首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W Ardelt  M Laskowski 《Biochemistry》1985,24(20):5313-5320
We show that eight different serine proteinases--bovine chymotrypsins A and B, porcine pancreatic elastase I, proteinase K, Streptomyces griseus proteinases A and B, and subtilisins BPN' and Carlsberg--interact with turkey ovomucoid third domain at the same Leu18-Glu19 peptide bond, the reactive site of the inhibitor. Turkey ovomucoid third domain was converted to modified (the reactive site peptide bond hydrolyzed) form as documented by sequencing. Complexes of all eight enzymes both with virgin and with modified inhibitor were prepared. All 16 complexes were subjected to kinetically controlled dissociation, and all 16 produced predominantly virgin (greater than 90%) inhibitor, thus proving our point. During this investigation, we found that both alpha-chymotrypsin and especially S. griseus proteinase B convert virgin to modified turkey ovomucoid third domain, even in the pH range 1-2, a much lower pH than we expected. We have also measured rate constants kon and kon* for the association of virgin and modified turkey ovomucoid third domain with several serine proteinases. The kon/kon* ratio is 4.8 X 10(6) for chymotrypsin, but it is only 1.5 for subtilisin Carlsberg. A number of generalizations concerning reactive sites of protein proteinase inhibitor are proposed and discussed.  相似文献   

2.
G I Rhyu  J L Markley 《Biochemistry》1988,27(7):2529-2539
The solution structure of modified turkey ovomucoid third domain (OMTKY3*) was investigated by high-resolution proton NMR techniques. OMTKY3* was obtained by enzymatic hydrolysis of the scissile reactive site peptide bond (Leu18-Glu19) in turkey ovomucoid third domain (OMTKY3). All of the backbone proton resonances were assigned to sequence-specific residues except the NH's of Leu1 and Glu19, which were not observed. Over 80% of the side-chain protons also were assigned. The secondary structure of OMTKY3*, as determined from assigned NOESY cross-peaks and identification of slowly exchanging amide protons, contains antiparallel beta-sheet consisting of three strands (residues 21-25, 28-32, and 49-54), one alpha-helix (residues 33-44), and one reverse turn (residues 26-28). This secondary structure closely resembles that of OMTKY3 in solution [Robertson, A. D., Westler, W. M., & Markley, J. L. (1988) Biochemistry (preceding paper in this issue)]. On the other hand, changes in the tertiary structure of the protein near to and remote from the cleavage site are indicated by differences in the chemical shifts of numerous backbone protons of OMTKY3 and OMTKY3*.  相似文献   

3.
Modeling protein loops using a phi i + 1, psi i dimer database.   总被引:1,自引:1,他引:0       下载免费PDF全文
We present an automated method for modeling backbones of protein loops. The method samples a database of phi i + 1 and psi i angles constructed from a nonredundant version of the Protein Data Bank (PDB). The dihedral angles phi i + 1 and psi i completely define the backbone conformation of a dimer when standard bond lengths, bond angles, and a trans planar peptide configuration are used. For the 400 possible dimers resulting from 20 natural amino acids, a list of allowed phi i + 1, psi i pairs for each dimer is created by pooling all such pairs from the loop segments of each protein in the nonredundant version of the PDB. Starting from the N-terminus of the loop sequence, conformations are generated by assigning randomly selected pairs of phi i + 1, psi i for each dimer from the respective pool using standard bond lengths, bond angles, and a trans peptide configuration. We use this database to simulate protein loops of lengths varying from 5 to 11 amino acids in five proteins of known three-dimensional structures. Typically, 10,000-50,000 models are simulated for each protein loop and are evaluated for stereochemical consistency. Depending on the length and sequence of a given loop, 50-80% of the models generated have no stereochemical strain in the backbone atoms. We demonstrate that, when simulated loops are extended to include flanking residues from homologous segments, only very few loops from an ensemble of sterically allowed conformations orient the flanking segments consistent with the protein topology. The presence of near-native backbone conformations for loops from five different proteins suggests the completeness of the dimeric database for use in modeling loops of homologous proteins. Here, we take advantage of this observation to design a method that filters near-native loop conformations from an ensemble of sterically allowed conformations. We demonstrate that our method eliminates the need for a loop-closure algorithm and hence allows for the use of topological constraints of the homologous proteins or disulfide constraints to filter near-native loop conformations.  相似文献   

4.
W Bode  A Z Wei  R Huber  E Meyer  J Travis    S Neumann 《The EMBO journal》1986,5(10):2453-2458
Orthorhombic crystals diffracting beyond 1.7 A resolution, have been grown from the stoichiometric complex formed between human leukocyte elastase (HLE) and the third domain of turkey ovomucoid inhibitor (OMTKY3). The crystal and molecular structure has been determined with the multiple isomorphous replacement technique. The complex has been modeled using the known structure of OMTKY3 and partial sequence information for HLE, and has been refined. The current crystallographic R-value is 0.21 for reflections from 25 to 1.8 A resolution. HLE shows the characteristic polypeptide fold of trypsin-like serine proteinases and consists of 218 amino acid residues. However, several loop segments, mainly arranged around the substrate binding site, have unique conformations. The largest deviations from the other vertebrate proteinases of known spatial structure are around Cys168. The specificity pocket is constricted by Val190, Val216 and Asp226 to preferentially accommodate medium sized hydrophobic amino acids at P1. Seven residues of the OMTKY3-binding segment are in specific contact with HLE. This interaction and geometry around the reactive site are similar as observed in other complexes. It is the first serine proteinase glycoprotein analysed, having two sugar chains attached to Asn159 and to residue 109.  相似文献   

5.
1. Aspergillopeptidase B rapidly hydrolyses the -Leu18-Glu19-reactive site peptide bond in turkey ovomucoid third domain (OMTKY3) within the pH-range of 4.0-8.4. The reaction proceeds to equilibrium between OMTKY3 and its modified form with the reactive site peptide bond cleaved (OMTKY3). 2. The dependence of the equilibrium constant (Khyd) on pH indicates that hydrolysis of the reactive site peptide bond apparently does not perturb the pK-values of any preexistent ionizable groups in OMTKY3. 3. The obtained Khyd0 value indicates that free energies of OMTKY3 and OMTKY3 are essentially the same. 4. Hydrolysis of the reactive site peptide bond by aspergillopeptidase B at neutral pH is about 60 times faster than the same reaction catalyzed by subtilisin (Carlsberg), the enzyme strongly inhibited by OMTKY3. 5. Resynthesis of the reactive site peptide bond at neutral pH catalyzed by aspergillopeptidase B (reverse reaction) is almost four orders of magnitude faster than the forward reaction.  相似文献   

6.
The virgin (reactive-site Leu18-Glu19 peptide bond intact) and modified (reactive-site Leu18-Glu19 peptide bond hydrolyzed) forms of turkey ovomucoid third domain (OMTKY3 and OMTKY3*, respectively) have been analyzed by proton-detected 1H(13C) two-dimensional single-bond correlation (1H[13C]SBC) spectroscopy. Previous 1H-nmr assignments of these proteins [A.D. Robertson, W.M. Westler, and J.L Markley (1988) Biochemistry, 27, 2519-2529; G. I. Rhyu and J. L. Markley (1988) Biochemistry, 27, 2529-2539] have been extended to directly bonded 13C atoms. Assignments have been made to 52 of the 56 backbone 13C alpha-1H units and numerous side-chain 13C-1H groups in both OMTKY3 and OMTKY3*. The largest changes in the 13C chemical shift upon conversion of OMTKY3 to OMTKY3* occur at or near the reactive site, and tend toward values observed in small peptides. Moreover, the side-chain prochiral methylene protons attached to the C gamma of Glu19 and C delta of Arg21 show nonequivalent chemical shifts in OMTKY3 but more equivalent chemical shifts in OMTKY3*. These results suggest that the reactive site region becomes less ordered upon hydrolysis of the Leu18-Glu19 peptide bond. Comparison of 13C alpha chemical shifts of OMTKY3 and bovine pancreatic trypsin inhibitor [D. Brühuiler and G. Wagner (1986) Biochemistry 25, 5839-5843; N. R. Nirmala and G. Wagner (1988) Journal of the American Chemical Society, 110, 7557-7558] with small peptide values [R. Richarz and K. Wüthrich (1978) Biopolymers, 17, 2133-2141] suggests that 13C alpha chemical shifts of residues residing in helices are generally about 2 ppm downfield of resonances from nonhelical residues.  相似文献   

7.
We have obtained two semisynthetic covalent hybrids (Wieczorek, M. & Laskowski, M., Jr., (1983) Biochemistry 22, 2630-2636) of turkey ovomucoid third domain by coupling the natural 19-56 peptide fragment with crude, synthetic peptides 1-18 and 6-18, respectively. We have reformed all of the disulfide bridges and then we have enzymatically synthesized the 18-19 peptide bond. The enzyme-inhibitor association constants for interaction with five different serine proteinases were the same for the semisynthetic proteins 1-56 and 6-56 and for natural proteins 1-56 and 4-56. Further, the semisynthetic 1-56 and natural 1-56 proteins were indistinguishable in analytical ion exchange and reverse-phase chromatography. This work shows that 1) making the covalent hybrids from synthetic and natural material is a facile and efficient method for preparing variants for highly quantitative sequence to reactivity studies, 2) the first five NH2-terminal residues of avian ovomucoid third domains have no effect on inhibitory activity, and 3) it is sufficient and convenient to prepare 6-56 proteins rather than 1-56 for inhibitory activity studies.  相似文献   

8.
Proteinases perform many beneficial functions that are essential to life, but they are also dangerous and must be controlled. Here we focus on one of the control mechanisms: the ubiquitous presence of protein proteinase inhibitors. We deal only with a subset of these: the standard mechanism, canonical protein inhibitors of serine proteinases. Each of the inhibitory domains of such inhibitors has one reactive site peptide bond, which serves all the cognate enzymes as a substrate. The reactive site peptide bond is in a combining loop which has an identical conformation in all inhibitors and in all enzyme-inhibitor complexes. There are at least 18 families of such inhibitors. They all share the conformation of the combining loops but each has its own global three-dimensional structure. Many three-dimensional structures of enzyme-inhibitor complexes were determined. They are frequently used to predict the conformation of substrates in very short-lived enzyme-substrate transition state complexes. Turkey ovomucoid third domain and eglin c have a Leu residue at P(1). In complexes with chymotrypsin, these P(1) Leu residues assume the same conformation. The relative free energies of binding of P(1) Leu (relative to either P(1) Gly or P(1) Ala) are within experimental error, the same for complexes of turkey ovomucoid third domain, eglin c, P(1) Leu variant of bovine pancreatic trypsin inhibitor and of a substrate with chymotrypsin. Therefore, the P(1) Leu conformation in transition state complexes is predictable. In contrast, the conformation of P(1) Lys(+) is strikingly different in the complexes of Lys(18) turkey ovomucoid third domain and of bovine pancreatic trypsin inhibitor with chymotrypsin. The relative free energies of binding are also quite different. Yet, the relative free energies of binding are nearly identical for Lys(+) in turkey ovomucoid third domain and in a substrate, thus allowing us to know the structure of the latter. Similar reasoning is applied to a few other systems.  相似文献   

9.
The complete amino acid sequence of chicken ovomucoid (OMCHI) is presented. OMCHI consists of three tandem domains, each homologous to pancreatic secretory trypsin inhibitor (Kazal) and each with an actual or putative reactive site for inhibition of serine proteinases. The major reactive site for bovine beta-trypsin is the Arg89-Ala peptide bond in the second domain. The equilibrium constant for hydrolysis of this peptide bond, K0hyd, is 1.85. The first and third domains of OMCHI are relatively ineffective inhibitors of several serine proteinases against which they were tested. OMCHI is a mixture of two forms: the major form with all of the amino acid residues and a minor form with Val134-Ser135 deleted. This polymorphism is present in all chicken eggs and is the result of ambiguous excision at the 5' end of the F intron. Procedures are given for preparation of modified chicken ovomucoid, OMCHI (in which the Arg89-Ala bond is hydrolyzed), of the first domain, OMCHI1 (residues 1-68), of the second domain, OMCHI2 (residues 65-130), and of the third domain, OMCHI3 (residues 131-186). In the case of the third domain, both the Asn175 glycosylated form, OMCHI3(+), and the carbohydrate-free form, OMCHI3(-), were obtained. These isolated native domains are useful in many studies of ovomucoid behavior.  相似文献   

10.
Using a data set of 454 crystal structures of peptides and 80 crystal structures of non-homologous proteins solved at ultra high resolution of 1.2 A or better we have analyzed the occurrence of disallowed Ramachandran (phi, psi) angles. Out of 1492 and 13508 non-glycyl residues in peptides and proteins respectively 12 and 76 residues in the two datasets adopt clearly disallowed combinations of Ramachandran angles. These examples include a number of conformational points which are far away from any of the allowed regions in the Ramachandran map. According to the Ramachandran map a given (phi, psi) combination is considered disallowed when two non-bonded atoms in a system of two-linked peptide units with ideal geometry are prohibitively proximal in space. However, analysis of the disallowed conformations in peptide and protein structures reveals that none of the observations of disallowed conformations in the crystal structures correspond to a short contact between non-bonded atoms. A further analysis of deviations of bond lengths and angles, from the ideal peptide geometry, at the residue positions of disallowed conformations in the crystal structures suggest that individual bond lengths and angles are all within acceptable limits. Thus, it appears that the rare tolerance of disallowed conformations is possible by gentle and acceptable deviations in a number of bond lengths and angles, from ideal geometry, over a series of bonds resulting in a net gross effect of acceptable non-bonded inter-atomic distances.  相似文献   

11.
Recent analysis of alpha helices in protein crystal structures, available in literature, revealed hydrated alpha helical segments in which, water molecule breaks open helix 5-->1 hydrogen bond by inserting itself, hydrogen bonds to both C=O and NH groups of helix hydrogen bond without disrupting the helix hydrogen bond, and hydrogen bonds to either C=O or NH of helix hydrogen bond. These hydrated segments display a variety of turn conformations and are thought to be 'folding intermediates' trapped during folding-unfolding of alpha helices. A role for reverse turns is implicated in the folding of alpha helices. We considered a hexapeptide model Ac-1TGAAKA6-NH2 from glyceraldehyde 3-phosphate dehydrogenase, corresponding to a hydrated helical segment to assess its role in helix folding. The sequence is a site for two 'folding intermediates'. The conformational features of the model peptide have been investigated by 1H 2D NMR techniques and quantum mechanical perturbative configuration interaction over localized orbitals (PCILO) method. Theoretical modeling largely correlates with experimental observations. Based upon the amide proton temperature coefficients, the observed d alpha n(i, i + 1), d alpha n(i, i + 2), dnn(i, i + 1), d beta n(i, i + 1) NOEs and the results from theoretical modeling, we conclude that the residues of the peptide sample alpha helical and neck regions of the Ramachandran phi, psi map with reduced conformational entropy and there is a potential for turn conformations at N and C terminal ends of the peptide. The role of reduced conformational entropy and turn potential in helix formation have been discussed. We conclude that the peptide sequence can serve as a 'folding intermediate' in the helix folding of glyceraldehyde 3-phosphate dehydrogenase.  相似文献   

12.
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I'beta-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt alpha-helical conformations stabilized by 11 successive 5 --> 1 hydrogen bonds. In addition, a single 4 --> 1 hydrogen bond is also observed at the N-terminus. All five Dpg residues adopt backbone torsion angles (phi, psi) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle N-C(alpha)-C' (tau) and the observed backbone phi,psi values. For tau > 106 degrees, helices are observed, while fully extended structures are characterized by tau < 106 degrees. The mean tau values for extended and folded conformations for the Dpg residue are 103.6 degrees +/- 1.7 degrees and 109.9 degrees +/- 2.6 degrees, respectively.  相似文献   

13.
The substrate-like inhibition of serine proteinases by avian ovomucoid domains has provided an excellent model for protein inhibitor-proteinase interactions of the standard type. 1H,15N and 13C NMR studies have been undertaken on complexes formed between turkey ovomucoid third domain (OMTKY3)2 and chymotrypsin A(alpha) (Ctr) in order to characterize structural changes occurring in the Ctr binding site of OMTKY3. 15N and 13C were incorporated uniformly into OMTKY3, allowing backbone resonances to be assigned for OMTKY3 in both its free and complex states. Chemical shift perturbation mapping indicates that the two regions, K13-P22 and N33-A40, are the primary sites in OMTKY3 involved in Ctr binding, in full agreement with the 12 consensus proteinase-contact residues of OMTKY3 defined previously on the basis of X-ray crystallographic and mutational analysis. Smaller chemical shift perturbations in selected other regions may result from minor structural changes on binding. Through-bond 15N-13C correlations between P1-13C' and P1'-15N in two-dimensional H(N)CO and HN(CO) NMR spectra of selectively labeled OMTKY3 complexed with Ctr indicate that the scissile peptide bond between L18 and E19 of the inhibitor is intact in the complex. The chemical shifts of the reactive site peptide bond indicate that it is predominantly trigonal, although the data are not inconsistent with a slight perturbation of the hybridization of the peptide bond toward the first tetrahedral state along the reaction coordinate.  相似文献   

14.
The Ramachandran steric map and energy diagrams of the glycyl residue are symmetric. A plot of (phi,psi) angles of glycyl residues in 250 nonhomologous and high-resolution protein structures is also largely symmetric. However, there is a clear aberration in the symmetry. Although there is a cluster of points corresponding to the right-handed alpha-helical region, the "equivalent" cluster is clearly shifted to in and around the (phi,psi) values of (90 degrees, 0 degrees ) instead of being centered at the left-handed alpha-helical region of (60 degrees, 40 degrees ). This lack of symmetry exists even in the (phi,psi) distribution of residues from non-alpha-helical regions in proteins. Here we provide an explanation for this observation. An analysis of glycyl conformations in small peptide structures and in "coil" proteins, which are largely devoid of helical and sheet regions, shows that glycyl residues prefer to adopt conformations around (+/-90 degrees, 0 degrees ) instead of right- and left-handed alpha-helical regions. By using theoretical calculations, such conformations are shown to have highest solvent accessibility in a system of two-linked peptide units with glycyl residue at the central C(alpha) atom. This finding is consistent with the observations from 250 nonhomologous protein structures where glycyl residues with conformations close to (+/-90 degrees, 0 degrees ) are seen to have high solvent accessibility. Analysis of a subset of nonhomologous structures with very high resolution (1.5 A or better) shows that water molecules are indeed present at distances suitable for hydrogen bond interaction with glycyl residues possessing conformations close to (+/-90 degrees, 0 degrees ). It is suggested that water molecules play a key role in determining and stabilizing these conformations of glycyl residues and explain the aberration in the symmetry of glycyl conformations in proteins.  相似文献   

15.
The conformational behaviour of deltaZPhe has been investigated in the model dipeptide Ac-deltaZPhe-NHMe and in the model tripeptides Ac-X-deltaZPhe-NHMe with X=Gly,Ala,Val,Leu,Abu,Aib and Phe and is found to be quite different. In the model tripeptides with X=Ala,Val,Leu,Abu,Phe the most stable structure corresponds to phi1=-30 degrees, psi1=120 degrees and phi2=psi2=30 degrees. This structure is stabilized by the hydrogen bond formation between C=O of acetyl group and the NH of the amide group, resulting in the formation of a 10-membered ring but not a 3(10) helical structure. In the peptides Ac-Aib-deltaZPhe-NHMe and Ac-(Aib-deltaZPhe)3-NHMe, the helical conformers with phi = +/-30 degrees, psi = +/-60 degrees for Aib residue and phi=psi= +/-30 degrees for deltaZPhe are predicted to be most stable. The computational studies for the positional preferences of deltaZPhe residue in the peptide containing one deltaZPhe and nine Ala residues reveal the formation of a 3(10) helical structure in all the cases with terminal preferences for deltaZPhe. The conformational behaviour of Ac-(deltaZPhe)n-NHMe with n< or =4 is predicted to be very labile. With n > 4, degenerate conformational states with phi,psi values of 0 degrees +/- 90 degrees adopt helical structures which are stabilized by carbonyl-carbonyl interactions and the N-H-pi interactions between the amino group of every deltaZPhe residue with one C-C edge of its own phenyl ring. The results are in agreement with the experimental finding that screw sense of helix for peptides containing deltaZPhe residues is ambiguous in solution. The helical structures stabilized by hydrogen bond formation are found to be at least 3kCalmol(-1) less stable. Conformational studies have also been carried out for the peptide Ac-(deltaEPhe)6-NHMe and the peptide Ac-deltaAla-(deltaZPhe)6-NHMe containing deltaAla residue at the N-terminal. The N-H-pi interactions are absent in peptide Ac-(deltaEPhe)6-NHMe.  相似文献   

16.
The present paper describes the predominant conformational forms adopted by dipeptides in aqueous solution. More than 50 dipeptides were subjected to conformational analysis using SYBYL Random Search. The resultant collections of conformers for individual dipeptides, for small groups with related side chain residues and for large groups of about 50 dipeptides were visualized graphically and analysed using a novel three-dimensional pseudo-Ramachandran plot. The distribution of conformers, weighted according to the percentage of each in the total conformer pool, was found to be restricted to nine main combinations of backbone psi (psi) and phi (phi) torsion angles. The preferred psi values were in sectors A7 (+150 degrees to +/-180 degrees), A10 (+60 degrees to +90 degrees) and A4 (-60 degrees to -90 degrees), and these were combined with preferred phi values in sectors B12 (-150 degrees to +/-180 degrees), B9 (-60 degrees to -90 degrees) and B2 (+30 degrees to +60 degrees). These combinations of psi and phi values are distinct from those found in common secondary structures of proteins. These results show that although dipeptides can each adopt many conformations in solution, each possesses a profile of common conformers that is quantifiable. A similarly weighted distribution of dipeptide conformers according to distance between amino-terminal nitrogen and carboxyl-terminal carbon shows how the preferred combinations of backbone torsional angles result in particular N-C geometries for the conformers. This approach gives insight into the important conformational parameters of dipeptides that provide the basis for their molecular recognition as substrates by widely distributed peptide transporters. It offers a basis for the rational design of peptide-based bioactive compounds able to exploit these transporters for targeting and delivery.  相似文献   

17.
Using the earlier suggested method the calculation of the backbone conformations of horse heart cytochrome c in oxidized (ferricytochrome c) and reduced (ferrocytochrome c) states has been performed by the two-dimensional nuclear Overhauser effect spectroscopy data. For both protein forms the secondary structure elements have been revealed and the conformations of the irregular polypeptide chain segments have been analysed. The similarity of the secondary structures of ferri- and ferrocytochrome c in solution was established from the comparison of their conformations. Small differences between the conformations of two molecule forms are shown to be localized within the polypeptide chain fragments situated in the spatial structure near the heme crevice. The comparison of the dihedral phi and psi angles in the calculated conformations of horse cytochrome C with the corresponding characteristics of X-ray structures of tuna ferri- and ferrocytochrome c made for the oxidized and reduced protein forms using the quantitative criteria testifies the similarity of their conformations in solution and crystal. In is shown that the conformational changes of the separate amino acid residues which take place as the result of the "solution-to-crystal" transition occur on the surface fragments of protein globule and do not lead to essential alterations of the secondary molecule structure.  相似文献   

18.
Highly specific structures can be designed by inserting dehydro-residues into peptide sequences. The conformational preferences of branched beta-carbon residues are known to be different from other residues. As an implication it was expected that the branched beta-carbon dehydro-residues would also induce different conformations when substituted in peptides. So far, the design of peptides with branched beta-carbon dehydro-residues at (i + 1) position has not been reported. It may be recalled that the nonbranched beta-carbon residues induced beta-turn II conformation when placed at (i + 2) position while branched beta-carbon residues induced beta-turn III conformation. However, the conformation of a peptide with a nonbranched beta-carbon residue when placed at (i + 1) position was not found to be unique as it depended on the stereochemical nature of its neighbouring residues. Therefore, in order to induce predictably unique structures with dehydro-residues at (i + 1) position, we have introduced branched beta-carbon dehydro-residues instead of nonbranched beta-carbon residues and synthesized two peptides: (I) N-Carbobenzoxy-DeltaVal-Ala-Leu-OCH3 and (II) N-Carbobenzoxy-DeltaIle-Ala-Leu-OCH3 with DeltaVal and DeltaIle, respectively. The crystal structures of peptides (I) and (II) have been determined and refined to R-factors of 0.065 and 0.063, respectively. The structures of both peptides were essentially similar. Both peptides adopted type II beta-turn conformations with torsion angles; (I): phi1 = -38.7 (4) degrees, psi1 = 126.0 (3) degrees; phi2 = 91.6 (3) degrees, psi2 = -9.5 (4) degrees and (II): phi1 = -37.0 (6) degrees, psi1 = 123.6 (4) degrees, phi2 = 93.4 (4), psi2 = -11.0(4) degrees respectively. Both peptide structures were stabilized by intramolecular 4-->1 hydrogen bonds. The molecular packing in both crystal structures were stabilized in each by two identical hydrogen bonds N1...O1' (-x, y + 1/2, -z) and N2...O2' (-x + 1, y + 1/2, -z) and van der Waals interactions.  相似文献   

19.
alpha-sheet has been proposed as the main constituent of the prefibrillar intermediate during amyloid formation. Here the helical parameters of the alpha-sheet strand are calculated from average main-chain dihedral angles reported from molecular dynamics simulations. It is an almost linear polypeptide that forms a right-handed helix of about 100 A diameter, with 100 residues and a rise of 30 A per turn. The strands are curved but untwisted, which implies that neighboring strands need not coil to make interstrand hydrogen bonds. This suggests that compared to beta-sheets in native folded proteins, alpha-sheets can be larger and stack more easily to create extensive 3D blocks. It is shown that alpha-sheet is related to a category of structures termed "mirror" structures. Mirror structures have repetitive pairs of main-chain dihedral angles at residues i and i+1 that satisfy the condition phi(i) (+1) = -psi(i), psi(i) (+1) = -phi(i). They are uniquely identified by the two orientations of their peptide planes, specified by phi(i) and psi(i). Their side chains point alternately in opposite directions. Interestingly, their conformations are insensitive to phi(i) and psi(i) in that the pseudo dihedral angle formed by four consecutive C(alpha) atoms is always close to 180 degrees . There are two types: "beta-mirror" and "alpha-mirror" structure; beta-mirror structures relate to beta-sheet by small peptide plane rotations, of less than 90 degrees , while alpha-mirror structures are close to alpha-sheet and relate to beta-sheet by approximately 180 degrees peptide plane flips. Most mirror structures, and in particular the alpha-mirror, form wide helices with diameters 50-70 A. Their gentle curvature, and therefore that of the alpha-sheet, arises from the orientation of successive peptide units causing the difference in the bond angles at the C and N atoms of the peptide unit to gradually change the direction of the chain.  相似文献   

20.
The spatial structure of the methylamide of N-acetyl-L-lysine has been analysed taking into account non-bonded and electrostatic interactions, torsional energy, bond angles distortion and hydrogen bonding. Conformational capacities of the backbone and mutual dependence of spatial structures of the backbone and the side chain was described by conformational maps obtained by energy minimisation, the dihedral angles and the bond angles of the side chain being varied for every phi, psi point. Every possible combination for phi, psi, x1-x5-angles was used corresponding to the stable form of the backbone and to torsion potential minima of the initial approximations in the calculation of preferred conformations of the molecule. Comparisons are made between stable forms of the methylamide of N-acetyl-L-lysine and Lys residues in proteins with known structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号