首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deng C  Yu X  Kuang S  Zhang W  Zhou Z  Zhang K  Qian W  Shan Z  Yang M  Wu S  Lin S 《Life sciences》2007,80(7):665-671
Carvedilol is a beta- and alpha(1)-adrenoceptor antagonist. It is widely used in the treatment of cardiovascular diseases including atrial arrhythmias. However, it is unclear whether carvedilol may affect the repolarization currents, transient outward K(+) current (I(to)) and ultra-rapid delayed rectifier K(+) current (I(Kur)) in the human atrium. The present study evaluated effects of carvedilol on I(to) and I(Kur) in isolated human atrial myocytes by whole-cell patch-clamp recording technique. We found that carvedilol reversibly inhibited I(to) and I(Kur) in a concentration-dependent manner. Carvedilol (0.3 microM) suppressed I(to) from 9.2+/-0.5 pA/pF to 4.8+/-0.5 pA/pF (P<0.01) and I(Kur) from 3.6+/-0.5 pA/pF to 1.9+/-0.3 pA/pF (P<0.01) at +50 mV. I(to) was inhibited in a voltage-dependent manner, being significantly attenuated at test potentials from +10 to +50 mV, whereas the inhibition of I(Kur) was independent. The concentration giving a 50% inhibition was 0.50 microM for I(to) and 0.39 microM for I(Kur). Voltage-dependence of activation, inactivation and time-dependent recovery from inactivation of I(to) were not altered by carvedilol. However, time to peak and time-dependent inactivation of I(to) were significantly accelerated, indicating an open channel blocking action. The findings indicate that carvedilol significantly inhibits the major repolarization K(+) currents I(to) and I(Kur) in human atrial myocytes.  相似文献   

2.
Temperature strongly affects oxygen solubility in water, oxygen convection in the blood and locomotor activity of the fish. Since oxygen supply and demand are temperature dependent, it was hypothesized that the purinergic control of the heart, one of the most important mediators in oxygen-limited conditions, might also show temperature dependence. Therefore, the present study examines the effects of adenosine (Ado), a purinergic agonist, on the contractile and electrical activity of the thermally acclimated trout ( Oncorhynchus mykiss Walbaum) heart. The fish were acclimated to either 4 degrees C or 17 degrees C and the experiments were conducted at the acclimation temperatures of the animals. In spontaneously beating hearts, Ado had a negative chronotropic and a positive inotropic effect in warm-acclimated rainbow trout while no response was detected in cold-acclimated trout. In paced atrial and ventricular preparations, Ado had a negative inotropic effect in both warm- and cold-acclimated fish, and the response was strongest in the atria of warm-acclimated trout. Ado shortened the duration of contraction 12-14% in atrial preparations but had no effect in ventricular muscle. Ado (10(-4) mol l(-1)) increased the density of the inwardly rectifying K(+) current from -3.5+/-0.6 pA pF(-1) to -8.4+/-1.4 pA pF(-1) (at -120 mV) in atrial myocytes of warm-acclimated trout but was without effect in atrial myocytes of cold-acclimated trout (-2.4+/-0.8 pA pF(-1) vs. -2.1+/-0.9 pA pF(-1)). Ado had no effect on K(+) currents of ventricular cells in either acclimation group. These results indicate that the effects of Ado on cardiac contractility and electrical activity are stronger in warm-acclimated than in cold-acclimated trout when measured at the physiological body temperatures of the fish. The balance between oxygen demand and supply of the heart might be better in the cold where more environmental oxygen is available and the power of the muscles is weaker thereby reducing the need for the purinergic control of the heart. Temperature-dependence of Ado response in the trout heart warrants that temperature should be taken into consideration when the purinergic system of the ectotherms is studied.  相似文献   

3.
L-type and T-type Ca2+ current in cultured ventricular guinea pig myocytes   总被引:1,自引:0,他引:1  
The aim of this investigation was to study L-type and T-type Ca(2+) current (I(CaL) and I(CaT)) in short-term cultured adult guinea pig ventricular myocytes. The isolated myocytes were suspended in serum-supplemented medium up to 5 days. Using whole-cell patch clamp techniques ICaL and ICaT were studied by applying voltage protocols from different holding potentials (-40 and -90 mV). After 5 days in culture the myocytes still showed their typical rod shaped morphology but a decline in cell membrane capacitance (26 %). The peak density of ICaT was reduced significantly between day 0 (-1.6+/-0.37 pA/pF, n=9) and day 5 (-0.4+/-0.13 pA/pF, n=11), whereas peak ICaL density revealed no significant differences during culturing. The I(CaT)/I(CaL) ratio dropped from 0.13 at day 0 to 0.05 at day 5. Compared with day 0 I(CaL) the steady state inactivation curve of day 1, day 3 and day 5 myocytes was slightly shifted to more negative potentials. Our data indicate that guinea pig ventricular L-type and T-type Ca(2+) channels are differently regulated in culture.  相似文献   

4.
We have used the whole cell configuration of the patch-clamp technique to measure sarcolemmal Ca(2+) transport by the Na(+)/Ca(2+) exchanger (NCX) and its contribution to the activation and relaxation of contraction in trout atrial myocytes. In contrast to mammals, cell shortening continued, increasing at membrane potentials above 0 mV in trout atrial myocytes. Furthermore, 5 microM nifedipine abolished L-type Ca(2+) current (I(Ca)) but only reduced cell shortening and the Ca(2+) carried by the tail current to 66 +/- 5 and 67 +/- 6% of the control value. Lowering of the pipette Na(+) concentration from 16 to 10 or 0 mM reduced Ca(2+) extrusion from the cell from 2.5 +/- 0.2 to 1.0 +/- 0.2 and 0.5 +/- 0.06 amol/pF. With 20 microM exchanger inhibitory peptide (XIP) in the patch pipette Ca(2+) extrusion 20 min after patch break was 39 +/- 8% of its initial value. With 16, 10, and 0 mM Na(+) in the pipette, the sarcoplasmic reticulum (SR) Ca(2+) content was 47 +/- 4, 29 +/- 6, and 10 +/- 3 amol/pF, respectively. Removal of Na(+) from or inclusion of 20 microM XIP in the pipette gradually eliminated the SR Ca(2+) content. Whereas I(Ca) was the same at -10 or +10 mV, Ca(2+) extrusion from the cell and the SR Ca(2+) content at -10 mV were 65 +/- 7 and 80 +/- 4% of that at +10 mV. The relative amount of Ca(2+) extruded by the NCX (about 55%) and taken up by the SR (about 45%) was, however, similar with depolarizations to -10 and +10 mV. We conclude that modulation of the NCX activity critically determines Ca(2+) entry and cell shortening in trout atrial myocytes. This is due to both an alteration of the transsarcolemmal Ca(2+) transport and a modulation of the SR Ca(2+) content.  相似文献   

5.
神经肽Y对心室肌细胞离子通道的影响   总被引:3,自引:1,他引:2  
Zhao HC  Liu ZB  Feng QL  Cui XL  Zhang CM  Wu BW 《生理学报》2006,58(3):225-231
采用全细胞膜片钳技术观察神经肽Y(neuropeptide Y,NPY)对心室肌细胞离子通道的影响。结果如下:(1)NPY浓度在1.0~100nmol/L范围内剂量依赖性抑制大鼠心室肌细胞I_(Ca-L),IC_(50)值为1.86nmol/L。NPY对I_(Ca-L)的I-V曲线的最大峰值电位、激活和失活电位均无显著影响。NPY对去甲肾上腺素(norepinephrine,NE)增加的I_(Ca-L)有显著抑制作用。(2)NPY对人鼠心室肌细胞I_(Na/Ca)有显著抑制作用。10nmol/L NPY使前向I__(Na/Ca)由(0.27±0.11)pA/pF减小为(0.06±0.01)pA/pF;反向I__(Na/Ca)由(0.45±0.12)pA/pF降为(0.27±0.09)pA/pF(P<0.05,n=4)。(3)NPY对大鼠心室肌细胞I_(to)有显著增强作用。10 nmol/L NPY使I_(to)由(12.5±0.70)pA/pF增加至(14.7±0.59)pA/pF(P<0.05,n=4)。(4)10nmol/L NPY对大鼠心室肌细胞I_(Na)没有显著影响。(5)10nmol/L NPY对豚鼠心室肌细胞I_K无明显影响。研究结果证实,NPY抑制大鼠心室肌细胞I_(Ca-L)和I_(Na/Ca),增强I_(to)对I_Na和豚鼠心审肌细胞I_K没有显著作用,表明NPY对上述主要离子通道的效应与NE的效应相拮抗。  相似文献   

6.
Suppression of electrical alternans may be antiarrhythmic. Our previous computer simulations have suggested that increasing the rapid component of the delayed rectifier K(+) current (I(Kr)) suppresses alternans. To test this hypothesis, I(Kr) in isolated canine ventricular myocytes was increased by infection with an adenovirus containing the gene for the pore-forming domain of I(Kr) [human ether-a-go-go gene (HERG)]. With the use of the perforated or whole cell patch-clamp technique, action potentials recorded at different pacing cycle lengths (CLs) were applied to the myocytes as the command waveforms. HERG infection markedly increased peak I(Kr) during the action potential (from 0.54 +/- 0.03 pA/pF in control to 3.60 +/- 0.81 pA/pF). Rate-dependent alterations of peak I(Kr) were similar for freshly isolated myocytes and HERG-infected myocytes. In both cell types, I(Kr) increased when CL decreased from 1,000 to 500 ms and then decreased progressively as CL decreased further. During alternans at CL = 170 ms, peak I(Kr) was larger for the short than for the long action potential for both groups, but the difference in peak I(Kr) was larger for HERG-infected myocytes. The voltage at which peak I(Kr) occurred was significantly less negative in HERG-infected myocytes, in association with shifts of the steady-state voltage-dependent activation and inactivation curves to less negative potentials. Pacing at short CL induced stable alternans in freshly isolated myocytes and in cultured myocytes without HERG infection, but not in HERG-infected myocytes. These data support the idea that increasing I(Kr) may be a viable approach to suppressing electrical alternans.  相似文献   

7.
Isolated newborn, but not adult, rabbit sinoatrial node (SAN) cells exhibit spontaneous activity that (unlike adult) are highly sensitive to the Na(+) current (I(Na)) blocker TTX. To investigate this TTX action on automaticity, cells were voltage clamped with ramp depolarizations mimicking the pacemaker phase of spontaneous cells (-60 to -20 mV, 35 mV/s). Ramps elicited a TTX-sensitive current in newborn (peak density 0.89 +/- 0.14 pA/pF, n = 24) but not adult (n = 5) cells. When depolarizing ramps were preceded by steplike depolarizations to mimic action potentials, ramp current decreased 54.6 +/- 8.0% (n = 3) but was not abolished. Additional experiments demonstrated that ramp current amplitude depended on the slope of the ramp and that TTX did not alter steady-state holding current at pacemaker potentials. This excluded a steady-state Na(+) window component and suggested a kinetic basis, which was investigated by measuring TTX-sensitive I(Na) during long step depolarizations. I(Na) exhibited a slow but complete inactivation time course at pacemaker voltages (tau = 33.9 +/- 3.9 ms at -50 mV), consistent with the rate-dependent ramp data. The data indicate that owing to slow inactivation of I(Na) at diastolic potentials, a small TTX-sensitive current flows during the diastolic depolarization in neonatal pacemaker myocytes.  相似文献   

8.
An envelope of tails test was used to show that the delayed rectifier K+ current (IK) of guinea pig ventricular myocytes results from the activation of two outward K+ currents. One current was specifically blocked by the benzenesulfonamide antiarrhythmic agent, E-4031 (IC50 = 397 nM). The drug-sensitive current, "IKr" exhibits prominent rectification and activates very rapidly relative to the slowly activating drug-insensitive current, "IKs." IKs was characterized by a delayed onset of activation that occurs over a voltage range typical of the classically described cardiac IK. Fully activated IKs, measured as tail current after 7.5-s test pulses, was 11.4 times larger than the fully activated IKr. IKr was also blocked by d-sotalol (100 microM), a less potent benzenesulfonamide Class III antiarrhythmic agent. The activation curve of IKr had a steep slope (+7.5 mV) and a negative half-point (-21.5 mV) relative to the activation curve of IKs (slope = +12.7 mV, half-point = +15.7 mV). The reversal potential (Erev) of IKr (-93 mV) was similar to EK (-94 mV for [K+]o = 4 mM), whereas Erev of IKs was -77 mV. The time constants for activation and deactivation of IKr made up a bell-shaped function of membrane potential, peaking between -30 and -40 mV (170 ms). The slope conductance of the linear portion of the fully activated IKr-V relation was 22.5 S/F. Inward rectification of this relation occurred at potentials greater than -50 mV, resulting in a voltage-dependent decrease in peak IKr at test potentials greater than 0 mV. Peak IKr at 0 mV averaged 0.8 pA/pF (n = 21). Although the magnitude of IKr was small relative to fully activated IKs, the two currents were of similar magnitude when measured during a relatively short pulse protocol (225 ms) at membrane potentials (-20 to +20 mV) typical of the plateau phase of cardiac action potentials.  相似文献   

9.
In rabbit, after short-time rapid atrial pacing (RAP), atrial ion currents are reduced similarly as in human chronic atrial fibrillation (AF). Using the rabbit model, time-course of transient outward potassium current (I(to)) remodeling due to RAP was studied. RAP (600 bpm) was applied via an atrial lead for 0 (control), 24 and 120 h, n = 4 animals/group. Using patch clamp technique in whole-cell mode, current densities and biophysical properties were measured in isolated atrial myocytes. After 24 h of RAP, a reduction of peak I(to) (mean +/- SEM, test potential +50 mV, +37 degrees C) was observed (60.3 +/- 5.4 pA/pF (control, n = 20) vs. 28.0 +/- 2.5 pA/pF (24 h, n = 21)). Inactivation of I(to) was slower after 24 h, other biophysical properties were unaltered. However, I(to) recovered after 120 h: 51.7 +/- 4.5 pA/pF (n = 26, p = n.s. vs. control). Inactivation tended to also recover to initial values but was still different to control. Early I(to) remodeling due to RAP in rabbits seems to be more complex than previously thought: a time course of I(to) remodeling with swayings has to be considered when using the rabbit model of RAP in order to study early remodeling or rather its therapeutic manipulation.  相似文献   

10.
Using a conventional microelectrode technique, action potentials (A.P.) recorded from the isolated left atrial trabeculae of the rabbit were analyzed. The membrane current during A.P. was reconstructed. In spite of an extracellular Ca2+-deficiency and the application of verapamil, acetylcholine (ACh) reduced the A.P. duration by inducing an outward current IACh. This current was blocked by atropine (10-6 M). A Nernst-plot of the reversal potential at different K+-concentrations showed a slope of 58.5 mV for a 10-fold change in concentration. After pacing pauses longer than 10 s an inward going (anomalous) rectification (A.R.) for IACh occurred. Increasing the duration of the pacing pauses the rectification was more accentuated. During a constant pacing the A.R. for IACh disappeared. ACh did not modify the A.R. The maximum slope conductance for IACh was dependent on the extracellular concentration of ACh (0.035 mS x cm-2 at 20 microM ACh, 0.012 mS x cm-2 at 0.2 microM ACh). The experimental results are discussed, using the model of an ACh-induced potassium channel. The channel should be related to the muscarinic receptor of the atrial myocardium.  相似文献   

11.
Cheng YP  Yin JX  Cheng LP  He RR 《生理学报》2004,56(2):243-247
应用全细胞膜片钳技术研究低浓度辣椒素(capsaicin,CAP)对单个豚鼠心室肌细胞L-型钙电流的影响及其作用机制.CAP(1~25 nmol/L)可浓度依赖性增加电压依赖性的ICa-L的峰值并下移I-V曲线.CAPl,10,25 nmol/L使ICa-L最大峰值分别由-9.67±0.7pA/pF增至-10.21±0.8pA/pF(P>0.05),-11.37±0.8pA/pF和-12.84±0.9pA/pF(P<0.05).CAP25nmol/L可明显使稳态激活曲线左移,激活中点电压(V0.5)由-20.76±2.0mV变至-26.71±3.0mV(P<0.05),表明低浓度CAP改变了钙通道激活的电压依赖性.CAP25nmol/L对电压依赖性稳态失活曲线和ICa-L从失活状态下复活过程无明显影响.辣椒素受体(VR1)阻断剂钌红(RR,10μmol/L)可阻断低浓度辣椒素的效应.以上结果表明,低浓度辣椒素使钙通道稳态激活曲线左移,增加ICa-L,这一效应可能由VRl介导.  相似文献   

12.
Shi CX  Wang YH  Dong F  Zhang YJ  Xu YF 《生理学报》2007,59(1):19-26
为了观察正常和心衰时心内膜下和心外膜下心肌细胞L-型钙电流(ICa-L)的差别,我们采用主动脉弓狭窄的方法建立小鼠压力超负荷性心衰模型,采用全细胞膜片钳技术记录了正常、主动脉狭窄(band)及假手术对照(sham)组动物左心室游离壁内、外膜下心肌细胞的动作电位时程(action potential duration,APD)和ICa-L。结果显示:(1)与sham组同龄的正常小鼠左心室心内膜下细胞动作电位复极达90%的时程(APD90)为(38.2±6.44)ms,较心外膜下细胞的APD90(15.67±5.31)ms明显延长,二者的比值约为2.5:1;内膜下细胞和外膜下细胞ICa-L密度没有差异,峰电流密度分别为(-2.7±0.49)pA/pF和(-2.54±0.53)pA/pF;(2)Band组内、外膜下细胞的动作电位复极达50%的时程(APD50)、APD90均较sham组显著延长,尤以内膜下细胞延长突出,分别较sham组延长了400%和360%,内、外膜下细胞APD90的比值约为4.2:1;(3)与sham组相比, band组内膜下细胞ICa-L密度显著减小,在+10 mV~+40 mV的4个电压下分别降低了20.2%、21.4%、21.6%和25.7%(P< 0.01),但其激活电位、峰电位和翻转电位没有改变;band组外膜下细胞的ICa-L密度与同期sham组相比无明显变化;band组钙通道激活、失活及复活的动力学特征与sham组相比没有改变。以上结果提示,生理状态下小鼠左心室内、外膜下细胞ICa-L密度不存在明显差别,提示ICa-L与APD跨壁异质性的产生无关;心衰时左心室内、外膜下细胞APD明显延长,以内膜下细胞延长尤为突出,内膜下细胞ICa-L密度明显减少,而外膜下细胞ICa-L密度无明显改变,这种ICa-L的非同步变化在心衰时可能起到对抗APD延长、减少复极离散度的有益作用。  相似文献   

13.
L-type Ca2+ currents in ventricular myocytes from neonatal and adult rats   总被引:1,自引:0,他引:1  
Postnatal changes in the slow Ca2+ current (I(Ca)(L)) were investigated in freshly isolated ventricular myocytes from neonatal (1-7 days old) and adult (2-4 months old) rats, using whole-cell voltage clamp and single-channel recordings. The membrane capacitance (mean+/-SEM) averaged 23.2+/-0.5 pF in neonates (n = 163) and 140+/-4.1 pF in adults (n = 143). I(Ca)(L) was measured as the peak inward current at a test potential of +10 mV (or +20 mV) by applying a 300-ms pulse from a holding potential of -40 mV; 1.8 mM Ca2+ was used as charge carrier. The basal ICa(L) density was 6.7+/-0.2 pA/pF in neonatal and 7.8+/-0.2 pA/pF in adult cells (p < 0.05). The time course of inactivation of the fast component (at +10 ms) was significantly longer in the neonatal (10.7+/-1.4 ms) than in the adult (6.6+/-0.4 ms) cells (p < 0.05). Ryanodine (10+/-M) significantly increased this value to 18.0+/-1.9 in neonate (n = 8) and to 17.7+/-2.0 in adult (n = 9). For steady-state inactivation, the half-inactivation potential (Vh) was not changed in either group. For steady-state activation, Vh was 5.1 mV in the neonatal (n = 6) and -7.9 mV in the adult cells (n = 7). Single-channel recordings revealed that long openings (mode-2 behavior) were occasionally observed in the neonatal cells (11 events from 1080 traces/11 cells), but not in the adult cells (400 traces/4 cells). Slope conductance was 24 pS in both the neonatal and adult cells. Results in rat ventricular myocytes suggest the following: (i) the peak Ca2+ current density is already well developed in the neonatal period (being about 85% of the adult value); (ii) the fast component of inactivation is slower in neonates than in adults; and (iii) naturally occurring long openings are occasionally observed in the neonatal stage but not in the adult. Thus, the L-type Ca2+ channels of the neonate were slightly lower in density, were inactivated more slowly, and occasionally exhibited mode-2 behavior as compared with those of the adult.  相似文献   

14.
Endurance exercise training increases smooth muscle L-type Ca(2+) current density in both resistance and proximal coronary arteries of female miniature swine. The purpose of the present study was to determine 1) whether gender differences exist in coronary smooth muscle (CSM) L-type Ca(2+) current density and 2) whether endurance training in males would demonstrate a similar adaptive response as females. Proximal, conduit (approximately 1.0 mm), and resistance [~200 microm (internal diameter)] coronary arteries were obtained from sedentary and treadmill-trained swine of both sexes. CSM were isolated by enzymatic digestion (collagenase plus elastase), and voltage-gated Ca(2+)-channel current (I(Ca)) was determined by using whole cell voltage clamp during superfusion with 75 mM tetraethylammonium chloride and 10 mM BaCl(2). Current-voltage relationships were obtained at test potentials from -60 to 70 mV from a holding potential of -80 mV, and I(Ca) was normalized to cell capacitance (pA/pF). Endurance treadmill training resulted in similar increases in heart weight-to-body weight ratio, endurance time, and skeletal muscle citrate synthase activity in male and female swine. I(Ca) density was significantly greater in males compared with females in both conduit (-7.57 +/- 0.58 vs. -4.14 +/- 0.47 pA/pF) and resistance arteries (-11.25 +/- 0.74 vs. -6.49 +/- 0.87 pA/pF, respectively). In addition, voltage-dependent activation of I(Ca) in resistance arteries was shifted to more negative membrane potentials in males. Exercise training significantly increased I(Ca) density in both conduit and resistance arteries in females (-7.01 +/- 0.47 and -9.73 +/- 1.13 pA/pF, respectively) but had no effect in males (-8.61 +/- 0.50 and -12.04 +/- 1.07 pA/pF, respectively). Thus gender plays a significant role in determining both the magnitude and voltage dependence of I(Ca) in CSM and the adaptive response of I(Ca) to endurance training.  相似文献   

15.
Lu JY  Wu DM  Wu BW  Chai WX  Kang CS  Li TL 《生理学报》1999,51(5):588-592
本文观察了心肌肥厚对大鼠心肌细胞Na /Ca2 交换电流的影响。我们采用Goldblatt两肾一夹方法诱发大鼠心肌肥厚,应用全细胞膜片钳技术记录电流。结果表明:肥厚心肌细胞的Ni2 -敏感Na /Ca2 交换电流密度大于正常细胞。在钳制电压为+50mV时,正常细胞的外向交换电流密度为1.53±0.31pA/pF,而肥厚细胞则为2.62±0.53pA/pF(P<0.01);钳制电压为-100mV时,正常细胞的内向交换电流密度为0.42±0.14pA/pF,肥厚细胞达1.12±0.33pA/pF(P<0.001)。这些结果提示,肥厚心肌细胞的Na /Ca2 交换电流发生了改变,其意义有待进一步探讨。  相似文献   

16.
Previous studies have established that reductions in repolarizing currents occur in heart disease and can contribute to life-threatening arrhythmias in myocardium. In this study, we investigated whether the thyroid hormone analog 3, 5-diiodothyropropionic acid (DITPA) could restore repolarizing transient outward K(+) current (I(to)) density and gene expression in rat myocardium after myocardial infarction (MI). Our findings show that I(to) density was reduced after MI (14.0 +/- 1.0 vs. 10.2 +/- 0.9 pA/pF, sham vs. post-MI at +40 mV). mRNA levels of Kv4.2 and Kv4.3 genes were decreased but Kv1.4 mRNA levels were increased post-MI. Corresponding changes in Kv4.2 and Kv1.4 protein were also observed. Chronic treatment of post-MI rats with 10 mg/kg DITPA restored I(to) density (to 15.2 +/- 1.1 pA/pF at +40 mV) as well as Kv4.2 and Kv1.4 expression to levels observed in sham-operated controls. Other membrane currents (Na(+), L-type Ca(2+), sustained, and inward rectifier K(+) currents) were unaffected by DITPA treatment. Associated with the changes in I(to) expression, action potential durations (current-clamp recordings in isolated single right ventricular myocytes and monophasic action potential recordings from the right free wall in situ) were prolonged after MI and restored with DITPA treatment. Our results demonstrate that DITPA restores I(to) density in the setting of MI, which may be useful in preventing complications associated with I(to) downregulation.  相似文献   

17.
Olfactory receptor neurons (ORNs) respond to odorants with characteristic patterns of action potentials that are relevant for odor coding. Prolonged odorant exposures revealed three populations of dissociated toad ORNs, which were mimicked by depolarizing currents: tonic (TN, displaying sustained firing, 49% of 102 cells), phasic (PN, exhibiting brief action potential trains, 36%) and intermediate neurons (IN, generating trains longer than PN, 15%). We studied the biophysical properties underlying the differences between TNs and PNs, the most extreme cases among ORNs. TNs and PNs possessed similar membrane capacitances (approximately 4 pF), but they differed in resting potential (-82 versus -64 mV), input resistance (4.2 versus 2.9 G(Omega)) and unspecific current, I(u) (TNs: 0 < I(u) 1 pA/pF). Firing behavior did not correlate with differences in voltage-gated conductances. We developed a mathematical model that accurately simulates tonic and phasic patterns. Whole cell recordings from rat ORNs in fragments (approximately 4 mm(2)) of olfactory epithelium showed that such a tissue normally contains tonic and phasic receptor neurons, suggesting that this feature is common across a wide range of vertebrates. Our findings show that the individual passive electrical properties can govern the firing patterns of ORNs.  相似文献   

18.
Transient outward K(+) current density (I(to)) has been shown to vary between different regions of the normal myocardium and to be reduced in heart disease. In this study, we measured regional changes in action potential duration (APD), I(to), and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients of ventricular myocytes derived from the right ventricular free wall (RVW) and interventricular septum (SEP) 8 wk after myocardial infarction (MI). At +40 mV, I(to) density in sham-operated hearts was significantly higher (P < 0.01) in the RVW (15.0 +/- 0.8 pA/pF, n = 47) compared with the SEP (7.0 +/- 1.1 pA/pF, n = 18). After MI, I(to) density was not reduced in SEP myocytes but was reduced (P < 0.01) in RVW myocytes (8.7 +/- 1.0 pA/pF, n = 26) to levels indistinguishable from post-MI SEP myocytes. These changes in I(to) density correlated with Kv4.2 (but not Kv4.3) protein expression. By contrast, Kv1.4 expression was significantly higher in the RVW compared with the SEP and increased significantly after MI in RVW. APD measured at 50% or 90% repolarization was prolonged, whereas peak [Ca(2+)](i) transients amplitude was higher in the SEP compared with the RVW in sham myocytes. These regional differences in APD and [Ca(2+)](i) transients were eliminated by MI. Our results demonstrate that the significant regional differences in I(to) density, APD, and [Ca(2+)](i) between RVW and SEP are linked to a variation in Kv4.2 expression, which largely disappears after MI.  相似文献   

19.
We investigated the effects of pressure overload hypertrophy on inward sodium (I Na) and calcium currents (I Ca) in single left ventricular myocytes to determine whether changes in these current systems could account for the observed prolongation of the action potential. Hypertrophy was induced by pressure overload caused by banding of the abdominal aorta. Whole-cell patch clamp experiments were used to measure tetrodotoxin (TTX)-sensitive inward currents. The main findings were that I Ca density was unchanged whereas I Na density after stepping from -80 to -30 mV was decreased by 30% (-9.0 +/- 1.16 pA pF(-1) in control and -6.31 +/- 0.67 pA pF(-1) in hypertrophy, p < 0.05, n = 6). Steady-state activation/inactivation variables of I Na, determined by using double-pulse protocols, were similar in control and hypertrophied myocytes, whereas the time course of fast inactivation of I Na was slowed (p < 0.05) in hypertrophied myocytes. In addition, action potential clamp experiments were carried out in the absence and presence of TTX under conditions where only Ca2+ was likely to enter the cell via TTX-sensitive channels. We show for the first time that a TTX-sensitive inward current was present during the plateau phase of the action potential in hypertrophied but not control myocytes. The observed decrease in I Na density is likely to abbreviate rather than prolong the action potential. Delayed fast inactivation of Na+ channels was not sustained throughout the voltage pulse and may therefore merely counteract the effect of decreased I Na density so that net Na+ influx remains unaltered. Changes in the fast I Na do not therefore appear to contribute to lengthening of the action potential in this model of hypertrophy. However, the presence of a TTX-sensitive current during the plateau could potentially contribute to the prolongation of the action potential in hypertrophied cardiac muscle.  相似文献   

20.
The effects of an immunoaffinity-purified putative endogenous hypertensive factor (HF) on voltage-dependent calcium current in frog cardiac myocytes were assessed. In 9 out of 10 cells, HF reversibly increased the peak amplitude of the calcium current. HF increased peak calcium current density at -5 mV from a control level of 1.8 +/- 1.3 pA/pF (mean +/- SD) to 4.4 +/- 2.0 pA/pF. HF shifted the peak of the calcium current-voltage relationship in the hyperpolarizing direction. HF shifted the voltage dependence of the inactivation of the calcium current to more negative potentials with prepulses from -80 to 0 mV, but the inactivation was not affected with prepulses more positive than 0 mV. Modulation of the voltage-dependent calcium current by HF may be the mechanism underlying its pressor effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号