首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA is a ubiquitous biopolymer that performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. RNA is unique in that it can carry both genetic information and catalytic function. Its secondary structure domains, which fold stably and independently, assemble hierarchically into modular tertiary structures. Studies of these folding events are key to understanding how catalytic RNAs (ribozymes) are able to position reaction components for site-specific chemistry. We have made use of fluorescence techniques to monitor the rates and free energies of folding of the small hairpin and hepatitis delta virus (HDV) ribozymes, found in satellite RNAs of plant and the human hepatitis B viruses, respectively. In particular, fluorescence resonance energy transfer (FRET) has been employed to monitor global conformational changes, and 2-aminopurine fluorescence quenching to probe for local structural rearrangements. In this review we illuminate what we have learned about the reaction pathways of the hairpin and HDV ribozymes, and how our results have complemented other biochemical and biophysical investigations. The structural transitions observed in these two small catalytic RNAs are likely to be found in many other biological RNAs, and the described fluorescence techniques promise to be broadly applicable.  相似文献   

2.
The hairpin ribozyme is a small endonucleolytic RNA motif with potential for targeted RNA inactivation. It optimally cleaves substrates containing the sequence 5'-GU-3' immediately 5' of G. Previously, we have shown that tertiary structure docking of its two domains is an essential step in the reaction pathway of the hairpin ribozyme. Here we show, combining biochemical and fluorescence structure and function probing techniques, that any mutation of the substrate base U leads to a docked RNA fold, yet decreases cleavage activity. The docked mutant complex shares with the wild-type complex a common interdomain distance as measured by time-resolved fluorescence resonance energy transfer (FRET) as well as the same solvent-inaccessible core as detected by hydroxyl-radical protection; hence, the mutant complex appears nativelike. FRET experiments also indicate that mutant docking is kinetically more complex, yet with an equilibrium shifted toward the docked conformation. Using 2-aminopurine as a site-specific fluorescent probe in place of the wild-type U, a local structural rearrangement in the substrate is observed. This substrate straining accompanies global domain docking and involves unstacking of the base and restriction of its conformational dynamics, as detected by time-resolved 2-aminopurine fluorescence spectroscopy. These data appear to invoke a mechanism of functional interference by a single base mutation, in which the ribozyme-substrate complex becomes trapped in a nativelike fold preceding the chemical transition state.  相似文献   

3.
RNA is a ubiquitous biopolymer that performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. RNA is unique in that it can carry both genetic information and catalytic function. Its secondary structure domains, which fold stably and independently, assemble hierarchically into modular tertiary structures. Studies of these folding events are key to understanding how catalytic RNAs (ribozymes) are able to position reaction components for site‐specific chemistry. We have made use of fluorescence techniques to monitor the rates and free energies of folding of the small hairpin and hepatitis delta virus (HDV) ribozymes, found in satellite RNAs of plant and the human hepatitis B viruses, respectively. In particular, fluorescence resonance energy transfer (FRET) has been employed to monitor global conformational changes, and 2‐aminopurine fluorescence quenching to probe for local structural rearrangements. In this review we illuminate what we have learned about the reaction pathways of the hairpin and HDV ribozymes, and how our results have complemented other biochemical and biophysical investigations. The structural transitions observed in these two small catalytic RNAs are likely to be found in many other biological RNAs, and the described fluorescence techniques promise to be broadly applicable. © 2002 Wiley Periodicals, Inc. Biopoly (Nucleic Acid Sci) 61: 224–241, 2002  相似文献   

4.
The sensitivity of hairpin-probe-based fluorescence resonance energy transfer (FRET) analysis was sequence-dependent in detecting single base mismatches with different positions and identities. In this paper, the relationship between the sequence-dependent effect and the discrimination sensitivity of a single base mismatch was systematically investigated by fluorescence analysis and force spectroscopy analysis. The same hairpin probe was used. The uneven fluorescence analysis sensitivity was obviously influenced by the guanine-cytosine (GC) contents as well as the location of the mismatched base. However, we found that force spectroscopy analysis distinguished itself, displaying a high and even sensitivity in detecting differently mismatched targets. This could therefore be an alternative and novel way to minimize the sequence-dependent effect of the hairpin probe. The advantage offered by force spectroscopy analysis could mainly be attributed to the percentage of rupture force reduction, which could be directly and dramatically influenced by the percentage of secondary structure disruption contributed by each mismatched base pair, regardless of its location and identity. This yes-or-no detection mechanism should both contribute to a comprehensive understanding of the sensitivity source of different mutation analyses and extend the application range of hairpin probes.  相似文献   

5.
An oligodeoxynucleotide has been synthesized, which mimics an ``antigene' oligonucleotide with a polypyrimidic stretch on its 5′ side and is protected on its 3′ side against nucelases by a naturally forming and very stable hairpin, 5′GCGAAGC3′. The in vitro degradation of the resulting oligonucleotide d(5′TTCTCGCGAAGC3′) has already been studied by fluorescence resonance energy transfer (FRET) (Réfrégiers et al. 1996, J Biomol Struct Dyn 14: 365 – 371). The technique required the grafting of fluorophores at both ends of the oligonucleotide. In the present work we have compared the hairpin formed in the presence and in the absence of such fluorophores. This was achieved by the study of the Raman spectra (excitation at 257 nm) of the oligodeoxynucleotides H, which forms the hairpin (5′TTCTCGCGAAGC3′), and a con-trol C (5′TTCTCCGGAAGC3′) which is unable to form the hairpin. Resonance Raman spectroscopy with 257 nm excitation greatly favors the resonance of purines and therefore the study of the 3′ part of the oligonucleotides. The difference spectrum obtained from resonance Raman spectra of C and H showed marker peaks specific for hairpin formation. The search for these marker peaks in difference spectra involving the Raman spectrum of H labeled by fluorophores and either C or H proved that the fluorophores do not modify the structure of the hairpin but only the vibrations of the two terminal bases on which the fluorophores are grafted. The use of such labeling is then justified in order to allow oligonucleotides protected by a hairpin on their 3′ side to be studied by fluorescence spectroscopy. Received: 13 December 1996 / Accepted: 7 April 1997  相似文献   

6.
Molecular beacon (MB) is especially suited for detection of single nucleotide polymorphism (SNP), and the type of MB immobilized on the surface of microarray in particular, may detect multi-sample and multi-locus. However, the majority of MB needs to be labeled with fluorescence and quenching molecules on the two ends of the probe, and observed the reaction of fluorescence or complicated electrochemical signal produced hybridization of MB and target sequence by complex and expensive instruments. The "molecular beacon" and microarray designed appropriately in our study can produce visible light response signal induced by amplification effect of enzymatic color, and are avoided with the marker of fluorescence and quenching molecules and expensive instruments. The "molecular beacon" without fluorescence and quenching molecules is entitled as "hairpin DNA probe" by us for only the "hairpin" structure of traditional molecular beacon is adopted. The merits of two techniques, molecular beacon and amplification effect of enzymatic color, are successfully combined, and the technique is simple, sensitive and specific, to detect and compare the methylenetetrahydrofolate reductase (MTHFR) Gene C677T mutation of subjects between coronary heart disease (CHD) and control group. The results showed that MTHFR Gene C677T polymorphism is an independent risk factor for CHD.  相似文献   

7.
This article presents a new, highly sensitive method for the identification of single nucleotide polymorphisms (SNPs) in homogeneous solutions using fluorescently labeled hairpin-structured oligonucleotides (smart probes) and fluorescence single-molecule spectroscopy. While the hairpin probe is closed, fluorescence intensity is quenched due to close contact between the chromophore and several guanosine residues. Upon hybridization to the respective target SNP sequence, contact is lost and the fluorescence intensity increases significantly. High specificity is achieved by blocking sequences containing mismatch with unlabeled oligonucleotides. Time-resolved single-molecule fluorescence spectroscopy enables the detection of individual smart probes passing a small detection volume. This method leads to a subnanomolar sensitivity for this single nucleotide specific DNA assay technique.  相似文献   

8.
Conformational fluctuations of single-stranded DNA (ssDNA) oligonucleotides were studied in aqueous solution by monitoring contact-induced fluorescence quenching of the oxazine fluorophore MR121 by intrinsic guanosine residues (dG). We applied fluorescence correlation spectroscopy as well as steady-state and time-resolved fluorescence spectroscopy to analyze kinetics of DNA hairpin folding. We first characterized the reporter system by investigating bimolecular quenching interactions between MR121 and guanosine monophosphate in aqueous solution estimating rate constants, efficiency and stability for formation of quenched complexes. We then studied the kinetics of complex formation between MR121 and dG residues site-specifically incorporated in DNA hairpins. To uncover the initial steps of DNA hairpin folding we investigated complex formation in ssDNA carrying one or two complementary base pairs (dC–dG pairs) that could hybridize to form a short stem. Our data show that incorporation of a single dC–dG pair leads to non-exponential decays for opening and closing kinetics and reduces rate constants by one to two orders of magnitude. We found positive activation enthalpies independent of the number of dC–dG pairs. These results imply that the rate limiting step of DNA hairpin folding is not determined by loop dynamics, or by mismatches in the stem, but rather by interactions between stem and loop nucleotides.  相似文献   

9.
A molecular diagnostic platform with DANP-anchored hairpin primer was developed and evaluated for the rapid and cost-effective detection of Chikungunya virus (CHIKV) with high sensitivity and specificity. The molecule 2, 7-diamino-1, 8-naphthyridine (DANP) binds to a cytosine-bulge and emits fluorescence at 450 nm when it is excited by 400 nm light. Thus, by measuring the decline in fluorescence emitted from DANP—primer complexes after PCR reaction, we could monitor the PCR progress. By adapting this property of DANP, we have previously developed the first generation DANP-coupled hairpin RT-PCR assay. In the current study, we improved the assay performance by conjugating the DANP molecule covalently onto the hairpin primer to fix the DANP/primer ratio at 1:1; and adjusting the excitation emission wavelength to 365/430 nm to minimize the background signal and a ‘turn-on’ system is achieved. After optimizing the PCR cycle number to 30, we not only shortened the total assay turnaround time to 60 minutes, but also further reduced the background fluorescence. The detection limit of our assay was 0.001 PFU per reaction. The DANP-anchored hairpin primer, targeting nsP2 gene of CHIKV genome, is highly specific to CHIKV, having no cross-reactivity to a panel of other RNA viruses tested. In conclusion, we report here a molecular diagnostic assay that is sensitive, specific, rapid and cost effective for CHIKV detection and can be performed where no real time PCR instrumentation is required. Our results from patient samples indicated 93.62% sensitivity and 100% specificity of this method, ensuring that it can be a useful tool for rapid detection of CHIKV for outbreaks in many parts of the world.  相似文献   

10.
The fluorescent base analogue 2-aminopurine (2-AP) is commonly used to study specific conformational and protein binding events involving nucleic acids. Here, combinations of steady-state and time-resolved fluorescence spectroscopy of 2-AP were employed to monitor conformational transitions within a model hairpin RNA from diverse structural perspectives. RNA substrates adopting stable, unambiguous secondary structures were labeled with 2-AP at an unpaired base, within the loop, or inside the base-paired stem. Steady-state fluorescence was monitored as the RNA hairpins made the transitions between folded and unfolded conformations using thermal denaturation, urea titration, and cation-mediated folding. Unstructured control RNA substrates permitted the effects of higher-order RNA structures on 2-AP fluorescence to be distinguished from stimulus-dependent changes in intrinsic 2-AP photophysics and/or interactions with adjacent residues. Thermodynamic parameters describing local conformational changes were thus resolved from multiple perspectives within the model RNA hairpin. These data provided energetic bases for construction of folding mechanisms, which varied among different folding-unfolding stimuli. Time-resolved fluorescence studies further revealed that 2-AP exhibits characteristic signatures of component fluorescence lifetimes and respective fractional contributions in different RNA structural contexts. Together, these studies demonstrate localized conformational events contributing to RNA folding and unfolding that could not be observed by approaches monitoring only global structural transitions.  相似文献   

11.
The methyltransferase RlmA(II) (formerly TlrB) is found in many Gram-positive bacteria, and methylates the N-1 position of nucleotide G748 within the loop of hairpin 35 in 23S rRNA. Methylation of the rRNA by RlmA(II) confers resistance to tylosin and other mycinosylated 16-membered ring macrolide antibiotics. We have previously solved the solution structure of hairpin 35 in the conformation that is recognized by the RlmA(II) methyltransferase from Streptococcus pneumoniae. It was shown that while essential recognition elements are located in hairpin 35, the interactions between RlmA(II) and hairpin 35 are insufficient on their own to support the methylation reaction. Here we use biochemical techniques in conjunction with heteronuclear/homonuclear nuclear magnetic resonance spectroscopy to define the RNA structures that are required for efficient methylation by RlmA(II). Progressive truncation of the rRNA substrate indicated that multiple contacts occur between RlmA(II) and nucleotides in stem-loops 33, 34 and 35. RlmA(II) appears to recognize its rRNA target through specific surface shape complementarity at the junction formed by these three helices. This means of recognition is highly similar to that of the orthologous Gram-negative methyltransferase, RlmA(I) (formerly RrmA), which also interacts with hairpin 35, but methylates at the adjacent nucleotide G745.  相似文献   

12.
Halogenation of bases is a widespread method used for solving crystal structures of nucleic acids. However, this modification may have important consequences on RNA folding and thus on the success of crystallization. We have used a combination of UV thermal melting, steady-state fluorescence, X-ray crystallography, and gel electrophoresis techniques to study the influence of uridine halogenation (bromination or iodination) on the RNA folding. The HIV-1 Dimerization Initiation Site is an RNA hairpin that can adopt an alternative duplex conformation and was used as a model. We have shown that, unexpectedly, the RNA hairpin/duplex ratio is strongly dependent not only on the presence but also on the position of halogenation.  相似文献   

13.
14.
VG Nadeau  A Rath  CM Deber 《Biochemistry》2012,51(31):6228-6237
The ability to predict from amino acid sequence how membrane protein structures will respond to detergent solubilization would significantly facilitate experimental characterization of these molecules. Here we have investigated and compared the response to solubilization by the "mild" n-dodecyl-β-d-maltoside (DDM) and "harsh" sodium dodecyl sulfate (SDS) of wild-type and point mutant "hairpin" (helix-loop-helix) membrane proteins derived from the third and fourth TM segments of the human cystic fibrosis transmembrane conductance regulator (CFTR) and the intervening extracellular loop. Circular dichroism spectroscopy, size-exclusion chromatography, and pyrene fluorescence spectroscopy were used to evaluate the secondary structures, hairpin-detergent complex excluded volumes, and hairpin compactness of the detergent-solubilized sequences. Sequence hydrophobicity is found to be the dominant factor dictating membrane protein response to detergent solubilization by DDM and SDS, with hairpin secondary structure exquisitely sensitive to mutation when DDM is used for solubilization. DDM and SDS differ principally in their ability to promote approach of TM segment ends, although hairpin compactness remains sensitive to point mutations. Our overall findings suggest that protein-protein and protein-detergent interactions are determined concomitantly, with the net hydropathy of residues exposed to detergent dominating the observed properties of the solubilized protein.  相似文献   

15.
M J Fedor 《Biochemistry》1999,38(34):11040-11050
The hairpin ribozyme catalyzes a reversible RNA cleavage reaction that participates in processing intermediates of viral satellite RNA replication in plants. A minimal hairpin ribozyme consists of two helix-loop-helix segments. These segments associate noncoaxially in the active folded structure in a way that brings catalytically important loop nucleotides into close proximity. The hairpin ribozyme in the satellite RNA of Tobacco Ringspot Virus assembles in the context of a four-way helical junction. Recent physical characterization of hairpin ribozyme structures using fluorescence resonance energy transfer demonstrated enhanced stability of the folded structure in the context of a four-way helical junction compared to minimal hairpin ribozyme variants. Analysis of the functional consequences of this modification of the helical junction has revealed two changes in the hairpin ribozyme kinetic mechanism. First, ribozymes with a four-way helical junction bind 3' cleavage products with much higher affinity than minimal hairpin ribozymes, evidence that tertiary interactions within the folded structure contribute to product binding energy. Second, the balance between ligation and cleavage shifts in favor of ligation. The enhanced ligation activity of hairpin ribozymes that contain a four-way helical junction supports the notion that tertiary structure stability is a major determinant of the hairpin ribozyme proficiency as a ligase and illustrates the link between RNA structure and biological function.  相似文献   

16.
Here we discuss the application of scanning fluorescence correlation spectroscopy (SFCS) using continuous wave excitation to analyze membrane dynamics. The high count rate per molecule enables the study of very slow diffusion in model and cell membranes, as well as the application of two-foci fluorescence cross-correlation spectroscopy for parameter-free determination of diffusion constants. The combination with dual-color fluorescence cross-correlation spectroscopy with continuous or pulsed interleaved excitation allows binding studies on membranes. Reduction of photobleaching, higher reproducibility, and stability compared to traditional FCS on membranes, and the simple implementation in a commercial microscopy setup make SFCS a valuable addition to the pool of fluorescence fluctuation techniques.  相似文献   

17.
Rigid spin-labeled nucleoside C, an analog of deoxycytidine that base-pairs with deoxyguanosine, was incorporated into DNA oligomers by chemical synthesis. Thermal denaturation experiments and circular dichroism (CD) measurements showed that C has a negligible effect on DNA duplex stability and conformation. Nucleoside C was incorporated into several positions within single-stranded DNA oligomers that can adopt two hairpin conformations of similar energy, each of which contains a four-base loop. The relative mobility of nucleotides in the alternating C/G hairpin loops, 5'-d(GCGC) and 5'-d(CGCG), was determined by electron paramagnetic resonance (EPR) spectroscopy. The most mobile nucleotide in the loop is the second one from the 5'-end, followed by the third, first and fourth nucleotides, consistent with previous NMR studies of DNA hairpin loops of different sequences. The EPR hairpin data were also corroborated by fluorescence spectroscopy using oligomers containing reduced C (C(f)), which is fluorescent. Furthermore, EPR spectra of duplex DNAs that contained C at the end of the helix showed features that indicated dipolar coupling between two spins. These data are consistent with end-to-end duplex stacking in solution, which was only observed when G was paired to C, but not when C was paired with A, C or T.  相似文献   

18.
Plasmodium falciparum (Pf) malaria parasites remodel host erythrocytes by placing membranous structures in the host cell cytoplasm and inserting proteins into the surrounding erythrocyte membranes. Dynamic imaging techniques with high spatial and temporal resolutions are required to study the trafficking pathways of proteins and the time courses of their delivery to the host erythrocyte membrane. METHODOLOGY AND FINDINGS: Using a tetracysteine (TC) motif tag and TC-binding biarsenical fluorophores (BAFs) including fluorescein arsenical hairpin (FlAsH) and resorufin arsenical hairpin (ReAsH), we detected knob-associated histidine-rich protein (KAHRP) constructs in Pf-parasitized erythrocytes and compared their fluorescence signals to those of GFP (green fluorescent protein)-tagged KAHRP. Rigorous treatment with BAL (2, 3 dimercaptopropanol; British anti-Lewisite) was required to reduce high background due to nonspecific BAF interactions with endogenous cysteine-rich proteins. After this background reduction, similar patterns of fluorescence were obtained from the TC- and GFP-tagged proteins. The fluorescence from FlAsH and ReAsH-labeled protein bleached at faster rates than the fluorescence from GFP-labeled protein. CONCLUSION: While TC/BAF labeling to Pf-infected erythrocytes is presently limited by high background signals, it may offer a useful complement or alternative to GFP labeling methods. Our observations are in agreement with the currently-accepted model of KAHRP movement through the cytoplasm, including transient association of KAHRP with Maurer's clefts before its incorporation into knobs in the host erythrocyte membrane.  相似文献   

19.
We report, based on biophysical studies and molecular mechanical calculations that curcumin binds DNA hairpin in the minor groove adjacent to the loop region forming a stable complex. UV–Vis and fluorescence spectroscopy indicated interaction of curcumin with DNA hairpin. In this novel binding motif, two ? H of curcumin heptadiene chain are closely positioned to the A16-H8 and A17-H8, while G12-H8 is located in the close proximity of curcumin α H. Molecular dynamics (MD) simulations suggest, the complex is stabilized by noncovalent forces including; π-π stacking, H-bonding and hydrophobic interactions. Nuclear magnetic resonance (NMR) spectroscopy in combination with molecular dynamics simulations indicated curcumin is bound in the minor groove, while circular dichroism (CD) spectra suggested minute enhancement in base stacking and a little change in DNA helicity, without significant conformational change of DNA hairpin structure. The DNA:curcumin complex formed with FdU nucleotides rather than Thymidine, demonstrated enhanced cytotoxicity towards oral cancer cells relative to the only FdU substituted hairpin. Fluorescence co-localization demonstrated stability of the complex in biologically relevant conditions, including its cellular uptake. Acridine orange/EtBr staining further confirmed the enhanced cytotoxic effects of the complex, suggesting apoptosis as mode of cell death. Thus, curcumin can be noncovalently complexed to small DNA hairpin for cellular delivery and the complex showed increased cytotoxicity in combination with FdU nucleotides, demonstrating its potential for advanced cancer therapy.  相似文献   

20.
Characterization of a parallel-stranded DNA hairpin   总被引:3,自引:0,他引:3  
Recently we have shown that synthetic DNA containing homooligomeric A-T base pairs can form a parallel-stranded intramolecular hairpin structure [van de Sande et al. (1988) Science (Washington, D.C.) 241, 551-557]. In the present study, we have employed NMR and optical spectroscopy to investigate the structure of the parallel-stranded (PS) DNA hairpin 3'-d(T)8C4(A)8-3' and the related antiparallel (APS) hairpin 5'-d(T)8C4(A)8-3'. The parallel orientation of the strands in the PS oligonucleotide is achieved by introducing a 5'-5' phosphodiester linkage in the hairpin loop. Ultraviolet spectroscopic and fluorescence data of drug binding are consistent with the formation of PS and APS structures, respectively, in these two hairpins. Vacuum circular dichroism measurements in combination with theoretical CD calculations indicate that the PS structure forms a right-handed helix. 31P NMR measurements indicate that the conformation of the phosphodiester backbone of the PS structure is not drastically different from that of the APS control. The presence of slowly exchanging imino protons at 14 ppm and the observation of nuclear Overhauser enhancement between imino protons and the AH-2 protons demonstrate that similar base pairing and base stacking between T and A residues occur in both hairpins. However, the small chemical shift dispersion observed in proton NMR spectra of the PS hairpin suggests that the stem of this hairpin is more regular than that of the APS hairpin. On the basis of NOESY measurements, we find that the orientation of the bases is in the anti region and that the sugar puckering is in the 2'-endo range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号