mutants, independently recovered with a frequency of two per 104, is restricted to females and depends primarily on homozygosity of their X chromosomes; in heterozygotes, Om mutability is stimulated by the presence of either one of two extrachromosomally replicating elements previously identified in other stocks having cryptic mutability systems. The semidominant and nonpleiotropic Om mutants are not associated with gross rearrangements and they map to at least 15 loci. Most of the loci defined by mapping are represented by two or more Om mutants which, despite considerable interlocus mimicry, sometimes display locus-specific phenotypes. Om mutants are moderately unstable, and they are subject to dominant suppressors that arise spontaneously at either of two X-linked loci. An interpretation of these observations invokes an X-linked transposable element (tom) that specifically inserts into control sequences shared by a set of structural genes involved in eye morphogenesis.  相似文献   

2.
Optic morphology (Om) mutations ofDrosophila ananassae are semidominant, neomorphic and nonpleiotropic, map to at least 22 loci scattered throughout the genome, and are associated with the insertion of thetom retrotransposon. Molecular and genetic analyses have revealed that eye morphology defects ofOm mutants are caused by the ectopic or excessive expression ofOm genes in the eye imaginal discs of third instar larvae. It is therefore assumed that thetom element carries tissue-specific gene regulatory sequences which enhance expression of theOm genes. In the present study, we examined whether or not the long terminal repeats (LTR) of thetom element contain such an eye imaginal disc-specific enhancer, usingD. melanogaster transformants containing alacZ gene ligated to thetom LTR. Analyses oflacZ gene expression in the eye imaginal discs of third instar larvae of 18 independently established transformant lines showed that thetom LTR was capable of enhancinglacZ expression in all the transformant lines, but the degree of enhancement varied between lines. In addition, the effect of thetom LTRlacZ gene evidently changed when thetom LTR construct was relocated to different chromosomal positions. On the basis of these findings, it is hypothesized that ectopic and excessive expression of theOm genes in the eye imaginal discs is induced by an eye imaginal disc-specific enhancer present in thetom LTR, the effect of which may be subject to chromosomal position effects.  相似文献   

3.
Optic morphology (Om) mutations in Drosophila ananassae map to at least 22 loci, which are scattered throughout the genome. Om mutations are all semidominant, neomorphic, nonpleiotropic, and associated with the insertion of a retrotransposon, tom. We have found that the Om(2D) gene encodes a novel protein containing histidine/proline repeats, and is ubiquitously expressed during embryogenesis. The Om(2D) RNA is not detected in wild-type eye imaginal discs, but is abundantly found in the center of the eye discs of Om(2D) mutants, where excessive cell death occurs. D. melanogaster flies transformed with the Om(2D) cDNA under control of the hsp70 promoter display abnormal eye morphology when heat-shocked at the third larval instar stage. These results suggest that the Om(2D) gene is not normally expressed in the eye imaginal discs, but its ectopic expression, induced by the tom element, in the eye disc of third instar larvae results in defects in adult eye morphology.  相似文献   

4.
Optic morphology (Om) mutations in Drosophila ananassae map to at least 22 loci, which are scattered throughout the genome. Om mutations are all semidominant, neomorphic, nonpleiotropic, and associated with the insertion of a retrotransposon, tom. We have found that the Om(2D) gene encodes a novel protein containing histidine/proline repeats, and is ubiquitously expressed during embryogenesis. The Om(2D) RNA is not detected in wild-type eye imaginal discs, but is abundantly found in the center of the eye discs of Om(2D) mutants, where excessive cell death occurs. D. melanogaster flies transformed with the Om(2D) cDNA under control of the hsp70 promoter display abnormal eye morphology when heat-shocked at the third larval instar stage. These results suggest that the Om(2D) gene is not normally expressed in the eye imaginal discs, but its ectopic expression, induced by the tom element, in the eye disc of third instar larvae results in defects in adult eye morphology.  相似文献   

5.
THE Lyon hypothesis of X chromosome inactivation predicts that in mammalian females, somatic cells are mosaic with respect to whether the active X chromosome is of maternal or paternal origin and that this chromosomal mosaicism is heritable somatically1. Studies of cell clones derived from females who were heterozygous for genes at one of several X-linked loci2–6 have provided good evidence for such mosaicism. Proof that only one of the two X chromosomes, however, is active in any given cell rests on the demonstration that the cell or its clone expresses all of the X-linked genes from one parent and none from the other parent. For this purpose it is useful to examine cloned cells from female subjects for genetic markers representing allelic genes at two or more of the parental loci. This study was undertaken to determine whether genes at the X-linked loci for glucose-6-phosphate dehydrogenase (G6PD) and phosphoglycerate kinase (PGK) are consistently expressed in the eis position in cloned cells as would be expected from a single parental contribution.  相似文献   

6.
The behavior of an unstable allele of the singed-bristle locus on the X chromosome was studied in connection with the occurrence of lethal mutations on that same chromosome. The unstable allele, weak singed (snw), is under the control of the P-M system of hybrid dysgenesis and, in the M cytotype, mutates secondarily to extreme singed (sne) and to wild type (sn+) at high rates. Chromosomes whose snw allele had mutated in this fashion sustained lethal mutations at a rate of 3%; whereas, those whose snw allele had apparently remained unchanged, acquired lethals at a lower rate, 1.3%. The significant difference between these values indicates a statistical coincidence between the phenomena of snw instability and X-linked lethal mutation induction. This coincidence can be explained by postulating that mutations at the singed locus sometimes release a genetic element capable of reinserting elsewhere in the chromosome. Alternately, snw instability and lethal induction might be associated because they are the effects of a common cause, perhaps some mutation-inducing substance present in various amounts in the germ cells of dysgenic flies.—The lethals that occurred on chromosomes whose snw allele had mutated to sne mapped preferentially close to singed. The lethals on the snw and sn+ chromosomes did not show this concentration on the map. Cytological analysis of samples of all three types of lethal chromosomes indicated that, with one exception, there was no detectable breakage at the singed locus itself. The single instance of breakage at singed was not associated with any change in the singed phenotype. Thus, the instability of snw apparently does not involve detectable breakage of the singed locus, or if it does, this breakage is not a common event.  相似文献   

7.
M. Gans  F. Forquignon    M. Masson 《Genetics》1980,96(4):887-902
A high frequency of homeotic transformations appears in Df(3)red/+ progeny of Df(1)snC128 /+ females. Generally, the metathoracic appendages are partially transformed into mesothoracic ones. Df(1)snC128 includes a small region of the X chromosome: 7D1 to 7D5-6. Hypodosage of this region is mainly effective at the level of the maternal genotype, and the effect is probably due to hypodosage of the wild-type allele of the gene fs(1)h. Df(3)red has an effect that is mainly, if not exclusively, zygotic, probably due to hypodosage of the wild-type allele of Rg-bx. The frequencies of transformed flies resulting from the interaction between Df(1)snC128 and Df(3)red are not very sensitive to external conditions and genetic background. Studies of the interactions between Df(1)snC128 and other mutations or deficiencies of chromosome 3 [Rg-pbx, bx, pbx, Ubx1, Ubx130, Ubx80, Df(3)P9] reveal an analogy between the hypodosage effect of region 7D1–7D5-6 and the effects of ether treatment of blastoderm stage eggs. The role of the gene fs(1)h in the process of segment determination is discussed in the light of these results.  相似文献   

8.
Sex chromosomes have a large effect on reproductive isolation and play an important role in hybrid inviability. In Drosophila hybrids, X-linked genes have pronounced deleterious effects on fitness in male hybrids, which have only one X chromosome. Several studies have succeeded at locating and identifying recessive X-linked alleles involved in hybrid inviability. Nonetheless, the density of dominant X-linked alleles involved in interspecific hybrid viability remains largely unknown. In this report, we study the effects of a panel of small fragments of the D. melanogaster X-chromosome carried on the D. melanogaster Y-chromosome in three kinds of hybrid males: D. melanogaster/D. santomea, D. melanogaster/D. simulans and D. melanogaster/D. mauritiana. D. santomea and D. melanogaster diverged over 10 million years ago, while D. simulans (and D. mauritiana) diverged from D. melanogaster over 3 million years ago. We find that the X-chromosome from D. melanogaster carries dominant alleles that are lethal in mel/san, mel/sim, and mel/mau hybrids, and more of these alleles are revealed in the most divergent cross. We then compare these effects on hybrid viability with two D. melanogaster intraspecific crosses. Unlike the interspecific crosses, we found no X-linked alleles that cause lethality in intraspecific crosses. Our results reveal the existence of dominant alleles on the X-chromosome of D. melanogaster which cause lethality in three different interspecific hybrids. These alleles only cause inviability in hybrid males, yet have little effect in hybrid females. This suggests that X-linked elements that cause hybrid inviability in males might not do so in hybrid females due to differing sex chromosome interactions.  相似文献   

9.
RpII215D50 (= D50) is a lethal mutation caused by the insertion of a 1.3-kb P element 5' to sequences encoding the largest (215 kilodaltons) subunit of Drosophila RNA polymerase II. In dysgenic males D50 reverted to nonlethality at frequencies ranging from 2.6 to 6.5%. These reversions resulted from loss of P element sequences. Genetic tests of function and restriction enzyme analysis of revertant DNAs revealed that 35% or more of the reversion events were imprecise excisions. Two meiotic mutations that perturb excision repair and postreplication repair (mei-9a and mei-41D5, respectively) had no influence on reversion frequency but may have increased the proportion of imprecise excisions. We suggest that these excisions are by-products of, rather than intermediates in, the transposition process.  相似文献   

10.
A transient expression assay has been used to investigate the cause of a tissuespecific position effect on Adh expression from a transgene insertion in Drosophila. A 15.4-kb genomic clone containing the 3.2-kb Adh insert along with flanking regions of genomic DNA is expressed in this assay in a tissue-specific pattern resembling the abnormal expression pattern of the position effect. The 3.2-kb Adh insert is expressed normally without the flanking sequences. A silencer element is located upstream of the Adh gene within a 2-kb fragment that acts in both orientations and at a distance of at least 6.5 kb from the larval Adh promoter to suppress ADH expression in a nontissue specific fashion. The DNA sequence of the 2-kb fragment indicates that it is a noncoding region. A 17-bp sequence is repeated within this region and may be associated with the silencer activity, since subclones from the 2-kb fragment, each containing one of the repeated regions, both retain full silencer activity. This silencer fails to suppress expression from an α1-tubulin promoter-LacZ fusion construct or an hsp70 promoter-Ach fusion construct. In addition to the silencer, another element is located downstream of the Adh gene that produces a higher level of anterior than posterior midgut expression. These results suggest that the 5′ silencer and the 3′ element act together to create the tissue specific pcsition effect characteristic of the GC-1 line. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Lefevre G  Johnson TK 《Genetics》1973,74(4):633-645
Many cytologically normal and rearranged cut mutants have been reported, but no known deficiency involves both ct and its close neighbor, singed. This fact prompted an investigation of the mutational response of the ct–sn interval. Approximately 24,000 F1 female progeny of 7-day-old males given 2000 or 3000r X-ray exposures were examined for the presence of newly induced mutations at the Notch, carmine, ct, and sn loci. One sn, 2 cm-ct, 31 N, and 33 ct mutants were found, indicating that the frequency of recovery of ct mutants is much greater than that of either cm or sn, as high even as N. Among the F1 female progeny were two deficiency mutants that expressed both cm and ct (separated by 21 bands), but none expressed both ct and sn (separated by only 14 bands). Of the 18 cytologically analyzed ct mutants, two proved to be deficiencies; neither extended farther to the right than 7C1. No reported ct deficiency extends with certainty farther to the right than 7C4. This fact, together with the scarcity of sn deficiencies, suggests the presence of a haplo-insufficient locus between ct and sn that prevents recovery of ct-sn deficiencies. The analysis of the deficiency component of Tp snS93, a short transposition which moves most of the ct–sn interval from 7BC to 8D, proved the existence, just to the left of sn, of a haplo-inviable locus that prevents the development of females heterozygous for its deficiency.—A marked similarity between mutants at the N and ct loci was noted.  相似文献   

12.
Choudhary M  Singh RS 《Genetics》1987,117(4):697-710
The natural populations of Drosophila melanogaster and Drosophila simulans were compared for their genetic structure. A total of 114 gene-protein loci were studied in four mainland (from Europe and Africa) and an island (Seychelle) populations of D. simulans and the results were compared with those obtained on the same set of homologous loci in fifteen worldwide populations of D. melanogaster. The main results are as follows: (1) D. melanogaster shows a significantly higher proportion of loci polymorphic than D. simulans (52% vs. 39%, P<0.05), (2) both species have similar mean heterozygosity and mean number of alleles per locus, (3) the two species share some highly polymorphic loci but they do not share loci that show high geographic differentiation, and (4) D. simulans shows significantly less geographic differentiation than D. melanogaster. The differences in genetic differentiation between the two species are limited to loci located on the X and second chromosomes only; loci on the third chromosome show similar level of geographic differentiation in both species. These two species have previously been shown to differ in their pattern of variation for chromosomal polymorphisms, quantitative and physiological characters, two-dimensional electrophoretic (2DE) proteins, middle repetitive DNA and mitochondrial DNA. Variation in niche-widths and/or genetic "strategies" of adaptation appear to be the main causes of differences in the genetic structure of these two species.  相似文献   

13.
14.
Engels WR 《Genetics》1981,98(3):565-587
In its hypermutable state, an unstable singed allele, snw, mutates in the germline to two other alleleic forms at a total frequency usually between 40 and 60%. In its stable state, the mutation rate of snw is essentially zero. Its state depends on an extrachromosomal condition indistinguishable from a property called cytotype previously studied as a component of hybrid dysgenesis. Of the two known systems of hybrid dysgenesis, denoted P-M and I-R, snw hypermutability is determined by the P-M system and appears to be independent of the I-R system. Cytotype, as defined by the control of snw mutability, is self-reproducing in the cytoplasm or nucleoplasm of the germline through at least two generations. However, it is not entirely autonomous, being ultimately determined by the chromosomes after sufficiently many generations of backcrossing. This combination of chromosomal and extrachromosomal transmission agrees well with previous studies on cytotype. Temperature differences have little effect on the mean mutation rates, but they have a pronounced effect on the intrinsic variance among individuals. The latter effect suggests that high temperatures reduce germ-cell survival during the development of dysgenic flies. Chromosomal rearrangements produce no apparent effects on the behavior of snw. Hypermutability is thought to be caused by the excision or other alteration of an inserted genetic element in the snw gene. This element might be a copy of the "P factor," which is though to be a mobile sequence capable of causing female sterility and other dysgenic traits in the P-M system.  相似文献   

15.
A plasmid containing the glyA gene of Salmonella typhimurium LT2 was constructed in vitro using plasmid pACYC184 as the cloning vector and a λgt7-glyA transducing phage as the source of glyA DNA. The recombinant plasmid (pGS30) contains a 10-kb EcoRI insert fragment. Genetic and biochemical experiments established that the fragment contains a functional glyA gene. From plasmid pGS30 we subcloned a 4.4-kb SalI-EcoRI fragment containing the glyA gene and its neighboring regions (plasmid pGS38). The location and orientation of the glyA gene within the 4.4-kb insert fragment was determined in four ways: (1) comparison of the physical map of the 4.4-kb SalI-EcoRI fragment with the physical map of a 2.6-kb SalI-PvuII fragment that carries the Escherichia coli glyA gene; (2) deletion analysis; (3) transposon Tn5 insertional inactivation experiments; (4) deoxyribonucleic acid sequencing and comparison of the S. typhimurium DNA sequence with the E. coli DNA sequence. A presumptive glyA-encoded polypeptide of Mr 47000 was detected using plasmid pGS38 as template in a minicell system, but not when the glyA gene was inactivated by insertion of a Tn5 element.  相似文献   

16.
The membrane-spanning segments of integral membrane proteins often are flanked by aromatic or charged amino acid residues, which may “anchor” the transmembrane orientation. Single spanning transmembrane peptides such as those of the WALP family, acetyl-GWW(LA)nLWWA-amide, furthermore adopt a moderate average tilt within lipid bilayer membranes. To understand the anchor residue dependence of the tilt, we introduce Leu-Ala “spacers” between paired anchors and in some cases replace the outer tryptophans. The resulting peptides, acetyl-GX2ALW(LA)6LWLAX22A-amide, have Trp, Lys, Arg, or Gly in the two X positions. The apparent average orientations of the core helical sequences were determined in oriented phosphatidylcholine bilayer membranes of varying thickness using solid-state 2H NMR spectroscopy. When X is Lys, Arg, or Gly, the direction of the tilt is essentially constant in different lipids and presumably is dictated by the tryptophans (Trp5 and Trp19) that flank the inner helical core. The Leu-Ala spacers are no longer helical. The magnitude of the apparent helix tilt furthermore scales nicely with the bilayer thickness except when X is Trp. When X is Trp, the direction of tilt is less well defined in each phosphatidylcholine bilayer and varies up to 70° among 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, and 1,2-dilauroyl-sn-glycero-3-phosphocholine bilayer membranes. Indeed, the X = Trp case parallels earlier observations in which WALP family peptides having multiple Trp anchors show little dependence of the apparent tilt magnitude on bilayer thickness. The results shed new light on the interactions of arginine, lysine, tryptophan, and even glycine at lipid bilayer membrane interfaces.  相似文献   

17.
A striking infertile phenotype has been discovered in the DDK strain of mouse. The DDK females are usually infertile when crossed with males of other inbred strains, whereas DDK males exhibit normal fertility in reciprocal crosses. This phenomenon is caused by mutation in the ovum (Om) locus on chromosome 11 and known as the DDK syndrome. Previously, some research groups reported that the embryonic mortality deviated from the semilethal rate in backcrosses between heterozygous (Om/ + ) females and males of other strains. This embryonic mortality exhibited an aggravated trend with increasing background genes of other strains. These results indicated that some modifier genes of Om were present in other strains. In the present study, a population of N2 (Om/ + ) females from the backcrosses between C57BL/6J (B6) and F1 (B6 ♀ × DDK ♂) was used to map potential modifier genes of Om. Quantitative trait locus showed that a major locus, namely Amom1 (aggravate modifier gene of Om 1), was located at the middle part of chromosome 9 in mice. The Amom1 could increase the expressivity of Om gene, thereby aggravating embryonic lethality when heterozygous (Om/ +) females mated with males of B6 strain. Further, the 1.5 LOD-drop analysis indicated that the confidence interval was between 37.54 and 44.46 cM, ~6.92 cM. Amom1 is the first modifier gene of Om in the B6 background.  相似文献   

18.

Background

Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome.

Results

Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F).

Conclusions

This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1097) contains supplementary material, which is available to authorized users.  相似文献   

19.
The DNA sequence of the termini and the flanking regions of the 17-kb transposable element Tam1 was determined. Tam1 is integrated in the chalcone synthase gene of the niv-53 mutant of Antirrhinum majus. The element has a 13-bp perfect inverted repeat at its termini and appears to induce a 3-bp duplication of the target site upon integration. The DNA sequence of a niv+ revertant was analyzed and found to differ from the wild-type sequence by an additional 2 bp that seem to derive from the target site duplication. Stretches of homologous sequences have been found between the ends of Tam1, within each terminus of the element, and between the termini and target site sequences. Structural similarities between the ends of Tam1 and the Spm-18 element of Zea mays reflect a possible horizontal spread of a common progenitor.  相似文献   

20.
《Gene》1996,171(1):9-17
A striking feature of recent outbreaks of vancomycin-resistant (VmR) enterococci is the apparent horizontal dissemination of resistance determinants. The plasmids pHKK702 and pHKK703 from Enterococcus faecium clinical isolate R7 have been implicated in the conjugal transfer of VmR. pHKK702 is a 41-kb plasmid that contains an element indistinguishable from the glycopeptide-resistance transposon Tn1546. pHKK703 is an approx. 55-kb putative sex pheromone-response plasmid that is required for conjugative mobilization of pHKK702. During experiments in which strain R7 was used as a donor, a highly conjugative VmR transconjugant was isolated that formed constitutive cellular aggregates. Restriction analyses and DNA hybridizations revealed that the transconjugant harbored a single plasmid of approx. 92 kb and this plasmid (pHKK701) was composed of DNA from both pHKK702 and pHKK703. Results from DNA sequence analyses showed that a 39-kb composite transposon (Tn5506) from pHKK702 had inserted into pHKK703. The left end of Tn5506 contained a single insertion sequence (IS) element, IS1216V2, whereas the right end was composed of a tandem IS structure consisting of the novel 1065-bp IS1252 nested within an IS1216V1 element. Transposition of Tn5506 from pHKK702 to pHKK703 created an 8-bp target sequence duplication at the site of insertion and interrupted an ORF (ORFX) that was 91% identical to that of prgX, a gene proposed to negatively regulate sex pheromone response of the E. faecalis plasmid, pCF10. We propose that the interruption of ORFX by Tn5506 led to the constitutive cellular aggregation phenotype and thereby enhanced the efficiency with which VmR was transferred. Similar IS1216V-mediated transposition events may contribute to the horizontal spread of glycopeptide resistance among enterococci in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号