首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA-protein interactions   总被引:3,自引:0,他引:3  
M P Wickens  J E Dahlberg 《Cell》1987,51(3):339-342
  相似文献   

2.
RNA-protein interactions.   总被引:13,自引:0,他引:13  
A D Frankel  I W Mattaj  D C Rio 《Cell》1991,67(6):1041-1046
  相似文献   

3.
4.
Telomerase is an enzyme that is essential for the replication and maintenance of chromosomal termini. It is a ribonucleoprotein consisting of a catalytic subunit, one or more associated proteins, and an integral RNA subunit that serves as a template for the synthesisof telomeric repeats. We identified a Tetrahymena telomerase RNA-protein complex by an electrophoretic mobility shift assay, using telomerase partially purified from whole cell extracts and radiolabeled, in vitro transcribed wild-type Tetrahymena telomerase RNA. Complex formation was specific as unlabeled Tetra-hymena telomerase RNA, but not Escherichia coli ribo-somal RNAs, competitively inhibited complex formation. Binding required concentrations of MgCl2of at least 10 mM and occurred over a wide range of potassium glutamate concentrations (20-220 mM). The RNA-protein complex was optimally reconstituted with a 30 degrees C preincubation for 相似文献   

5.
The RNA folding trajectory features numerous off-pathway folding traps, which represent conformations that are often equally as stable as the native functional ones. Therefore, the conversion between these off-pathway structures and the native correctly folded ones is the critical step in RNA folding. This process, referred to as RNA refolding, is slow, and is represented by a transition state that has a characteristic high free energy. Because this kinetically limiting process occurs in vivo, proteins (called RNA chaperones) have evolved that facilitate the (re)folding of RNA molecules. Here, we present an overview of how proteins interact with RNA molecules in order to achieve properly folded states. In this respect, the discrimination between static and transient interactions is crucial, as different proteins have evolved a multitude of mechanisms for RNA remodeling. For RNA chaperones that act in a sequence-unspecific manner and without the use of external sources of energy, such as ATP, transient RNA-protein interactions represent the basis of the mode of action. By presenting stretches of positively charged amino acids that are positioned in defined spatial configurations, RNA chaperones enable the RNA backbone, via transient electrostatic interactions, to sample a wider conformational space that opens the route for efficient refolding reactions.  相似文献   

6.
For the purpose of attempting to generalize the rules concerning morphogenesis of helical viruses, the in vitro reconstitution of the CAM strain of TRV was studied. The conditions for reconstitution and the importance of the aggregation state of the protein for initiation and elongation are compared with those of TMV. The initiation step consisting of the binding of RNA with the 36S disk of protein was easily accomplished. The polarity and the specificity of encapsidation of TRV RNA by homologous and heterologous viral protein is discussed.  相似文献   

7.
8.
9.
10.
Conservation of RNA-protein interactions among picornaviruses.   总被引:3,自引:11,他引:3       下载免费PDF全文
Picornavirus genomes encode unique 5' noncoding regions (5' NCRs) which are approximately 600 to 1,300 nucleotides in length, contain multiple upstream AUG codons, and display the ability to form extensive secondary structures. A number of recent reports have shown that picornavirus 5' NCRs are able to facilitate cap-independent internal initiation of translation. This mechanism of translation occurs in the absence of viral gene products, suggesting that the host cell contains the necessary components for the cap-independent internal initiation of translation of picornavirus RNAs as well as cellular mRNAs. In an attempt to identify some of the perhaps novel cellular proteins involved in this newly discovered mechanism of translation, we utilized RNA mobility shifts assays to identify and characterize interactions that occur between the 5'NCR of poliovirus type 1 (PV1) and cellular proteins. In this report, we describe two separate interactions between RNA structures from the 5' NCR of PV1 and proteins present in extracts from HeLa cells as well as other cell types. We describe the interaction between nucleotides 186 to 220 (stem-loop D) and a cellular protein(s) present in HeLa cell extracts. Mutational analysis of this stem-loop structure suggests that maintenance of a base-paired structure in the lower stem is necessary to present the sequences which directly interact with the protein(s). We also describe the interaction between nucleotides 220 to 460 (stem-loop E) and a cellular protein present in HeLa cell extracts. This RNA binding activity fractionates to a specific ammonium sulfate fraction (A cut) of a ribosomal salt wash. Mutational analysis of the stem-loop E structure suggests that the preservation of an extensive RNA structure is necessary for a strong interaction with the cellular protein(s), although smaller RNAs derived from this region of the 5' NCR can interact to lesser extents. Finally, we show that both of these RNA-protein interactions are conserved among the closely related enteroviruses PV1 and coxsackievirus type B3, human rhinovirus type 14, and the more distantly related cardiovirus Theiler's murine encephalomyelitis virus, suggesting that such RNA-protein interactions serve basic functions which are conserved and utilized by each of these picornaviruses.  相似文献   

11.
R Brimacombe 《Biochimie》1991,73(7-8):927-936
Over the last two decades essentially three different approaches have been used to study the topography of RNA-protein interactions in the ribosome. These are: (a) the analysis of binding sites for individual ribosomal proteins or groups of proteins on the RNA; (b) the determination of protein footprint sites on the RNA by the application of higher order structure analytical techniques; and (c) the localisation of RNA-protein cross-link sites on the RNA. This article compares and contrasts the types of data that the three different approaches provide, and gives a brief and highly simplified summary of the results that have been obtained for both the 16S and 23S ribosomal RNA from E coli.  相似文献   

12.
13.
RNA-binding proteins (RBPs) impact every process in the cell; they act as splicing and polyadenylation factors, transport and localization factors, stabilizers and destabilizers, modifiers, and chaperones. RNA-binding capacity can be attributed to numerous protein domains that bind a limited repertoire of short RNA sequences. How is specificity achieved in cells? Here we focus on recent advances in determining the RNA-binding properties of proteins in vivo and compare these to in vitro determinations, highlighting insights into how endogenous RNA molecules are recognized and regulated. We also discuss the crucial contribution of structural determinations for understanding RNA-binding specificity and mechanisms.  相似文献   

14.
Regulation of HIV gene expression by RNA-protein interactions   总被引:20,自引:0,他引:20  
Human immunodeficiency virus (HIV) gene expression is tightly controlled through the interaction of trans-acting regulatory proteins with the many cis-acting elements present in viral DNA and RNA. Two proteins encoded by HIV, referred to as Tat and Rev, are essential positive regulators of gene expression. Recent work shows that these proteins control HIV gene expression through interaction with RNA target elements present within the 5' untranslated leader sequence and envelope gene, respectively. There is evidence that these interactions in themselves are not sufficient to confer regulation without the presence of additional host cell factors.  相似文献   

15.
The importance of RNA-protein interactions in controlling mRNA regulation and non-coding RNA function is increasingly appreciated. A variety of methods exist to comprehensively define RNA-protein interactions. We describe these methods and the considerations required for designing and interpreting these experiments.  相似文献   

16.
The translation of picornavirus RNA occurs by a cap-independent mechanism directed by a region of about 450 nucleotides from the 5' untranslated region, termed an internal ribosome entry site (IRES). Internal initiation of protein synthesis occurs without any requirement for viral proteins. Furthermore, it is maintained when host cell protein synthesis is almost abolished. By using in vitro translation systems, two distinct families of IRES elements which have very different predicted RNA secondary structures have been defined. The cardiovirus and aphthovirus elements function very efficiently in rabbit reticulocyte lysate, whereas the enterovirus and rhinovirus elements function poorly in this system. However, supplementation of this translation system with additional cellular proteins can stimulate translation directed by the enterovirus and rhinovirus RNAs and reduce production of aberrant initiation products. The characterization of cellular proteins interacting with the picornavirus IRES is a major focus of research. Many different protein species can be observed to interact with regions of the IRES by in vitro analyses, e.g., UV cross-linking. However, the function and significance of many of these interactions are not always known. For two proteins, La and the polypyrimidine tract-binding protein, evidence has been obtained for a functional role of their interaction with IRES elements.  相似文献   

17.
18.
Systematic analysis of the RNA-protein interactome requires robust and scalable methods. We here show the combination of two completely orthogonal, generic techniques to identify RNA-protein interactions: PAR-CLIP reveals a collection of RNAs bound to a protein whereas SILAC-based RNA pull-downs identify a group of proteins bound to an RNA. We investigated binding sites for five different proteins (IGF2BP1-3, QKI and PUM2) exhibiting different binding patterns. We report near perfect agreement between the two approaches. Nevertheless, they are non-redundant, and ideally complement each other to map the RNA-protein interaction network.  相似文献   

19.
The eukaryotic nucleolus contains a large number of small RNA molecules that, in the form of small nucleolar ribonucleoprotein complexes (snoRNPs), are involved in the processing and modification of pre-rRNA. One of the snoRNPs that has been shown to possess enzymatic activity is the RNase MRP. RNase MRP is an endoribonuclease involved in the formation of the 5' end of 5.8S rRNA. In this study the association of the hPop1 protein with the RNase MRP complex was investigated. The hPop1 protein seems not to be directly bound to the RNA component, but requires nt 1-86 and 116-176 of the MRP RNA to associate with the RNase MRP complex via protein-protein interactions. UV crosslinking followed by ribonuclease treatment and immunoprecipitation with anti-Th/To antibodies revealed three human proteins of about 20, 25, and 40 kDa that can associate with the RNase MRP complex. The 20- and 25-kDa proteins appear to bind to stem-loop I of the MRP RNA whereas the 40-kDa protein requires the central part of the MRP RNA (nt 86-176) for association with the RNase MRP complex. In addition, we show that the human RNase P proteins Rpp30 and Rpp38 are also associated with the RNase MRP complex. Expression of Vesicular Stomatitis Virus- (VSV) tagged versions of these proteins in HeLa cells followed by anti-VSV immunoprecipitation resulted in coprecipitation of both RNase P and RNase MRP complexes. Furthermore, UV crosslinking followed by anti-Th/To and anti-Rpp38 immunoprecipitation revealed that the 40-kDa protein we detected in UV crosslinking is probably identical to Rpp38.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号