首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic fibrosis, the common response associated with chronic liver diseases, ultimately leads to cirrhosis, a major public health problem worldwide. We recently showed that activation of hepatic cannabinoid CB2 receptors limits progression of experimental liver fibrosis. We also found that during the course of chronic hepatitis C, daily cannabis use is an independent predictor of fibrosis progression. Overall, these results suggest that endocannabinoids may drive both CB2-mediated antifibrogenic effects and CB2-independent profibrogenic effects. Here we investigated whether activation of cannabinoid CB1 receptors (encoded by Cnr1) promotes progression of fibrosis. CB1 receptors were highly induced in human cirrhotic samples and in liver fibrogenic cells. Treatment with the CB1 receptor antagonist SR141716A decreased the wound-healing response to acute liver injury and inhibited progression of fibrosis in three models of chronic liver injury. We saw similar changes in Cnr1-/- mice as compared to wild-type mice. Genetic or pharmacological inactivation of CB1 receptors decreased fibrogenesis by lowering hepatic transforming growth factor (TGF)-beta1 and reducing accumulation of fibrogenic cells in the liver after apoptosis and growth inhibition of hepatic myofibroblasts. In conclusion, our study shows that CB1 receptor antagonists hold promise for the treatment of liver fibrosis.  相似文献   

2.
Cannabinoid CB1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed a new series of tetrazole-biarylpyrazoles. The various analogues were efficiently prepared and bio-assayed for binding to cannabinoid CB1 receptor. Six of the new compounds which displayed high in vitro CB1 binding affinities were assayed for binding to CB2 receptor. Noticeably, cyclopentyl-tetrazole (9a) demonstrated good binding affinity and selectivity for CB1 receptor (IC(50)=11.6nM and CB2/CB1=366).  相似文献   

3.
The discovery and structure-activity relationship of a novel series of indole-2-carboxamide antagonists of the cannabinoid CB(1) receptor is disclosed. Compound 26i was found to be a high potency, selective cannabinoid CB(1) antagonist.  相似文献   

4.
The pharmacokinetic based optimisation of a novel series of indole-2-carboxamide antagonists of the cannabinoid CB1 receptor is disclosed. Compound 24 was found to be a highly potent and selective cannabinoid CB1 antagonist with high predicted human oral bioavailability.  相似文献   

5.
Since the CB1 receptor antagonist SR141716 (rimonabant) was reported to modulate food intake, CB1 antagonism has been considered as a new therapeutic target in the treatment of obesity. Several series of derivatives based on diarylimidazolyl oxadiazole and thiadiazole scaffolds were synthesized and tested for CB1 receptor binding affinity. SAR studies directed toward the optimization of imidazole scaffolds resulted in the discovery of 10s which showed highest potency for CB1 receptor binding affinity (IC50 = 1.91 nM) prepared to date.  相似文献   

6.
CB1 receptor antagonists that are peripherally restricted were targeted. Compounds with permanent charge as well as compounds that have increased polar surface area were made and tested against CB1 for binding and activity. Sulfonamide and sulfamide with high polar surface area and good activity at CB1 were rationally designed and pharmacologically tested. Further optimization of these compounds and testing could lead to the development of a new class of therapeutics to treat disorders where the CB1 receptor system has been implicated.  相似文献   

7.
The synthesis and structure–activity relationship studies of 1,4,5,6-tetrahydropyridazines are described. The target compounds 35 represent a novel class of potent and selective CB1 receptor antagonists.  相似文献   

8.
Novel 3,4-diarylpyrazolines 1 as potent CB1 receptor antagonists with lipophilicity lower than that of SLV319 are described. The key change is the replacement of the arylsulfonyl group in the original series by a dialkylaminosulfonyl moiety. The absolute configuration (4S) of eutomer 24 was established by X-ray diffraction analysis and 24 showed a close molecular fit with rimonabant in a CB1 receptor-based model. Compound 17 exhibited the highest CB1 receptor affinity (Ki = 24 nM) in this series, as well as very potent CB1 antagonistic activity (pA2 = 8.8) and a high CB1/CB2 subtype selectivity (approximately 147-fold).  相似文献   

9.
Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM). The endocannabinoid system is composed of at least two G-protein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2). Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors. Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity. Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists. Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes. This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.  相似文献   

10.
Shim JY  Welsh WJ  Howlett AC 《Biopolymers》2003,71(2):169-189
Association of cannabimimetic compounds such as cannabinoids, aminoalkylindoles (AAIs), and arachidonylethanolamide (anandamide) with the brain cannabinoid (CB(1)) receptor activates G-proteins and relays signals to regulate neuronal functions. A CB(1) receptor homology model was constructed using the published x-ray crystal structure of bovine rhodopsin (Palczewski et al., Science, 2000, Vol. 289, pp. 739-745) in the conformation most likely to represent the "high-affinity" state for agonist binding to G-protein coupled receptors (GPCRs). A molecular docking approach that combined Monte Carlo and molecular dynamics simulations was used to identify the putative binding conformations of nonclassical cannabinoid agonists, including AC-bicyclic CP47497 and CP55940, and ACD-tricyclic CP55244. Placement of these ligands was based upon the assumption of a critical hydrogen bond between the A-ring OH and the side chain N of Lys192 in transmembrane helix 3. We evaluated two alternative binding conformations, C3-in and C3-out, denoting the directionality of the ligand C3 side chain within the receptor with respect to the inside or the outside of the cell. Assuming both the C3-in or C3-out conformation, the calculated ligand-receptor binding energy (DeltaE(bind)) was correlated with the experimentally observed binding affinity (K(i)) for a series of nonclassical cannabinoid agonists. The C3-in conformation was marginally better than the alternative C3-out conformation in predicting the rank order of the tested nonclassical cannabinoid analogs. Adopting the C3-in conformation due to the greater number of receptor interactions with known pharmacophoric elements of the ligand, key residues were identified comprising the presumed hydrophobic pocket that interacts with the C3 side chain of cannabinoid agonists. Key hydrogen bonds would form between both K3.28(192) and E(258) and the A-ring OH, and between Q(261) and the C-ring C-12 hydroxypropyl. In summary, the present study represents one of the first attempts to construct a homology model of the CB(1) cannabinoid receptor based upon the published bovine rhodopsin x-ray crystal structure and to elucidate the putative ligand binding site for nonclassical cannabinoid agonists. We postulated sites of the CB(1) receptor critical for the ligand interaction, including the hydrophobic pocket interacting with the key pharmacophoric moiety, the C3 side chain. More work is needed to delineate between two alternative (and possibly other) binding conformations of the nonclassical cannabinoid ligands within the CB(1) receptor. The present study provides a consistent framework for further investigation of the CB(1) receptor-ligand interaction and for the study of CB(1) receptor activation.  相似文献   

11.
The CB1 cannabinoid receptor (CB1R) displays a significant level of ligand-independent (i.e. constitutive) activity, either when heterologously expressed in nonneuronal cells or in neurons where CB1Rs are endogenous. The present study investigates the consequences of constitutive activity on the intracellular trafficking of CB1R. When transfected in HEK-293 cells, CB1R is present at the plasma membrane, but a substantial proportion ( approximately 85%) of receptors is localized in intracellular vesicles. Detailed analysis of CB1-EGFP expressed in HEK-293 cells shows that the intracellular CB1R population is mostly of endocytic origin and that treatment with inverse agonist AM281 traps CB1R at the plasma membrane through a monensin-sensitive recycling pathway. Co-transfection with dominant positive or dominant negative mutants of the small GTPases Rab5 and Rab4, but not Rab11, profoundly modifies the steady-state and ligand-induced intracellular distribution of CB1R, indicating that constitutive endocytosis is Rab5-dependent, whereas constitutive recycling is mediated by Rab4. In conclusion, our results indicate that, due to its natural constitutive activity, CB1R permanently and constitutively cycles between plasma membrane and endosomes, leading to a predominantly intracellular localization at steady state.  相似文献   

12.
Sulfamoyl benzamides were identified as a novel series of cannabinoid receptor ligands. Starting from a screening hit 8 that had modest affinity for the cannabinoid CB2 receptor, a parallel synthesis approach and initial SAR are described, leading to compound 27 with 120-fold functional selectivity for the CB2 receptor. This compound produced robust antiallodynic activity in rodent models of postoperative pain and neuropathic pain without traditional cannabinergic side effects.  相似文献   

13.
A series of conformationally constrained bicyclic derivatives derived from SR141716 was prepared and evaluated as hCB(1)-R antagonists and inverse agonists. Optimization of the structure-activity relationships around the 2,6-dihydro-pyrazolo[4,3-d]pyrimidin-7-one derivative 2a led to the identification of two compounds with oral activity in rodent feeding models (2h and 4a). Replacement of the PP group in 2h with other bicyclic groups resulted in a loss of binding affinity.  相似文献   

14.
The synthesis and SAR of 3-alkyl-4-aryl-4,5-dihydropyrazole-1-carboxamides 123 and 1-alkyl-5-aryl-4,5-dihydropyrazole-3-carboxamides 2427 as two novel cannabinoid CB1 receptor agonist classes were described. The target compounds elicited high affinities to the CB1 as well as the CB2 receptor and were found to act as CB1 receptor agonists. The key compound 19 elicited potent CB1 agonistic and CB2 inverse agonistic properties in vitro and showed in vivo activity in a rodent model for multiple sclerosis after oral administration.  相似文献   

15.
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure–activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents.  相似文献   

16.
In the present study, 11 novel N-(3,3-diphenyl)propyl-2,2-diphenylacetamide derivatives (4a-d and 9a-g) and six triphenylacetamides (10a-c and 11a-c) were synthesized and tested as ligands of cannabinoid CB(1) and CB(2) receptors. All compounds exhibited affinity for CB(1) and CB(2) receptors. Four compounds (4b, 9a, 9b, and 11a) showed selectivity for CB(1) versus CB(2) receptors, although only the N-(3,3-diphenyl)propyl-2,2-diphenylacetamide (4b) can be considered a potent CB(1) ligand (K(i)=58 nM). It was 140-fold selective over CB(2) receptors (K(i)=7800 nM) and behaved as an inverse agonist by stimulating forskolin-induced cAMP formation in mouse N18TG2 neuroblastoma cells. This compound is the first of a novel class of tetraphenyl CB(1) ligands that, in view of its easy synthesis and high affinity for CB(1) receptors and despite its sterical hindrance, will be useful for the design of new blockers of this therapeutically exploitable receptor type.  相似文献   

17.
Cannabinoid CB-1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of pentacycle derivatives. Five of the new compounds which displayed high in vitro rCB1 binding affinities were assayed for binding to hCB2 receptor. Noticeably, 2-(5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-(5-methyl-1,3,4-thiadiazol-2-yl)-1H-pyrazol-3-yl)-5-(1-(trifluoromethyl)cyclopropyl)-1,3,4-oxadiazole (16l) demonstrated good binding affinity and decent selectivity for rCB1 receptor (IC50 = 1.72 nM, hCB2/rCB1 = 142).  相似文献   

18.
Cannabinoid CB1 receptors have been the avenue of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of substituted pyrimidines based on chemical structure of Merck’s taranabant, a cannabinoid CB1 receptor inverse agonist. Noticeably, N4-((2S,3S)-3-(3-bromophenyl)-4-(4-chlorophenyl)butan-2-yl)-N6-butylpyrimidine-4,6-diamine (13b) demonstrated good binding affinity and decent selectivity for CB1 receptor (IC50 = 16.3 nM, CB2/CB1 = 181.6).  相似文献   

19.
Wang H  Xie H  Dey SK 《PloS one》2008,3(10):e3320

Background

Preterm birth accounting approximate 10% of pregnancies in women is a tremendous social, clinical and economic burden. However, its underlying causes remain largely unknown. Emerging evidence suggests that endocannabinoid signaling via cannabinoid receptor CB1 play critical roles in multiple early pregnancy events in both animals and humans. Since our previous studies demonstrated that loss of CB1 defers the normal implantation window in mice, we surmised that CB1 deficiency would influence parturition events.

Methods and Findings

Exploiting mouse models with targeted deletion of Cnr1, Cnr2 and Ptgs1 encoding CB1, CB2 and cyclooxygenase-1, respectively, we examined consequences of CB1 or CB2 silencing on the onset of parturition. We observed that genetic or pharmacological inactivation of CB1, but not CB2, induced preterm labor in mice. Radioimmunoassay analysis of circulating levels of ovarian steroid hormones revealed that premature birth resulting from CB1 inactivation is correlated with altered progesterone/estrogen ratios prior to parturition. More strikingly, the phenotypic defects of prolonged pregnancy length and parturition failure in mice missing Ptgs1 were corrected by introducing CB1 deficiency into Ptgs1 null mice. In addition, loss of CB1 resulted in aberrant secretions of corticotrophin-releasing hormone and corticosterone during late gestation. The pathophysiological significance of this altered corticotrophin-releasing hormone-driven endocrine activity in the absence of CB1 was evident from our subsequent findings that a selective corticotrophin-releasing hormone antagonist was able to restore the normal parturition timing in Cnr1 deficient mice. In contrast, wild-type females receiving excessive levels of corticosterone induced preterm birth.

Conclusions

CB1 deficiency altering normal progesterone and estrogen levels induces preterm birth in mice. This defect is independent of prostaglandins produced by cyclooxygenase-1. Moreover, CB1 inactivation resulted in aberrant corticotrophin-releasing hormone and corticosterone activities prior to parturition, suggesting that CB1 regulates labor by interacting with the corticotrophin-releasing hormone-driven endocrine axis.  相似文献   

20.
The purpose of the current study was to investigate the ability of the third-generation selective estrogen receptor modulators (SERMs) bazedoxifene and lasofoxifene to bind and act on CB2 cannabinoid receptor. We have identified, for the first time, that CB2 is a novel target for bazedoxifene and lasofoxifene. Our results showed that bazedoxifene and lasofoxifene were able to compete for specific [3H]CP-55,940 binding to CB2 in a concentration-dependent manner. Our data also demonstrated that by acting on CB2, bazedoxifene and lasofoxifene concentration-dependently enhanced forskolin-stimulated cAMP accumulation. Furthermore, bazedoxifene and lasofoxifene caused parallel, rightward shifts of the CP-55,940, HU-210, and WIN55,212-2 concentration–response curves without altering the efficacy of these cannabinoid agonists on CB2, which indicates that bazedoxifene- and lasofoxifene-induced CB2 antagonism is most likely competitive in nature. Our discovery that CB2 is a novel target for bazedoxifene and lasofoxifene suggests that these third-generation SERMs can potentially be repurposed for novel therapeutic indications for which CB2 is a target. In addition, identifying bazedoxifene and lasofoxifene as CB2 inverse agonists also provides important novel mechanisms of actions to explain the known therapeutic effects of these SERMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号