首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Fifteen isolates of nodule bacteria were isolated from root and stem nodules ofAeschynomene aspera and they were characterized as Rhizobium by well known laboratory tests. All these isolates together with other efficient strains of known rhizobia belonging to different cross-inoculation groups were evaluated for their nodulation abilities onAeschynomene aspera, Cajanus cajan (pigeon pea),Cicer arietinum (chickpea),Pisum sativum (pea),Trifolium repens (clover),Medicago sativa (lucerne),Lens culinaris (lentil),Glycine max (soybean),Vigna sinensis (cowpea),Vigna radiata (mung bean),Vigna mungo (urd bean) andArachis hypogea (peanut). The results demonstrated that Rhizobium fromAeschynomene could form nodules only on its homologous host (Aeschynomene) but not on other legumes tested. Secondly, none of the rhizobia of other cross-inoculation groups could nodulateA. aspera.  相似文献   

2.
Two effective strains of green gram rhizobia S24 (slow growing and Hup+) and M11 (fast growing and Hup-) were tested for leghemoglobin production in nodules and effectivity on six species of cow pea miscellany hosts. Both strains nodulate green gram [Vigna radiata (L.) (Wilczek)], black gram [Vigna mungo (L.) (Hepper)], cow pea [Vigna unguiqulata (L.)], moth bean [Vigna aconitifolia (Jacq.) (Marechel)], Cluster bean [Cyamopsis tetragonoloba (L.) (Taub.)] and pigeon pea [Cajanus cajan (L.)]. In all these hosts, nodules formed by strain M11 contained 1.5 to 2 times more leghemoglobin than the nodules formed by strain S24. Gel electrophoresis of nodule contents of different host species showed a high concentration of a fast-moving ferricoxy leghemoglobin in the nodules of plants inoculated with strain M11 as compared to that of strain S24. Strain M11, however, was relatively less effective than strain S24 on black gram, cow pea and moth bean and was at par with the later on green gram, cluster bean and pigeon pea. Hydrogen recycling ability of the strain S24 was observed in nodules of all the host species. The effective functioning of strain S24 at low levels of leghemoglobin suggests an involvement of recycling hydrogenase in maintaining an appropriate oxidation-reduction potential in nodules.Abbreviations Lb Leghemoglobin - Cvr cultivar  相似文献   

3.
Piperazine, a chemical used as buffer component, greatly promotedadventitious root formation in cuttings of sunflower (Helianthusannuus L.), pea (Pisum sativum L.), mung bean (Vigna radiataL.) and to a lesser extent in bean (Phaseolus vulgaris L.) seedlings.Piperazine was more effective in acidic pH. The studies withpiperazine analogues showed that any substantial modificationof the structure caused the chemical to be less effective, oreven inhibitory. Histological studies in sunflower hypocotylsdemonstrated that piperazine did not alter the timing of theinitial cell division. In the presence of piperazine, sunflowerhypocotyls failed to develop primary phloem fibres. Piperazineat the concentrations that promote rooting did not kill or damagethe tissue at the base of the hypocotyl. Compared to controls,piperazine treatment did not alter the proportion of primordiathat eventually developed into actively elongating roots. Sixdays after treatment 45% of the control roots in the basal sectionwere actively growing, compared to 51% in the piperazine. Therewas little evidence suggesting that the piperazine-induced promotionof rooting was caused by the removal of basal dominance in whichpiperazine killed the basal part of hypocotyl.Copyright 1995,1999 Academic Press Helianthus annuus, Phaseolus vulgaris, Pisum sativum, Vigna radiata, adventitious roots, mung bean, pea, piperazine, sunflower  相似文献   

4.
OPIK  HELGI 《Annals of botany》1985,56(4):453-466
Completely anhydrous fixation with acrolein vapour or osmiumtetroxide vapour was applied to tissues of air-dry seeds: thecoleoptile of wheat (Trilicum aestivum), and plumule and radicleof mung bean (Vigna radiata). Great shrinkage of cells and organelleswas noted, but all the usual organelles could be identified,except for Golgi bodies and (in most cases) ribosomes. The endoplasmicreticulum was very abundant and endoplasmic reticulum tubuleswere closely associated with the storage organelles, namelylipid bodies in the wheat coleoptile, and protein bodies inthe mung bean embryo axis. Aqueous fixation resulted in considerabledistortion of cellular structure. Triticum aestivum L., wheat, Vigna radiata L., mung bean, seed, fine structure, anhydrous fixation  相似文献   

5.
The Azuki bean weevil, Callosobruchus chinensis (L.), is a destructive pest of stored mung bean [Vigna radiata (L.) Wilczek] as well as other leguminous seeds. The development of resistant seeds to manage this pest is of current great interest to plant breeders. In this study, we investigated the oviposition preference and development of C. chinensis on two susceptible mung bean cultivars (Seonhwa and Gyeongseon) and one previously reported resistant cultivar (Jangan), compared to the susceptible cowpea (Vigna unguiculata L.), cultivar (Yeonbun) using both multiple-choice and no-choice tests. In addition, the development of C. chinensis was also examined at four constant temperatures (20, 25, 30, and 35 °C). Both tests found cowpea to be the most suitable seed for oviposition. Total developmental time from oviposition to adult emergence ranged from 27.01 to 38.2 days, being shortest on cowpea and longest on the mung bean, cv. Jangan. However, no successful development of C. chinensis larvae on mung bean, cv. Jangan, occurred at any temperature. The highest rate of adult emergence and the longest adult longevity both occurred on cowpea and certain mung bean cultivars (Seonhwa and Gyeongseon), with the dramatic exception of cv. Jangan. These results suggest that the higher preference and performance of C. chinensis on cowpea (3.3 egg/seed) and least on mung bean, cv. Jangan (0.4 egg/seed). This information may facilitate the exploration of resistant genetic materials and chemicals associated with seeds for successful breeding. Further studies should examine the chemicals associated with mung bean cultivars and its resistant mechanism to develop a control method against bruchines.  相似文献   

6.
‘Physiological maturity’, i.e. the time when seedsreach their maximum dry weight during development, occurredwhen maturation drying on the parent plant in the field hadreduced seed moisture content to approximately 60 per cent infaba bean (Vicia faba L.), lentil (Lens culinaris Medic.), chickpea(Cicer arietinum L.), white lupin (Lupinus albus L.), soya bean(Glycine max [L.] Merr.) and pea (Pisum sativum L.) The onsetof desiccation-tolerance, i.e. the ability of seeds to germinatefollowing harvest and rapid artificial drying, coincided withphysiological maturity, except in pea where it occurred a littleearlier at about 70 per cent moisture content. Maximum seedquality as determined by maximum viability, minimum seedlingabnormalities and maximum seedling size occurred in pea, chickpeaand lupin when seeds were harvested for rapid drying at physiologicalmaturity; but for maximum seed quality in the other speciesmaturation drying had to proceed further - to about 45 per centmoisture content in soya bean and to about 30 per cent moisturecontent in lentil and faba bean seed crops. Much of this variationamongst the six species, however, was due to differences inthe variation in maturity within each seed crop. Results forindividual pods showed that peak maturity, i.e. maximum seedquality following harvest and rapid artificial drying, was achievedin all six species once maturation drying had reduced the moisturecontent of the seeds to 45–50 per cent. In pea, faba beanand soya bean there was a substantial decline in viability andan increase in seedling abnormalities when harvest was delayedbeyond the optimal moisture content for harvest.  相似文献   

7.
Seed of three chickpea (Cicer arietinum L.), three cowpea [Vignaunguiculata (L.) Walp.] and four soya bean [Glycine max (L.)Merr.] cultivars were hermetically stored for up to 2 yearsin various constant environments which included temperaturesfrom —20 to 70 °C and moisture contents (fresh weightbasis) from 5 to 25 per cent. In all cases the survival curvescould be described by negative cumulative normal distributions.The longevity of the various seed lots differed but the valueof the standard deviation (the reciprocal of which gives theslope of the survival curve when percentage germination is transformedto probit) was the same for all cultivars within a species whenstored under similar conditions. Within each species the relativeeffects of moisture and temperature on longevity did not differsignificantly between cultivars. In all three species therewas a negative logarithmic relationship between seed moisturecontent and longevity, but the relative effect of moisture contentdiffered between the species: differences in the longevity ofsoya bean seed as a function of moisture content were less thanfor either cowpea or chickpea. The relative effect of temperatureon seed longevity did not differ between the three species,and the seed of all three species showed increasing temperaturecoefficients for the change in rate of loss of viability withincrease in temperature. The complete pattern of loss in viabilityin all three species can be described by a single equation whichwas developed for barley and has also been shown to apply toonion seed. The constants applicable to the three grain legumeshave been calculated so that it is now possible to predict percentageviability of any seed lot of these species after any storageperiod under a very wide range of storage conditions. Cicer arietinum L., chickpea, Glycine max (L.) Merr., soya bean, Vigna unguiculata (L.) Walp., cowpea, seed longevity, seed storage, moisture content, temperature  相似文献   

8.
Carbon exchange was measured on whole plants of field bean,lucerne, chick pea, kidney bean, pea and tobacco. The maintenance respiration rate was measured in three ways:(i) by allowing the CO2 efflux to decay in prolonged darknessto an asymptotic value which was then taken to be the maintenancevalue (the dark decay method); (ii) by plotting the dark CO2efflux as a function of the net CO2 uptake over a range of irradiancesand taking maintenance as the dark CO2 efflux when the net CO2uptake was zero (the dynamic method); and (iii) by plottingthe total CO2 uptake as a function of the growth rate and takingmaintenance respiration as the CO2 efflux when the growth ratewas zero (the zero growth rate method). The range of valuesfor the maintenance coefficient over all species was from 1.6to 2.1 per cent of the dry weight per day, 1.8 to 2.1 per centand 2.7 to 2.9 per cent as determined by these three methodsrespectively. There was a linear relationship, common to allspecies, between the maintenance respiration rate (dark decaymethod) and dry weight, total nitrogen and the organic nitrogencontent. The growth coefficient (0.69±0.01) was the samefor field bean, chick pea and lucerne and was unaffected bythe method of estimation. It was concluded that the dark decay method provided the bestestimate of the minimal maintenance requirements in the plantsstudied. Vicia faba L., Medicago sativa L., Cicer arientinum L., Phaseolus vulgaris L., Pisum sativum L., Nicotiana tobacum L., field bean, lucerne, chick pea, kidney bean, pea, tobacco, respiration, maintenance, growth, nitrogen content  相似文献   

9.
Nitrate reductase (NR) activity was measuredin vivo in differentcrop species at 25–60 °C. Highest NR activity wasobserved at 40 °C in pigeon pea, cowpea, sunflower, sesameand sorghum, 45 °C in maize and 50 °C in bajra. At higherincubation temperatures NR activity declined in all species.In mung bean the optimum incubation temperature varied withthe season. In the summer crop of mung beans, NR activity wasmaximum at 50 °C while in the rainy season crop 30 °Cwas the optimum incubation temperature. NR in sesame was relativelyheat-tolerant. The results indicate that 30 °C is not theoptimum incubation temperature for all crop species. Nitrate reductase, temperature, in vivo assay  相似文献   

10.
Seeds of barley (Hordeum vulgare L.) and mung bean (Vigna radiata(L.) Wilczek), with orthodox seed storage behaviour, were imbibedfor between 8 h and 96 h at 15 °C and 25 °C, respectively,while barley seeds were also maintained in moist aerated storageat 15 °C for 14 d. These seeds and seedlings, together withcontrols, were then dried to various moisture contents between3% and 16% (wet basis) and hermetically stored for six monthsat —20°C, 0°C or 15°C. In both species, neitherdesiccation nor subsequent hermetic storage of the control lotsresulted in loss in viability. The results for barley seedsimbibed for 24 h were similar to the control, but desiccationsensitivity increased progressively with duration of imbibitionbeyond 24 h in barley or 8 h in mung bean; these treatmentsalso reduced the longevity of the surviving seeds in air-drystorage. Loss in viability in barley imbibed for 48 h was mostrapid at the two extreme seed storage moisture contents of 3·6%and 14·3%, and in both these cases was more rapid at15 °C than at cooler temperatures. Similarly, for mung beanimbibed for 8 h, loss in viability was most rapid at the lowest(4·3%) moisture content, but in this case it was morerapid at –20 °C than at warmer temperatures. Thus,these results for the storage of previously imbibed orthodoxseeds conform with the main features of intermediate seed storagebehaviour Key words: Barley, Hordeum vulgare L., mung bean, Vigna radiata (L.) Wilczek, desiccation sensitivity, seed longevity, seed storage behaviour  相似文献   

11.
The effects on the ethylene production of known inhibitors ofa cyanide-insensitive, alternative respiration in plants wereinvestigated using cotyledonary segments of cocklebur (Xanthiumpennsylvanicum Wallr.) seeds. Benzohydroxamic acid (BHAM) at3 mM stimulated ethylene production 4- to 8-fold over the control,but respiration of the segments was hardly affected at thatconcentration. The stimulatory effects of 3-chlorobenzohydroxamicacid (CLAM) and salicylhydroxamic acid were far smaller thanthat of BHAM. BHAM at 3 mM also markedly stimulated the ethyleneformation in the epicotyl or hypocotyl sections of etiolatedpea (Pisum sativum L.) and mung bean (Vigna radiata [L.] Wilczek)seedlings. Moreover, 3 mM BHAM further promoted the increasedethylene formation which was caused by administration of 1-aminocyclopro-pane-1-carboxylicacid (ACC) to the cotyledonary segments. The promoting effectsby BHAM and CLAM were also found in the conversion of ACC intoethylene in pea stem homogenates. (Received July 26, 1980; )  相似文献   

12.
The effects on the ethylene production of known inhibitors ofa cyanide-insensitive, alternative respiration in plants wereinvestigated using cotyledonary segments of cocklebur (Xanthiumpennsylvanicum Wallr.) seeds. Benzohydroxamic acid (BHAM) at3 mM stimulated ethylene production 4- to 8-fold over the control,but respiration of the segments was hardly affected at thatconcentration. The stimulatory effects of 3-chlorobenzohydroxamicacid (CLAM) and salicylhydroxamic acid were far smaller thanthat of BHAM. BHAM at 3 mM also markedly stimulated the ethyleneformation in the epicotyl or hypocotyl sections of etiolatedpea (Pisum sativum L.) and mung bean (Vigna radiata [L.] Wilczek)seedlings. Moreover, 3 mM BHAM further promoted the increasedethylene formation which was caused by administration of 1-aminocyclopro-pane-1-carboxylicacid (ACC) to the cotyledonary segments. The promoting effectsby BHAM and CLAM were also found in the conversion of ACC intoethylene in pea stem homogenates. (Received July 26, 1980; )  相似文献   

13.
Rhizobium strains nodulating summer legumes cow pea [Vigna unguiculata (L.)], green gram [V. radiata (L.) (Wilczek)], black gram [V. mungo (L.) (Hepper)] and cluster bean [Cyamopsis tetragonoloba (L.) (Taub)] and a winter legume chick pea [Cicer arietinum (L.)] were surveyed in the Northern Plains of India and screened for hydrogenase activity to determine distribution of Hup character in the native ecosystem. It was observed that 56% of the Rhizobium strains of summer legumes were Hup+ whereas that of the winter legume, chick pea, were all Hup-. Ex planta acetylene reduction activity was observed in most of the Hup+ but not in the Hup- strains of any of the host species. In summer legume, mixed inoculation of Hup+ and Hup- strains, under sterilized as well as unsterilized soil conditions, showed that the host species were predominantly nodulated with Hup+ strain.  相似文献   

14.
A study was undertaken to define more clearly the role of theearly loss of apical dominance on yield of cowpea [Vigna unguiculata(L.) Walp. cv. Vita-5]. Decapitation at the fifth leaf stageresulted in an increase in branching components, yields andharvest indices, while vegetative d. wt accumulation was reduced.Foliar-applied sprays of 6-benzyladenine had no effect on branchingunless combined with decapitation and no significant effectson yield over that of controls were observed. However, harvestindices were increased by 50 per cent. Vigna unguiculata (L.) Walp., cowpea, apical dominance, decapitation, 6-benzyladenine  相似文献   

15.
Structural, biochemical, and immunological comparisons of nodulesfrom ten species of plants were made to determine if a correlationexists between nodule structure, ureide production, urate oxidaseactivity, and antigenic similarity in urate oxidase. In specieswith high urate oxidase activity and cross-reaction with soybeananti-urate oxidase [soybean (Glycine max), green bean (Phaseolusvulgaris), mung bean (Vigna radiata), cowpea (Vigna unguiculata)],the nodules were determinate and contained numerous interstitialcells, interspersed among the infected cells. Within the interstitialcells of the ureide producing nodules numerous peroxisomes werenoted and these peroxisomes appear to be structurally similar,viz. a large electron opaque core surrounded by a less electronopaque rim. Although hemp sesbania (Sesbania exaltata) noduleswere similar in ultrastructure to other ureide producers withdetectable urate oxidase activity, no cross-reactivity was observedwith anti-soybean urate oxidase. Amide producing nodules eithercontained no interstitial cells [e.g. Indian jointvetch (Aeschynomeneindica), showy crotalaria (Crotalaria spectabilis)} or interstitialcells with few peroxisomes [e.g. alfalfa (Medicago saliva),broad bean (Vicia faba), pea (Pisum sativum)] with little urateoxidase activity, exhibiting no cross-reaction with soybeananti-urate oxidase. These data indicate that the urate oxidasein most ureide producing nodules is very similar and, structurally,ureide producing nodules are organized in a specialized wayto carry out ureide assimilation in the uninfected interstitialcells. (Received June 19, 1986; Accepted January 12, 1987)  相似文献   

16.
Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea   总被引:6,自引:0,他引:6  
Pereira  G.J.G.  Molina  S.M.G.  Lea  P.J.  Azevedo  R.A. 《Plant and Soil》2002,239(1):123-132
The aromatic amine, -phenethylamine, was identified in various field-grown leguminous plants by analyses with HPLC, GC, GC-MS and 1H-NMR. High concentration of -phenethylamine was generally detected only in mature root nodules, but not in other plant organs such as root, stem, leaf, pod and grain. Occurrence was specific to the root nodules formed by Bradyrhizobium infection. Ten of eleven legume crops including soybean [Glycine max (L.) Merr.], pigeon pea [Cajanus cajan (L.) Millsp.], adzuki bean (Vigna angularis), mung bean [V. radiata (L.) Wilczek] and cowpea (V. unguiculata) contained this aromatic amine, but groundnut (Arachis hypogaea L.) also nodulated by Bradyrhizobium sp. did not. Root nodules collected from garden pea (Pisum sativum L.), broad bean (Vicia fava L.), kidney bean (Phaseolus vulgaris L.) and various other herbaceous legumes nodulated by Rhizobium sp., Mesorhizobium sp., Sinorhizobium sp. or Azorhizobium caulinodans, and root-nodulated, woody non-legumes, nodulated by Frankia spp., contained little -phenethylamine.The amount of -phenethylamine in Bradyrhizobium-infected nodules varied with the legume species and their cultivars, and most significantly, with nodule age. In field-grown soybean plants, nodule -phenethylamine attained maximum concentration at the flowering stage and far exceeded that of the major polyamines of soybean nodules, putrescine and spermidine.  相似文献   

17.
Laboratory studies with Neomegalotomus parvus(Westwood) (Hemiptera: Alydidae) with one nymph per Petri dish in multiple-choice tests indicated that seeds of pigeon pea [Cajanus cajan(L.) Mills.], lablab (Dolichos lablabL.), and soybean [Glycine max(L.) Merrill] were visited before seeds of common bean (Phaseolus vulgarisL.) and rice (Oryza sativaL.). The percentage of individuals engaging in dabbing/antennation resulting in probing, and percentage probing resulting in feeding, were higher on common bean (97%) and pigeon pea (87%) seeds than on lablab (55%), soybean (50%), or rice (5%) seeds. No significant differences were found in preference (number of flanges) among pigeon pea, common bean, and lablab, and preference (insects on foods) varied throughout the assessment period (5 d). In tests using 10 nymphs per dish, pigeon pea was the preferred food (number of flanges and insects on plants) throughout the period (5 d). In no-choice tests, the average duration of a feeding session and the longest feeding session were greater on lablab and common bean than on pigeon pea, soybean, or rice seeds. The number of feeding sessions was greater on seeds of common bean, pigeon pea, and soybean than on those of lablab or rice. Laboratory tests with N. parvusadults indicated that pigeon pea seeds were located faster, followed by common bean, soybean, and rice. When pods were tested, dabbing/antennation time was shorter on pigeon pea than on soybean, and probing time was longer on soybean than on pigeon pea or common bean. On pigeon pea, 100% of the insects probed the host, while on common bean and soybean pods, and on rice panicles, these values dropped to 71.8%, 46.0%, and 10.5%, respectively. Adults showed similar feeding times on pigeon pea, common bean, and soybean pods, but did not feed on rice panicles. Electronmicroscopical analysis showed the presence of two apical lobes with 12 peg sensilla on the labial tip. Sensillum tips were stained with silver nitrate solution, indicating a permeability of the cuticle and, therefore, their function as taste receptors.  相似文献   

18.
The major isoenzymes of -mannosidase (EC 3.2.1.24 [EC] ) and ß-galactosidase(ECf 3.2.1.23 [EC] ) have been separated from cotyledons of gardenpea, Pisum sativum L. (Vicieae), chick pea, Cicer arietinumL. (Cicereae), and cowpea, Vigna unguiculata (L.) Walp. (Phaseoleae).Some of their properties have been determined, including pHoptima, Km values for p-nitrophenyl glycosidc substrates, andthe effects of several inhibitors. Swainsonine, an indolizidinealkaloid, was the most effective inhibitor of mannosidase 1,with I30 values of 5.6 x 10–8 M (cowpea), 1x 10–7M (chick pea) and 2.9 x 19–7 M (pea). The most effectiveinhibitor of ß-galactosidase 2 from all sources wasD-galactonic acid-1,4-lactonwe (-lactone), with Ki values rangingbetween 3.0 and 3.9x 10–3 M. An inhibitor of the E. coliß-galactosidose, p-aminophenyl thio-ß-D-galactopyranoside,did not inhibit any of the legume ß-galctosidases;rather it enhanced the activites of the enzymes from chick peaand cowpea cotyledons. Etiolated hull and seed tissues frompea pods developing in darkness contained similar acid glycosidaseactivities to normal green tissues, thus the chloroplast isan unlikely location for ß-galactosidase 2. The majorß-galactosidasesdetected with an indigogenic substrate (5-bromo-4-chloro-3-indoxyl-ß-D-galactopyranoside)following gel electrophoresis of extracts from pea hull, seedcoats and cotyledons appeared to be different from ß-galactosidase2. Acid glycosidase, cotyledon, isoenzyme, -lactone, legume, swainsonine  相似文献   

19.
The cowpea (Vigna unguiculata L.), peanut (Arachis hypogaea L.), and mung bean (Vigna radiata L.) belong to a group of plants known as the "cowpea miscellany" plants, which are widely cultivated throughout the tropic and subtropical zones of Africa and Asia. However, the phylogeny of the rhizobial strains that nodulate these plants is poorly understood. Previous studies have isolated a diversity of rhizobial strains from cowpea miscellany hosts and have suggested that, phylogenetically, they are from different species. In this work, the phylogeny of 42 slow-growing rhizobial strains, isolated from root nodules of cowpea, peanut, and mung bean from different geographical regions of China, was investigated using sequences from the 16S rRNA, atpD and glnII genes, and the 16S-23S rRNA intergenic spacer. The indigenous rhizobial strains from the cowpea miscellany could all be placed in the genus Bradyrhizobium , and Bradyrhizobium liaoningense and Bradyrhizobium yuanmingense were the main species. Phylogenies derived from housekeeping genes were consistent with phylogenies generated from the ribosomal gene. Mung bean rhizobia clustered only into B. liaoningense and B. yuanmingense and were phylogenetically less diverse than cowpea and peanut rhizobia. Geographical origin was significantly reflected in the phylogeny of mung bean rhizobia. Most cowpea rhizobia were more closely related to the 3 major groups B. liaoningense, B. yuanmingense, and Bradyrhizobium elkanii than to the minor groups Bradyrhizobium japonicum or Bradyrhizobium canariense . However, most peanut rhizobia were more closely related to the 2 major groups B. liaoningense and B. yuanmingense than to the minor group B. elkanii.  相似文献   

20.
Summary Physiological and symbiotic characteristics were identified in fast-growing (FG)Rhizobium japonicum. Carbon nutritional patterns linked these rhizobia to other FG rhizobia. They were able to use hexoses, pentoses, disaccharides, trioses, and organic acids for growth, but they were unable to use dulcitol or citrate. These rhizobia produced acid with all carbon sources except intermediates of the Krebs cycle. FGR. japonicum showed no vitamin requirements and were tolerant to 1% NaCl but not to 2%. They nodulated cowpea, pigeon pea, and mung bean but not peanut. Effective, nitrogen-fixing symbioses were observed only with cowpea and pigeon pea. In addition, FGR. japonicum formed effective symbioses with Asian-type soybeans. We concluded that although the physiological characteristics of FGR. japonicum were similar to other FG rhizobia, their symbiotic properties were similar to slow-growing rhizobia of the cowpea miscellany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号