首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on parasite species with a wide geographic and ecological range may be confounded by still equivocal taxonomic identification. Here, we investigated genetic polymorphism and behavioural changes induced in a common intermediate host, in two different forms of Pomphorhynchus laevis based on the morphology of the larval infective stage (cystacanth). A 'smooth type' (S) and a 'wrinkled type' (W) of cystacanth were distinguished based on their surface and shape. We analysed sequence divergence at both nuclear (ribosomal gene 18S rDNA, and ribosomal internal transcribed spacers, ITS1/ITS2) and mitochondrial (cytochrome c oxidase subunit 1) genes of P. laevis cystacanths and adults at various geographical scales. A high level of sequence divergence at ITS1, ITS2 and cytochrome c oxidase subunit 1 (11, 8 and 20%, respectively) was found between these two forms. The divergence pattern consistently discriminated two groups independently of geographic origin or host, and was congruent with larval morphology. The two forms also strongly differed in the intensity of behavioural change induced in their common intermediate host, Gammarus pulex, with the S-type parasite inducing a positive phototactism, whereas W-type infected gammarids were as photophylic as uninfected ones. Overall, our data strongly support the specific status of these two forms. We suggest that smooth cystacanths correspond to P. laevis, whereas wrinkled cystacanths might correspond to the previously described and poorly documented, Pomphorhynchus tereticollis, considered a synonym of P. laevis. This study also confirms the value of a joint analysis of internal transcribed spacers and cytochrome c oxidase subunit 1 genes to biogeographic studies on these species. Finally, we emphasize the importance of linking morphological and biological characteristics of acanthocephalan cystacanths to molecular data, in the study of the evolutionary ecology and systematics of this group.  相似文献   

2.
Larval helminths of different species that share the same intermediate host and are transmitted by predation to the same definitive host may cooperate in their attempts to manipulate the behaviour of the intermediate host, while at the same time having conflicts of interests over the use of host resources. A few studies have indicated that intermediate hosts harbouring larval helminths have altered concentrations of neurotransmitters in their nervous system, and thus measuring levels of neurotransmitters in host brains could serve to assess the respective and combined effect of different helminth species on host behaviour. Here, we investigate potential cooperation and conflict among three helminths in two species of crab intermediate hosts. The acanthocephalan Profilicollis spp., the trematode Maritrema sp. and an acuariid nematode, all use Macrophthalmus hirtipes (Ocypodidae) as intermediate host, whereas Profilicollis and Maritrema also use Hemigrapsus crenulatus (Grapsidae). All three helminths mature inside gulls or other shore birds. There was a significant decrease in the mean volume of Profilicollis cystacanths as the intensity of infection by this parasite increased in H. crenulatus, the only host in which this was investigated; however, there was no measurable effect of other helminth species on the size of acanthocephalans, suggesting no interspecific conflict over resource use within crabs. There was, in contrast, evidence of a positive interspecific association between the two most common helminth species: numbers of Profilicollis and Maritrema were positively correlated among crabs, independently of crab size, in M. hirtipes but not H. crenulatus. More importantly, we found that the total number of larval helminths per crab correlated significantly, and negatively, with concentrations of serotonin in crab brains, again only in M. hirtipes; numbers of each parasite species separately did not covary in either crab species with serotonin or dopamine, the other neurotransmitter investigated in this study. The relationship with serotonin appears due mainly to numbers of Profilicollis and Maritrema and not to nematodes. This is the first demonstration of a potentially synergistic manipulation of host behaviour by different helminth species, one that appears host-specific; our results also point toward the neurobiological mechanism underlying this phenomenon.  相似文献   

3.
Adult acanthocephalan body sizes vary interspecifically over more than two orders of magnitude; yet, despite its importance for our understanding of the coevolutionary links between hosts and parasites, this variation remains unexplained. Here, we used a comparative analysis to investigate how final adult sizes and relative increments in size following establishment in the definitive host are influenced by three potential determinants of acanthocephalan sizes: initial (cystacanth) size at infection, host body mass, and the thermal regime experienced during growth, i.e. whether the definitive host is an ectotherm or an endotherm. Relative growth from the cystacanth stage to the adult stage ranged from twofold to more than 10,000-fold across acanthocephalan species, averaging just over 100-fold. However, this relative increment in size did not correlate with host mass, and did not differ between acanthocephalan species using ectothermic hosts and those growing in endothermic hosts. In contrast, final acanthocephalan adult sizes correlated positively with host mass, and after correction for host mass, final adult sizes were higher in species parasitising endotherms than in those found in ectotherms. The relationship between host mass and acanthocephalan adult size practically disappears, however, once phylogenetic influences are taken into account. Positive relationships between adult acanthocephalan size, cystacanth size and egg size indicate that a given relative size is a feature of an acanthocephalan species at all stages of its life cycle. These relationships also suggest that adult size is to some extent determined by cystacanth size, and that the characteristics of the definitive host are not the sole determinants of parasite life history traits.  相似文献   

4.
蜥蜴的雌性繁殖特征对理解两性异形的进化原因起着重要作用。于2011年4月在安徽滁州采集宁波滑蜥(Scincella modesta),定量研究该种形态特征的两性异形和雌性繁殖特征,检验成体形态特征两性异形与雌性繁殖的相关性。研究共采集43条(17♀♀,26♂♂)宁波滑蜥,雄性和雌性个体的最大体长分别为47.4 mm和46.6 mm。雌雄两性在体长和头宽上没有差异,而在腹长和头长上差异显著,雄性有较大的头长,雌性有较大的腹长。宁波滑蜥年产单窝卵。窝卵数和窝卵重与雌体体长及腹长呈正相关,卵重与雌体体长无相关性。窝卵数及卵重的变异系数分别为0.20和0.12。卵长径与窝卵数呈负相关,而卵短径与窝卵数无关。雌体主要通过增加窝卵数来增加繁殖输出。这些结果表明,宁波滑蜥是雌雄个体大小同形的两性异形模式,性选择使得雄性有着较大的头长,以具有较高的交配成功率,生育力选择使得雌性有着较大的腹长,以具有较大的生育力和繁殖输出。  相似文献   

5.
Larger male Caribbean fruit flies are more likely to be chosen as mates and defeat rivals in territorial contests. Yet males are smaller than females. Adaptive explanations for relatively small male size include (1) acceleration of male development to maximize female encounter rates, (2) selection for greater female size to increase fecundity, and (3) selection for body sizes most suitable for sexually dimorphic degrees of mobility, speed, and distance flight. None of these unambiguously accounts for the degree of sexual dimorphism. Male development is not accelerated relative to that of females. On average, males remain inside fruit longer than females and those males with extended development periods are smaller than more rapidly developing individuals. There is no evidence that female enlargement alone, presumably for greater fecundity, has generated the degree of dimorphism in the Caribbean fruit fly or other fruit flies. The relationship between dimorphism and mean female body size in 27 species of Tephritidae is the opposite of what would be predicted if differences in dimorphism were due to differences in unilateral female enlargement. Larger size in a species or in one sex of a species may be an adaptation for extensive flight. In general, among 32 species of fruit flies, as body size increases, wing shape becomes progressively more suited for distance flight. However, there are important exceptions to this correlation. Both sexual selection and nonadaptive allometries may contribute to the range of dimorphisms within the family.  相似文献   

6.
Few endoparasite species are pigmented. Acanthocephalans are an exception however, with several species being characterised by yellow to orange colouration both at the immature (cystacanth) and adult stages. However, the functional and adaptive significance of carotenoid-based colourations in acanthocephalans remains unclear. One possibility is that the carotenoid content of acanthocephalan cystacanths acts as a protective device against ultra-violet radiation (UVR) passing through the translucent cuticle of their crustacean hosts. Indeed, acanthocephalans often bring about behavioural changes in their aquatic intermediate hosts that can increase their exposure to light. Carotenoid composition and damage due to ultra-violet - B (UVB) radiation were investigated in three acanthocephalan parasite species that induce contrasting behavioural alterations in their common intermediate host, the crustacean amphipod Gammarus pulex. The fish acanthocephalans Pomphorhynchus laevis and Pomphorhynchus tereticollis both induce a positive phototaxis in gammarids, such that infected hosts spend more time out of shelters, while remaining benthic. The bird acanthocephalan Polymorphus minutus, on the other hand, induces a negative geotaxis, such that infected hosts typically swim close to the water surface, becoming more exposed to UV radiation. We show that differences in cystacanth colouration between acanthocephalan species directly reflect important differences in carotenoid content. The two fish parasites exhibit a contrasting pattern, with P. tereticollis harbouring a large diversity of carotenoid pigments, whereas P. laevis is characterised by a lower carotenoid content consisting mainly of lutein and astaxanthin. The highest carotenoid content is found in the bright orange P.minutus, with a predominance of esterified forms of astaxanthin. Exposure to UVB radiation revealed a higher susceptibility in P. laevis larvae compared with P. tereticollis and P. minutus, in terms of sublethality (decreased evagination rate) and of damage to DNA (increased cyclobutane pyrimidine dimers production). Although we found important and correlated interspecific differences in carotenoid composition and tolerance to high UVB radiation, our results do not fully support the hypothesis of adaptive carotenoid-based colourations in relation to UV protection. An alternative scenario for the evolution of carotenoid accumulation in acanthocephalan parasites is discussed.  相似文献   

7.
Sexual dimorphism in body size (sexual size dimorphism) is common in many species. The sources of selection that generate the independent evolution of adult male and female size have been investigated extensively by evolutionary biologists, but how and when females and males grow apart during ontogeny is poorly understood. Here we use the hawkmoth, Manduca sexta, to examine when sexual size dimorphism arises by measuring body mass every day during development. We further investigated whether environmental variables influence the ontogeny of sexual size dimorphism by raising moths on three different diet qualities (poor, medium and high). We found that size dimorphism arose during early larval development on the highest quality food treatment but it arose late in larval development when raised on the medium quality food. This female-biased dimorphism (females larger) increased substantially from the pupal-to-adult stage in both treatments, a pattern that appears to be common in Lepidopterans. Although dimorphism appeared in a few stages when individuals were raised on the poorest quality diet, it did not persist such that male and female adults were the same size. This demonstrates that the environmental conditions that insects are raised in can affect the growth trajectories of males and females differently and thus when dimorphism arises or disappears during development. We conclude that the development of sexual size dimorphism in M. sexta occurs during larval development and continues to accumulate during the pupal/adult stages, and that environmental variables such as diet quality can influence patterns of dimorphism in adults.  相似文献   

8.
The growth and eventual size of larval helminths in their intermediate hosts presumably has a variety of fitness consequences. Therefore, elucidating the proximate factors affecting parasite development within intermediate hosts should provide insight into the evolution of parasite life histories. An experimental infection that resulted in heavy intensities of an acanthocephalan (Acanthocephalus lucii) in its isopod intermediate host (Asellus aquaticus) permitted the examination of parasite developmental responses to variable levels of resource availability and intraspecific competition. Isopods were infected by exposure to egg-containing fish feces, and larval infrapopulations were monitored throughout the course of A. lucii development. The relative rate of parasite growth slowed over time, and indications of resource constraints on developing parasites, e.g., crowding effects, were only observed in late infections. Consequently, the factors likely representative of resource availability to larval parasites (host size and molting rate) primarily affected parasite size in late infections. Moreover, at this stage of infection, competitive interactions, gauged by variation in worm size, seemed to be alleviated by greater resources, i.e., larger hosts that molted more frequently. The relatively rapid, unconstrained growth of young parasites may be worse for host viability than the slower, resource-limited growth of larger parasites.  相似文献   

9.
In extreme cases leaves in male plants of the dioecious genus Leucadendron (Proteaceae) are up to an order of magnitude smaller than female leaves. This secondary sexual dimorphism (SSD) in leaf size has previously been suggested to be due to intra-male sexual selection, leading to an increase in male allocation to reproduction in dimorphic species. After critically evaluating previous data provided to support this hypothesis, I suggest on both theoretical grounds and on re-analysis that this argument is unlikely and unsupported. Leaf size dimorphism could theoretically evolve directly due to disruptive ecological selection between genders, leading to niche dimorphism either within or between habitats. I test this ecological causation hypothesis by providing data on specific leaf area (sla) and water use efficiency (δ 13C) of leaves from males and females of several Leucadendron species. Results confirm the expectation of minimal gender differences. I argue that leaf dimorphism is a consequence of selection on flower size and architecture.  相似文献   

10.
The effect of a naturally acquired infection by three acanthocephalan parasites Dentitruncus truttae, Echinorhynchus truttae, and Polymorphus minutus on the reproductive potential of their intermediate host, Echinogammarus tibaldii (Amphipoda) from Lake Piediluco (Centre of Italy) was assessed. During May 2007, 1135 amphipods were collected from two different samplings and examined for larval helminths. Forty-five amphipods were infected and of those, 16 were infected with D. truttae (intensity = 1-3 larvae), 15 with E. truttae (intensity = 1-2 larvae), and 14 with P. minutus (intensity = 1 larva). The sex ratio was nearly 1:1 in all examined amphipods. One female infected with D. truttae contained six eggs in the brood pouch and another female infected with E. truttae contained five eggs. However, none of the eight female amphipods harbouring P. minutus larva contained eggs in their brood pouch. Uninfected females of the same size and body length as that of the infected females contained between 20 and 32 eggs. No acanthocephalan species were found to co-occur.  相似文献   

11.
Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a reduction in size, caused by crowding, virtually nothing is known about longer-lasting effects after transmission to the definitive host. This study is the first to use in vitro cultivation with feeding of adult trematodes to investigate how numbers of parasites in the intermediate host affect the size and fecundity of adult parasites. For this purpose, we examined two different infracommunities of parasites in crustacean hosts. Firstly, we used experimental infections of Maritrema novaezealandensis in the amphipod, Paracalliope novizealandiae, to investigate potential density-dependent effects in single-species infections. Secondly, we used the crab, Macrophthalmus hirtipes (Ocypodidae), naturally infected by the trematodes, M. novaezealandensis and Levinseniella sp., the acanthocephalan, Profilicollis spp., and an acuariid nematode. These four helminths all develop and grow in their crustacean host before transmission to their bird definitive host by predation. In experimental infections, we found an intensity-dependent establishment success, with a decrease in the success rate of cercariae developing into infective metacercariae with an increasing dose of cercariae applied to each amphipod. In natural infections, we found that M. novaezealandensis-metacercariae achieved a smaller volume, on average, when infrapopulations of this parasite were large. Small metacercariae produced small in vitro-adult worms, which in turn produced fewer eggs. Crowding effects in the intermediate host thus were expressed at the adult stage in spite of the worms being cultured in a nutrient-rich medium. Furthermore, excystment success and egg-production in M. novaezealandensis in naturally infected crabs were influenced by the number of co-occurring Profilicollis cystacanths, indicating interspecific interactions between the two species. Our results thus indicate that the infracommunity of larval helminths in their intermediate host is interactive and that any density-dependent effect in the intermediate host may have lasting effects on individual parasite fitness.  相似文献   

12.
Acanthocephalans have evolved a hooked proboscis and some taxa have trunk spines to attach to their definitive hosts. These structures are generated before being used, thus a key question is how investment in attachment could optimally be allocated through the ontogeny. The number and arrangement of hooks and spines are never modified in the definitive host, but it is unclear whether these structures grow during adult development. A comparison of the size of trunk spines between cystacanths and adults of Corynosoma cetaceum and C. australe indicated that spines grow in both species, but only in females, which also had significantly larger spines than males. This sexual dimorphism did not result from pure allometry because the body of females was smaller, and did not grow more than that of males. However, having a longer lifespan, females would need to withstand the extreme flow conditions prevailing in marine mammals for longer, inducing different investment and development schedules for spines. Patterns of spine growth also differed between species: fore-trunk spines grew in both species, but hind-trunk spines did only in C. cetaceum. In conclusion, investment strategies on attachment may differ, not only between congeneric species of acanthocephalan, but also between sexes of the same species.  相似文献   

13.
M. A. Elgar    N. Ghaffar    A. F. Read 《Journal of Zoology》1990,222(3):455-470
The degree and direction of sexual dimorphism across different species is commonly attributed to differences in the selection pressures acting on males and females. The extent of these differences is especially apparent in species that practise sexual cannibalism, where the female attempts to capture and eat a courting male. Here, we investigate the relationship between sexual dimorphism in size and leg length, sexual cannibalism and courtship behaviour in three taxonomic groups of orb-weaving spiders, using morphological data from 249 species in 36 genera. Females are larger than males in all three taxonomic groups, and males have relatively longer legs than females in both the Araneinae and Tetragnathidae. Across genera within each taxonomic group, male body size is positively correlated with both female body size and male leg length, and female body size is positively correlated with female leg length. Sexual size dimorphism is negatively correlated with relative male leg length within the Araneinae, but not within either the Tetragnathidae or the Gasteracanthinae. There was no negative correlation between sexual size dimorphism and relative female leg length in any taxonomic group. We argue that the relationship between sexual size dimorphism and relative male leg length within the Araneinae may be the result of selection imposed by sexual cannibalism by females.  相似文献   

14.
Abstract The evolution of sexual dimorphism may occur when natural and sexual selection result in different optimum trait values for males and females. Perhaps the most prominent examples of sexual dimorphism occur in sexually selected traits, for which males usually display exaggerated trait levels, while females may show reduced expression of the trait. In some species, females also exhibit secondary sexual traits that may either be a consequence of a correlated response to sexual selection on males or direct sexual selection for female secondary sexual traits. In this experiment, we simultaneously measure the intersex genetic correlations and the relative strength of sexual selection on males and females for a set of cuticular hydrocarbons in Drosophila serrata . There was significant directional sexual selection on both male and female cuticular hydrocarbons: the strength of sexual selection did not differ among the sexes but males and females preferred different cuticular hydrocarbons. In contrast with many previous studies of sexual dimorphism, intersex genetic correlations were low. The evolution of sexual dimorphism in D. serrata appears to have been achieved by sex-limited expression of traits controlled by genes on the X chromosome and is likely to be in its final stages.  相似文献   

15.
Although a negative covariance between parasite load and sexually selected trait expression is a requirement of few sexual selection models, such a covariance may be a general result of life‐history allocation trade‐offs. If both allocation to sexually selected traits and to somatic maintenance (immunocompetence) are condition dependent, then in populations where individuals vary in condition, a positive covariance between trait expression and immunocompetence, and thus a negative covariance between trait and parasite load, is expected. We test the prediction that parasite load is generally related to the expression of sexual dimorphism across two breeding seasons in a wild salamander population and show that males have higher trematode parasite loads for their body size than females and that a key sexually selected trait covaries negatively with parasite load in males. We found evidence of a weaker negative relationship between the analogous female trait and parasite infection. These results underscore that parasite infection may covary with expression of sexually selected traits, both within and among species, regardless of the model of sexual selection, and also suggest that the evolution of condition dependence in males may affect the evolution of female trait expression.  相似文献   

16.
Sexually selected traits are limited by selection against those traits in other fitness components, such as survival. Thus, sexual selection favouring large size in males should be balanced by higher mortality of larger males. However, evidence from red-winged blackbirds (Agelaius phoeniceus) indicates that large males survive better than small males. A survival advantage to large size could result from males migrating north in early spring, when harsh weather favours large size for energetic reasons. From this hypothesis we predicted that, among species, sex differences in body size should be correlated with sex differences in timing of spring migration. The earlier males migrate relative to females, the larger they should be relative to females. We tested this prediction using a comparative analysis of data collected from 30 species of passerine birds captured on migration. After controlling for social mating system, we found that sexual size dimorphism and difference in arrival dates of males and females were significantly positively correlated. This result is consistent with the hypothesis that selection for survival ability promotes sexual size dimorphism (SSD), rather than opposes SSD as is the conventional view. If both natural selection and sexual selection favour large adult males, then limits to male size must be imposed before males become adults.  相似文献   

17.
The aim of the present study was to evaluate alterations in the reproduction induced by acanthellae and cystacanths of the acanthocephalans Acanthocephalus tumescens and Corynosoma sp. in the amphipod Hyalella patagonica from Lake Mascardi. Specimens of H. patagonica were separated in two categories: paired amphipods (joined specimens during precopulatory mate guarding period until fertilization) and unpaired amphipods (alone specimens). Different analyses were performed: first with paired (n = 406) and unpaired (n = 375) amphipods, and second only with female amphipods (n = 1949), that were classified into three categories (without internal oocytes and eggs, only with internal oocytes, and with eggs). Also, carotenoid extraction was performed of amphipods uninfected (n = 75) and infected (n = 105) by cystacanths of Corynosoma sp. Unpaired amphipods had significantly higher prevalence of cystacanths of both acanthocephalan species than paired ones; but such differences were not found in prevalence of acanthellae. Female amphipods without internal oocytes and eggs showed significantly higher prevalence of cystacanths of both acanthocephalan species than the two other female categories; while females with eggs had significantly higher prevalence of A. tumescens acanthellae. Amphipods infected by Corynosoma sp. showed lower carotenoid concentration than uninfected ones. In Lake Mascardi, there is indirect evidence of both reduced mating success and female fecundity of H. patagonica provoked by both cystacanths species (A. tumescens and Corynosoma sp.). However, infections by acanthellae seem to have no effects.  相似文献   

18.
Stillwell RC  Fox CW 《Oecologia》2007,153(2):273-280
Sexual size dimorphism is widespread in animals but varies considerably among species and among populations within species. Much of this variation is assumed to be due to variance in selection on males versus females. However, environmental variables could affect the development of females and males differently, generating variation in dimorphism. Here we use a factorial experimental design to simultaneously examine the effects of rearing host and temperature on sexual dimorphism of the seed beetle, Callosobruchus maculatus. We found that the sexes differed in phenotypic plasticity of body size in response to rearing temperature but not rearing host, creating substantial temperature-induced variation in sexual dimorphism; females were larger than males at all temperatures, but the degree of this dimorphism was smallest at the lowest temperature. This change in dimorphism was due to a gender difference in the effect of temperature on growth rate and not due to sexual differences in plasticity of development time. Furthermore, the sex ratio (proportion males) decreased with decreasing temperature and became female-biased at the lowest temperature. This suggests that the temperature-induced change in dimorphism is potentially due to a change in non-random larval mortality of males versus females. This most important implication of this study is that rearing temperature can generate considerable intraspecific variation in the degree of sexual size dimorphism, though most studies assume that dimorphism varies little within species. Future studies should focus on whether sexual differences in phenotypic plasticity of body size are a consequence of adaptive canalization of one sex against environmental variation in temperature or whether they simply reflect a consequence of non-adaptive developmental differences between males and females.  相似文献   

19.
The relationship between sexual and viability selection in females is necessarily different than that in males, as investment in sexual traits potentially comes at the expense of both fecundity and survival. Accordingly, females do not usually invest in sexually selected traits. However, direct benefits obtained from mating, such as nuptial gifts, may encourage competition among females and subsidize investment into sexually selected traits. We compared sexual and viability selection on female tree crickets Oecanthus nigricornis, a species where females mate frequently to obtain nuptial gifts and sexual selection on females is likely. If male choice determines female mating success in this species, we expect sexual selection for fecundity traits, as males of many species prefer more fecund females. Alternatively, intrasexual scramble or combat competition on females may select for larger jumping legs or wider heads (respectively). We estimated mating success in wild caught crickets using microsatellite analysis of stored sperm and estimated relative viability by comparing surviving female O. nigricornis to those captured by a common wasp predator. In support of the scramble competition hypothesis, we found sexual selection for females with larger hind legs and narrower heads. We also found stabilizing viability selection for intermediate head width and hind leg size. As predicted, traits under viability and sexual selection were very similar, and the direction of that selection was not opposing. However, because the shape of sexual and viability selection differs, these episodes of selection may favour slightly different trait sizes.  相似文献   

20.
Laboratory-reared cystacanths of Leptorhynchoides thecatus (Acanthocephala: Rhadinorhynchidae) were used to study the effect of cystacanth size on adult success and the factors that influence cystacanth size within the intermediate host. To assess how host size and intensity of infection influence cystacanth size, infected amphipods (Hyalella azteca) were measured, and sex, length, and width of cystacanths were determined. After a subset of cystacanths was measured, small- and large-size classes of cystacanths were designated. To determine how cystacanth size relates to adult size, green sunfish (Lepomis cyanellus) were fed 10 large or small cystacanths. Fish were dissected 6 wk after infection, and worms were removed. After adult worms were permanently mounted on slides, their length and width were measured. Intensity of infection and amphipod size significantly influenced cystacanth size in that large amphipods harbored larger cystacanths than did small amphipods and heavy infections produced smaller cystacanths than did light infections. Adult worms from the small and large cystacanth-size classes showed no significant difference in size; however, large cystacanths had a significantly higher establishment and survival than did small cystacanths: 40% of large worms and 14% of small worms were recovered. The results of this study indicate that host size and host sharing influence cystacanth size and that cystacanth size is an important factor in determining adult success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号