首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Ghrelin, a 28-residue octanoylated peptide recently isolated from the stomach, exhibits anti-cachectic properties through regulating food intake, energy expenditure, adiposity, growth hormone secretion and immune response. Burn injury induces persistent hypermetabolism and muscle wasting. We therefore hypothesized that ghrelin may also play a role in the pathophysiology of burn-induced cachexia. Overall ghrelin expression in the stomach over 10 days after burn was significantly decreased (p = 0.0003). Total plasma ghrelin was reduced 1 day after burn. Thus, changes in ghrelin synthesis and release may contribute to burn-induced dysfunctions. Ghrelin (30 nmol/rat, i.p.) greatly stimulated 2 h food intake in rats on five separate days after burn and in control rats. On post-burn day 15, plasma growth hormone levels were significantly lower than in controls, and this was restored to normal levels by ghrelin (10 nmol/rat, i.p.). These observations suggest that ghrelin retains its ability to favorably modulate both the peripheral anabolic and the central orexigenic signals, even after thermal injury despite ongoing changes due to prolonged and profound hypermetabolism, suggesting that long-term treatment with ghrelin may attenuate burn-induced dysfunctions.  相似文献   

2.
A novel peptide called ghrelin or motilin-related-peptide (MTLRP) was found in the stomach of various mammals. We studied its effect on the motor function of the rat gastrointestinal tract. In normal, conscious unoperated animals, ghrelin/MTLRP (5 or 20 microg/kg iv) significantly accelerated the gastric emptying of a methylcellulose liquid solution (gastric residue after 15 min: 57 +/- 7, 42 +/- 11, 17 +/- 4, and 9 +/- 3% of the ingested meal with doses of 0, 1, 5, and 20 microg/kg iv, respectively) Transit of the methylcellulose liquid solution was also accelerated by ghrelin/MTLRP in the small intestine but not in the colon. Des-[Gln(14)]ghrelin, also found in the mammalian stomach, was as potent as ghrelin in emptying the stomach (gastric residue after 15 min: 12 +/- 3% at a dose of 20 microg/kg iv). In rats in which postoperative gastrointestinal ileus had been experimentally induced, ghrelin/MTLRP (20 microg/kg iv) reversed the delayed gastric evacuation (gastric residue after 15 min: 28 +/- 7% of the ingested meal vs. 82 +/- 9% with saline). In comparison, the gastric ileus was not modified by high doses of motilin (77 +/- 7%) or erythromycin (82 +/- 6%) and was only partially improved by calcitonin gene-related peptide (CGRP) 8-37 antagonist (59 +/- 7%). Ghrelin/MTLRP, therefore, accelerates the gastric emptying and small intestinal transit of a liquid meal and is a strong prokinetic agent capable of reversing the postoperative gastric ileus in rat.  相似文献   

3.
Gastroesophageal reflux disease (GERD) is often associated with decreased upper gastrointestinal motility, and ghrelin is an appetite-stimulating hormone known to increase gastrointestinal motility. We investigated whether ghrelin signaling is impaired in rats with GERD and studied its involvement in upper gastrointestinal motility. GERD was induced surgically in Wistar rats. Rats were injected intravenously with ghrelin (3 nmol/rat), after which gastric emptying, food intake, gastroduodenal motility, and growth hormone (GH) release were investigated. Furthermore, plasma ghrelin levels and the expression of ghrelin-related genes in the stomach and hypothalamus were examined. In addition, we administered ghrelin to GERD rats treated with rikkunshito, a Kampo medicine, and examined its effects on gastroduodenal motility. GERD rats showed a considerable decrease in gastric emptying, food intake, and antral motility. Ghrelin administration significantly increased gastric emptying, food intake, and antral and duodenal motility in sham-operated rats, but not in GERD rats. The effect of ghrelin on GH release was also attenuated in GERD rats, which had significantly increased plasma ghrelin levels and expression of orexigenic neuropeptide Y/agouti-related peptide mRNA in the hypothalamus. The number of ghrelin-positive cells in the gastric body decreased in GERD rats, but the expression of gastric preproghrelin and GH secretagogue receptor mRNA was not affected. However, when ghrelin was exogenously administered to GERD rats treated with rikkunshito, a significant increase in antral motility was observed. These results suggest that gastrointestinal dysmotility is associated with impaired ghrelin signaling in GERD rats and that rikkunshito restores gastrointestinal motility by improving the ghrelin response.  相似文献   

4.
Sehirli O  Sener E  Sener G  Cetinel S  Erzik C  Yeğen BC 《Peptides》2008,29(7):1231-1240
Mechanisms of burn-induced skin and remote organ injury involve oxidant generation and the release of pro-inflammatory cytokines. In this study the possible antioxidant and anti-inflammatory effects of ghrelin were evaluated in a rat model of thermal trauma. Wistar albino rats were exposed to 90 degrees C bath for 10 s to induce thermal trauma. Ghrelin, was administered subcutaneously (10 ng/kg/day) after the burn injury and repeated twice daily. Rats were decapitated at 6 h and 48 h after burn injury and blood was collected for the analysis of pro-inflammatory cytokines (TNF-alpha and IL-1beta), lactate dehydrogenase (LDH) activity and antioxidant capacity (AOC). In skin, lung and stomach tissue samples malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na(+)-K(+)-ATPase activity were measured in addition to the histological analysis. DNA fragmentation ratio in the gastric mucosa was also evaluated. Burn injury caused significant increase in both cytokine levels, and LDH activity, while plasma AOC was found to be depleted after thermal trauma. On the other hand, in tissue samples the raised MDA levels, MPO activity and reduced GSH levels, Na(+)-K(+)-ATPase activity due to burn injury were found at control levels in ghrelin-treated groups, while DNA fragmentation in the gastric tissue was also reduced. According to the findings of the present study, ghrelin possesses a neutrophil-dependent anti-inflammatory effect that prevents burn-induced damage in skin and remote organs and protects against oxidative organ damage.  相似文献   

5.
Ghrelin is a recently discovered peptide in the endocrine cells of the stomach, which may stimulate gastric motility via the vagal nerve pathway. However, the mechanism of ghrelin-induced changes in gastrointestinal motility has not been clearly defined. The purpose of this study was to investigate the pharmacological effects of ghrelin on gastric myoelectrical activity and gastric emptying in rats, and to investigate whether cholinergic activity is involved in the effects of ghrelin. The study was performed on Sprague-Dawley rats implanted with serosal electrodes for electrogastrographic recording. Gastric slow waves were recorded from fasting rats at baseline and after injection of saline, ghrelin, atropine, or atropine+ghrelin. Gastric emptying of non-caloric liquid was measured by the spectrophotometric method in conscious rats. Intravenous administration of rat ghrelin (20 microg/kg) increased not only dominant frequency, dominant power and regularity of the gastric slow wave but also the gastric emptying rate when compared with the control rats (P<0.01, P<0.05, P<0.05, P<0.001 respectively). These stimulatory actions of ghrelin on both gastric myoelectrical activity and gastric emptying were not fully eliminated by pretreatment with atropine sulphate. These results taken together suggest that ghrelin may play a physiological role in the enteric neurotransmission controlling gastric contractions in rats.  相似文献   

6.
目的:探讨侧脑室注射obestatin对大鼠血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平的影响以及对胃排空的调控。方法:侧脑室注射obestatin,采用酶免疫测定(EIA)法检测血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平以及胃排空率的变化。结果:侧脑室分别注射0.1、0.3或1.0 nmol obestatin,大鼠血浆酰基化ghrelin、去酰基化ghrelin以及nesfatin-1水平无显著改变(P0.05),且酰基化ghrelin与去酰基化ghrelin比率无显著改变(P0.05);侧脑室注射obestatin,大鼠摄食量无显著改变,但胃排空率明显增加(P0.05);胃排空率明显延迟(P0.05)。与侧脑室注射1.0 nmol Obestatin组相比,注射1.0 nmol Obestatin+CRF,大鼠摄食量无显著改变,胃排空率明显延迟(P0.05)。各组摄食量及进入十二指肠内食物量无明显差异(P0.05)。结论:中枢obestatin促进大鼠的胃排空,可能与h/r CRF通路有关。  相似文献   

7.
Exposure to early life stress causes increased stress responsiveness and permanent changes in the central nervous system. We recently showed that delayed gastric emptying (GE) and accelerated colonic transit (CT) in response to acute restraint stress (ARS) were completely restored following chronic homotypic stress (CHS) in rats via upregulation of hypothalamic oxytocin (OXT) expression. However, it is unknown whether early life stress affects hypothalamic OXT circuits and gastrointestinal motor function. Neonatal rats were subjected to maternal separation (MS) for 180 min/day for 2 wk. Anxiety-like behaviors were evaluated by the elevated-plus-maze test. GE and CT were measured under nonstressed (NS), ARS, and CHS conditions. Expression of corticotropin-releasing factor (CRF) and OXT in the paraventricular nucleus (PVN) of the hypothalamus was evaluated by real time RT-PCR and immunohistochemistry. MS increased anxiety-like behaviors. ARS delayed GE and accelerated CT in control and MS rats. After CHS, delayed GE and accelerated CT were restored in control, but not MS, rats. CRF mRNA expression was significantly increased in response to ARS in control and MS rats. Increased CRF mRNA expression was still observed following CHS in MS, but not control, rats. In response to CHS, OXT mRNA expression was significantly increased in control, but not MS, rats. The number of OXT-immunoreactive cells was increased following CHS in the magnocellular part of the PVN in control, but not MS, rats. MS impairs the adaptation response of gastrointestinal motility following CHS. The mechanism of the impaired adaptation involves downregulation of OXT and upregulation of CRF in the hypothalamus in MS rats.  相似文献   

8.
Ghrelin is known to enhance gastric motility and accelerate gastric emptying of liquid and solid food in rats. As solid gastric emptying is regulated by the coordinated motor pattern between the antrum and pylorus (antro-pyloric coordination), we studied the correlation between solid gastric emptying and antro-pyloric coordination in response to ghrelin. Rats were given 1.5 g of solid food after a 24-h fasting. Immediately after the ingestion, ghrelin (0.4-8.0 microg/kg) or saline was administered by intraperitoneal (i.p.) injection. Ninety minutes after the feeding, rats were euthanized and gastric content was removed to calculate gastric emptying. To evaluate the antro-pyloric coordination, strain gauge transducers were sutured on the antrum and pylorus. The incidence of postprandial antro-pyloric coordination was compared between ghrelin-and saline-injected rats. In saline-injected rats, gastric emptying was 58.3+/-3.7% (n=6). Ghrelin (4.0-8.0 microg/kg), accelerated gastric emptying. Maximum effect was obtained by ghrelin (4.0 microg/kg), which significantly accelerated gastric emptying to 77.4+/-3.7% (n=6, p<0.05). The number of antro-pyloric coordination 20-40 min after feeding was significantly increased in ghrelin-injected rats, compared to that of saline-injected rats (n=4, p<0.05). It is suggested that enhanced antro-pyloric coordination play an important role in accelerated solid gastric emptying induced by ghrelin.  相似文献   

9.
Ghrelin is a gut peptide that is secreted from the stomach and stimulates food intake. There are ghrelin receptors throughout the gut and intracerebroventricular ghrelin has been shown to increase gastric acid secretion. The aim of the present study was to examine the effects of peripherally administered ghrelin on gastric emptying of a non-nutrient and nutrient liquid, as well as, basal and pentagastrin-stimulated gastric acid secretion in awake rats. In addition, gastric contractility was studied in vitro. Rats equipped with a gastric fistula were subjected to an intravenous infusion of ghrelin (10-500 pmol kg(-1) min(-1)) during saline or pentagastrin (90 pmol kg(-1) min(-1)) infusion. After administration of polyethylene glycol (PEG) 4000 with 51Cr as radioactive marker, or a liquid nutrient with (51)Cr, gastric retention was measured after a 20-min infusion of ghrelin (500 pmol kg(-1) min(-1)). In vitro isometric contractions of segments of rat gastric fundus were studied (10(-9) to 10(-6) M). Ghrelin had no effect on basal acid secretion, but at 500 pmol kg(-1) min(-1) ghrelin significantly decreased pentagastrin-stimulated acid secretion. Ghrelin had no effect on gastric emptying of the nutrient liquid, but significantly increased gastric emptying of the non-nutrient liquid. Ghrelin contracted fundus muscle strips dose-dependently (pD2 of 6.93+/-0.7). Ghrelin IV decreased plasma orexin A concentrations and increased plasma somatostatin concentrations. Plasma gastrin concentrations were unchanged during ghrelin infusion. Thus, ghrelin seems to not only effect food intake but also gastric motor and secretory function indicating a multifunctional role for ghrelin in energy homeostasis.  相似文献   

10.
Burn injury has been shown to impair gut transit, but the exact mechanism remains unknown. The present study investigated whether nitric oxide synthase (NOS) and cyclooxygenase (COX) mediated changes in burn-induced colonic transit. After rats underwent 30% total body surface area burn injury, they were injected with S-methylisothiourea (SMT, selective inducible NOS inhibitor), 7-nitronidazole (7-NI, selective neuronal NOS inhibitor), and nimesulide (NIM, selective COX-2 inhibitor), respectively. The protein and mRNA of NOS and COX-2 were measured by Western blot analysis and real-time RT-RCR, and localization of NOS and COX-2 protein was determined by immunohistochemistry. Our results showed that colonic transit assessed by the geometric center was delayed from 3.47+/-0.28 in controls to 2.21+/-0.18 after burn (P<0.009). SMT and NIM significantly improved colonic transit in burned rats but had no effect in sham-operated rats. 7-NI failed to modify delayed transit in burned rats but significantly delayed colonic transit in sham-operated rats. Both protein and mRNA of inducible NOS and COX-2 increased significantly but not neuronal NOS in burned rats. Inducible NOS protein expression was noted not only in epithelial cells but also in neurons of the myenteric ganglia in burned rats. These findings suggest that nitric oxide (NO) produced by neuronal NOS plays an important role in mediating colonic transit under the physiological condition. NO produced by inducible NOS and prostaglandins synthesized by COX-2 are both involved in the pathogenesis of delayed colonic transit after burn injury. Inducible NOS expression in neurons of the myenteric ganglia may contribute to dysmotility with burn injury.  相似文献   

11.
Li J  Ma W  Wang S 《Regulatory peptides》2011,171(1-3):53-57
Gastrointestinal (GI) motility and gut hormones have been considered to be involved in the development and maintenance of obesity. Our aim was to assess the relationships between gastric emptying (GE), GI transit and gut hormones and leptin concentrations in diet-induced obese rat model. Male 6-week-old Sprague-Dawley rats were fed with a high-fat (HF) diet for 8weeks to generate diet-induced obesity (DIO) and diet resistant (DR) rats. GE, GI transit and plasma ghrelin, cholecystokinin (CCK), PYY and leptin concentrations were determined in DIO, DR and control (CON) rats. The DIO rats had slower GE, higher plasma leptin and CCK concentrations, and lower plasma ghrelin concentration compared with CON and DR rats. GE was correlated with plasma ghrelin (r=0.402, P=0.028), CCK (r=-0.518, P=0.003) and leptin concentration (r=-0.514, P=0.004). The slower GE, which can be considered as an adaptive response aimed at HF diet induced obesity, may be mediated by changes of plasma ghrelin, CCK and leptin concentrations.  相似文献   

12.
Nociceptin/orphanin FQ/(N/OFQ), a novel heptadecapeptide recently isolated from porcine and rat brain, is the endogenous ligand of the N/OFQ peptide receptor (NOP, previously known as ORL-1). In this study we examined the effects of intracerebroventricularly (icv) injected N/OFQ on gastric emptying, gastrointestinal transit, colonic propulsion and gastric acid secretion in rats. N/OFQ (0.01-10 nmol/rat) significantly delayed gastric emptying of a phenol red meal, inhibited transit of a non-absorbable charcoal marker through the small intestine and increased the mean colonic bead expulsion time. These N/OFQ-motor effects were abolished by the NOP receptor selective antagonist [NPhe(1)]N/OFQ(1-13)-NH(2) (50 nmol/rat), but were unaltered by the classical opioid receptor antagonist, naloxone (9.2 micromol/kg). Icv injected N/OFQ (10 nmol/rat) decreased gastric acid secretion in 2-h pylorus ligated rats in a naloxone sensitive manner. [NPhe(1)]N/OFQ(1-13)-NH(2) (100 nmol/rat) icv administered alone stimulated gastric acid secretion. These results indicate that N/OFQ activates via NOP receptor stimulation a central inhibitory pathway modulating gastrointestinal propulsive activity and gastric acid secretion in rats.  相似文献   

13.
Chronic stress is associated with gastrointestinal functional diseases. Although the pathophysiology seems to be associated with gastrointestinal motility, their mechanisms remain unclear. We investigated gastric emptying and chemical mediators under conditions of continuous stress, which were produced using 8-week-old male Wistar rats kept in a cage filled with water to 2 cm height for 5 days. We examined gastric emptying by the phenol red method and chemical mediators at 4, 8, and 24 h and 3 and 5 days after initiation of stress restraint. Plasma ACTH level was significantly higher in the stress throughout the period of measurement. Continuous stress delayed gastric emptying until 24 h: peak delay was observed at 8 h, whereas gastric emptying was accelerated on days 3 and 5. Plasma noradrenalin level was significantly elevated at every time point until 24 h. Guanethidine pretreatment eliminated the delay in gastric emptying at 8 h. Active ghrelin was significantly increased on days 3 and 5 after peak (at 24 h) plasma total and desacyl ghrelin in the stress group. Number of ghrelin-immunoreactive cells and level of preproghrelin mRNA expression in the gastric body increased in parallel with plasma active ghrelin level. Pretreatment with growth hormone secretagogue receptor antagonist at 5 days partially inhibited the stress-induced acceleration of gastric emptying. Delayed gastric emptying at acute phase of continuous stress was mediated via sympathetic pathway, while acceleration at chronic phase was mediated via increased active ghrelin release from the stomach.  相似文献   

14.
Cholecystokinin (CCK), a hormone affecting several gastrointestinal functions, has also been shown to elicit satiety and affect daily meal patterns. Since Zucker obese rats are less sensitive to the satiety effects of CCK, two experiments were designed to determine if they are also less sensitive to the gastric emptying and intestinal transit rate effects of CCK. In the first experiment phenol red was administered to 5.5 hr fasted rats 15 minutes after intraperitoneal injection of CCK-8 or saline. Rats were sacrificed after 30 minutes, the stomach and small intestine were removed, and phenol red content was measured. More phenol red was in the stomach of obese but not lean rats treated with CCK-8. The rate of transit of the contents of the small intestine was increased by CCK-8 and the percent of phenol red in the fourth quarter of the small intestine was greater in obese than lean rats (91 vs 37%, p<0.05). In the second experiment gastrointestinal transit of ferric oxide was measured during the light and dark phases of the diurnal cycle, and when obese rats were ad lib or yoke-fed to lean pair-mates. Total gastrointestinal transit time of the ferric oxide was decreased 15% when CCK-8 was administered to yoke-fed obese rats in either the light or dark portions of the diurnal cycle but was not affected in ad lib-fed obese rats or lean rats. Thus, while Zucker obese rats are less sensitive to satiety effects of CCK, they appear to be more sensitive to the gastrointestinal effects of CCK, and therefore it is not clear what role these gastrointestinal responses have on the feeding behavior responses.  相似文献   

15.
Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury.  相似文献   

16.
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor, has been primarily isolated from the human and rat stomach. Ghrelin has been shown to stimulate appetite and fat deposition in adult rats and humans. The aim of this study was to investigate the effect of ghrelin administration on pancreatic growth in suckling, weaned and peripubertal seven week old rats. Rats were treated with saline or ghrelin (4, 8 or 16 nmol/kg/dose) intraperitoneally twice a day: suckling rats were treated for 7 or 14 days starting from the first postnatal day, three week old weaned rats and seven weeks old rats were treated for 5 days. Treatment with ghrelin did not affect animal weight in suckling or weaned rats, whereas in young seven week old rats, ghrelin caused a significant increase in body weight. Ghrelin decreased food intake in weaned rats; whereas in seven week old rats, food intake was enhanced. In suckling rats, ghrelin decreased the pancreatic weight, pancreatic amylase content, DNA synthesis and DNA content. In contrast, ghrelin increased pancreatic weight, DNA synthesis, DNA content and amylase content in weaned or young seven week old rats. Pancreatic blood flow was not affected by ghrelin in any group of rats tested. Ghrelin increased serum level of growth hormone in all rats. This effect was weak in suckling rats, higher in weaned and the highest in seven week old animals. Ghrelin did not affect serum level of insulin-like growth factor-1 (IGF-1) in suckling rats. In weaned and in seven week old rats, treatment with ghrelin caused increase in serum level of IGF-1. We conclude that ghrelin reduces pancreatic growth in suckling rats; whereas in weaned and young seven week old animals, treatment with ghrelin increases pancreatic growth. This biphasic effect of ghrelin in young animals on pancreatic growth seems to be related to age-dependent changes of the release of anabolic IGF-1.  相似文献   

17.
There is increasing evidence that oxidative stress has an important role in the development of multiorgan failure after major burn injury. In the present study, we investigated whether the leukotriene receptor blocker montelukast is protective against burn-induced injury of the gut. Under brief ether anaesthesia, shaved dorsum of the rats was exposed to 90 degrees C (burn group) or 25 degrees C (control group) water bath for 10 s. Montelukast (10 mg/kg) or saline was administered intraperitoneally immediately after and at the 12th hour of the burn injury. Rats were decapitated 24 h after burn injury and the skin samples, as well as tissue samples from stomach, ileum and colon, were taken for the determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen contents. Tissues were also examined microscopically. Tumor necrosis factor-alpha (TNF-alpha) and lactate dehydrogenase (LDH) were assayed in serum samples. Severe skin scald injury (30% of total body surface area) caused a significant decrease in GSH level, which was accompanied with significant increases in MDA level, MPO activity and collagen content of tissues. Similarly, serum TNF-alpha and LDH were elevated in the burn group as compared to control group. On the other hand, montelukast treatment reversed all these biochemical indices, as well as histopathological alterations, which were induced by thermal trauma. Findings of the present study suggest that montelukast possesses an anti-inflammatory effect on burn-induced gastrointestinal damage and protects against oxidative injury by a neutrophil-dependent mechanism.  相似文献   

18.
Wu R  Dong W  Ji Y  Zhou M  Marini CP  Ravikumar TS  Wang P 《PloS one》2008,3(4):e2026

Background

Gut ischemia/reperfusion (I/R) injury is a serious condition in intensive care patients. Activation of immune cells adjacent to the huge endothelial cell surface area of the intestinal microvasculature produces initially local and then systemic inflammatory responses. Stimulation of the vagus nerve can rapidly attenuate systemic inflammatory responses through inhibiting the activation of macrophages and endothelial cells. Ghrelin, a novel orexigenic hormone, is produced predominately in the gastrointestinal system. Ghrelin receptors are expressed at a high density in the dorsal vagal complex of the brain stem. In this study, we investigated the regulation of the cholinergic anti-inflammatory pathway by the novel gastrointestinal hormone, ghrelin, after gut I/R.

Methods and Findings

Gut ischemia was induced by placing a microvascular clip across the superior mesenteric artery for 90 min in male adult rats. Our results showed that ghrelin levels were significantly reduced after gut I/R and that ghrelin administration inhibited pro-inflammatory cytokine release, reduced neutrophil infiltration, ameliorated intestinal barrier dysfunction, attenuated organ injury, and improved survival after gut I/R. Administration of a specific ghrelin receptor antagonist worsened gut I/R-induced organ injury and mortality. To determine whether ghrelin''s beneficial effects after gut I/R require the intact vagus nerve, vagotomy was performed in sham and gut I/R animals immediately prior to the induction of gut ischemia. Our result showed that vagotomy completely eliminated ghrelin''s beneficial effect after gut I/R. To further confirm that ghrelin''s beneficial effects after gut I/R are mediated through the central nervous system, intracerebroventricular administration of ghrelin was performed at the beginning of reperfusion after 90-min gut ischemia. Our result showed that intracerebroventricular injection of ghrelin also protected the rats from gut I/R injury.

Conclusions

These findings suggest that ghrelin attenuates excessive inflammation and reduces organ injury after gut I/R through activation of the cholinergic anti-inflammatory pathway.  相似文献   

19.
Ghrelin has been shown to accelerate gastric emptying in animals where its effect appeared mediated through the vagus nerve. We aimed to verify the gastrokinetic capacity of ghrelin in human. Patients with gastroparesis attributed to a neural dysregulation by diabetes (n = 5) or surgical vagotomy (n = 1) were evaluated. The emptying of a test meal (420 kcal) was determined by the C13 octanoic acid breath test. Saline or synthetic ghrelin 1-4 microg/kg were given in 1 min bolus at the end of the meal. T-lag and T-1/2 were shorter during ghrelin than during saline administration [33 +/- 5 min versus 65 +/- 14 min (p < 0.01) and 119 +/- 6 min versus 173 +/- 38 min (p < 0.001)]. Ghrelin injection therefore accelerated gastric emptying of a meal in humans even in presence of a deficient gastric innervation.  相似文献   

20.
Traumatic brain injury (TBI) and hemorrhagic shock often occur concomitantly due to multiple injuries. Gastrointestinal dysfunction occurs frequently in patients with TBI. However, whether alterations in the gastrointestinal system are involved in modulating neuronal damage and recovery after TBI is largely neglected. Ghrelin is a "gut-brain" hormone with multiple functions including antiinflammation and antiapoptosis. The purpose of this study was to determine whether ghrelin attenuates brain injury in a rat model of TBI and uncontrolled hemorrhage (UH). To study this, brain injury was induced by dropping a 450-g weight from 1.5 m onto a steel helmet attached to the skull of male adult rats. Immediately after TBI, a midline laparotomy was performed and both lumbar veins were isolated and severed at the junction with the vena cava. At 45 min after TBI/UH, ghrelin (4, 8 or 16 nmol/rat) or 1 mL normal saline (vehicle) was intravenously administered. Brain levels of TNF-α and IL-6, and cleaved PARP-1 levels in the cortex were measured at 4 h after TBI/UH. Beam balance test, forelimb placing test and hindlimb placing test were used to assess sensorimotor and reflex function. In additional groups of animals, ghrelin (16 nmol/rat) or vehicle was subcutaneously (s.c.) administered daily for 10 d after TBI/UH. The animals were monitored for 28 d to record body weight changes, neurological severity scale and survival. Our results showed that ghrelin downregulated brain levels of TNF-α and IL-6, reduced cortical levels of cleaved PARP-1, improved sensorimotor and reflex functions, and decreased mortality after TBI/UH. Thus, ghrelin has a great potential to be further developed as an effective resuscitation approach for the trauma victims with brain injury and severe blood loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号