首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trans lipid formation induced by thiols in human monocytic leukemia cells   总被引:1,自引:0,他引:1  
Trans lipids in humans originate exogenously from the ingestion of isomerized fats. An endogenous path comprising a thiyl radical-catalyzed cis-trans isomerization of cis-unsaturated phospholipids was proposed. However, whether an isomerization process might be feasible in eukaryotic cells remained to be established. Here we report the presence of trans lipids in human monocytic leukemia cell membranes (THP-1) before and after treatment with a 10 mM series of thiols. Oleic, linoleic, and arachidonic acid residues of membrane phospholipids were analyzed and, unexpectedly, an initial trans lipid content was found in control cells. Then, incubation for 24 h with thiols under physiological conditions slightly increased trans lipid content. Formation of trans isomers was also evaluated in the presence of thiol and under free radical stress induced by gamma-irradiation or by thermal decomposition of azo-compounds. The similarity of isomer trends formed under incubation and stress conditions, together with the reactivity order of fatty acid residues (arachidonic > linoleic approximately oleic), indicated a common radical path and some mechanistic considerations are advanced. These results offer the first evidence that trans lipids are formed in eukaryotic cells and confirm that thiyl radicals are harmful to the integrity of cis lipid geometry. This work motivates further studies into the relationship between lipid isomerization outcome and thiyl radicals in cellular systems, as well as the formation of trans lipids and the metabolic response to such a perturbation introduced into biological membranes.  相似文献   

2.
The presence of trans fatty acids in mammalians is attributed to exogenous sources; nevertheless, trans isomers could be easily formed by free radical-catalyzed isomerization processes in vivo. The isomerization of methyl arachidonate (all-cis isomer) catalyzed by thiyl radical is proposed as a methodology applicable in biochemical laboratories, which produces mono- and di-trans isomers. Carbon-13 nuclear magnetic resonance spectroscopy shows that the carbon atom in position 15 is characteristic for each mono- and di-trans isomer. Antioxidants, such as alpha-tocopherol and all-trans-retinol acetate, inhibited the isomerization process. Trans phospholipids are formed in erythrocyte membranes by exposing blood to gamma-irradiation in the presence of thiols, which is in contradiction with the known role of these compounds as radioprotectors. Trans isomers are also analyzed in tissues harvested from breast cancer patients and compared to the adipose breast tissue taken a few centimeters from the edge of the tumor from the same patient. This work is generally aimed at contributing to the debate on trans fatty acids and stimulating a reconsideration of the current view on the exclusive presence of cis double bonds in cell membranes by studying radical processes that could affect or protect this natural configuration.  相似文献   

3.
Silkworm pupae have much potential and many applications as a natural medicine to promote human health. However, their chemical components have not been fully characterized or understood. HPLC analysis was conducted to determine the content ratio (%) of individual amino acids in total protein of the pupae. It showed that glutamic acid (18.3%), histidine (14.6%) and alanine (10.2%) are the most common amino acids in silkworm pupae. Fatty acid composition of silkworm pupae oil was revealed by high‐pressure liquid chromatography and gas chromatography – mass spectroscopy analyses. They contain a high ratio of essential fatty acids, [α‐linolenic acid (ω‐3 fatty acid]+ linoleic acid) (49.0%), and also contain non‐essential fatty acids, oleic acid (19.9%), palmitoleic acid (2.5%), palmitic acid (19.7%), stearic acid (8.6%), and eicosapentaenoic acid (EPA) (0.3%). In addition, they also contain antioxidants, quercetin diglucoside and nutritionally important riboflavin (vitamin B2). This study suggests that silkworm pupae are a nutritionally valuable food product and are applicable as cosmetic components with essential amino acids, essential fatty acids, antioxidants and vitamins. The animal experiment showed that alcohol dehydrogenase (ADH) activity was significantly higher in the liver of mice orally administered with 0.5 mg/mL of silkworm extract and alcohol than with commercial Dawn808? and alcohol, indicating that silkworm pupae extracts have alcohol detoxification activity.  相似文献   

4.
Free radical-catalysed cis-trans isomerization of unsaturated lipids in biomimetic models and their significance in eukaryotic cells have been explored in the last few years, an integrating hypothesis being that trans-fatty acids have their origins in both dietary sources and from isomerization of natural isomers by an endogenous radical stress. In this perspective, a summary of the achievements and a discussion of the possible biological sources of isomerizing radical species are given, indicating a need for further research on thiyl radical generation in biological systems. In this context, crucial questions remain to be answered by free radical research involving membrane lipids, thus contributing to lipidomics and embracing biology and medicine.  相似文献   

5.
Pseudomonas oleovorans contains an isomerase which catalyzes the cis-trans conversion of the abundant unsaturated membrane fatty acids 9-cis-hexadecenoic acid (palmitoleic acid) and 11-cis-octadecenoic acid (vaccenic acid). We purified the isomerase from the periplasmic fraction of Pseudomonas oleovorans. The molecular mass of the enzyme was estimated to be 80 kDa under denaturing conditions and 70 kDa under native conditions, suggesting a monomeric structure of the active enzyme. N-terminal sequencing showed that the isomerase derives from a precursor with a signal sequence which is cleaved from the primary translation product in accord with the periplasmic localization of the enzyme. The purified isomerase acted only on free unsaturated fatty acids and not on esterified fatty acids. In contrast to the in vivo cis-trans conversion of lipids, this in vitro isomerization of free fatty acids did not require the addition of organic solvents. Pure phospholipids, even in the presence of organic solvents, could not serve as substrate for the isomerase. However, when crude membranes from Pseudomonas or Escherichia coli cells were used as phospholipid sources, a cis-trans isomerization was detectable which occurred only in the presence of organic solvents. These results indicate that isolated membranes from Pseudomonas or E. coli cells must contain factors which, activated by the addition of organic solvents, enable and control the cis-trans conversion of unsaturated acyl chains of membrane phospholipids by the periplasmic isomerase.  相似文献   

6.
The gamma-irradiation of bovine pancreatic ribonuclease A (RNase A) in aqueous solution were investigated at different doses by vibrational spectroscopy as well as enzymatic assay, electrophoresis, and HPLC analysis. Both functional and structural changes of the protein were caused by attack of H(*) atoms and (*)OH radicals. In particular, Raman spectroscopy was shown to be a useful tool in identifying conformational changes of the protein structure and amino acidic residues that are preferential sites of the radical attack (i.e., tyrosine and methionine). After partial structural changes by the initial radical attack, the internal sulfur-containing amino acid residues were rendered susceptible to transformation. By using the biomimetic model of dioleoyl phosphatidyl choline vesicle suspensions containing RNase A, the damage to methione residues could be connected to a parallel alteration of membrane unsaturated lipids. In fact, thiyl radical species formed from protein degradation can diffuse into the lipid bilayer and cause isomerization of the naturally occurring cis double bonds. As a consequence, trans unsaturated fatty acids are formed in vesicles and can be considered to be markers of this protein damage.  相似文献   

7.
d ‐β‐aspartyl (Asp) residue has been found in a living body such as aged lens crystallin, although l ‐α‐amino acids are constituents in natural proteins. Isomerization from l ‐α‐ to d ‐β‐Asp probably modulates structures to affect biochemical reactions. At Asp residue, isomerization and peptide bond cleavage compete with each other. To gain insight into how fast each reaction proceeds, the analysis requires the consideration of both pathways simultaneously and independently. No information has been provided, however, about these competitive processes because each reaction has been studied separately. The contribution of Asp isomers to the respective pathways has still been veiled. In this work, the two competitive reactions, isomerization and spontaneous peptide bond cleavage at Asp residue, were simultaneously observed and compared in an αA‐crystallin fragment, S51LFRTVLD58SG60 containing l ‐α‐ and d ‐β‐Asp58 isomers. The kinetics showed that the formation of l ‐ and d ‐succinimide (Suc) intermediate, as a first step of isomerization, was comparable at l ‐α‐ and d ‐β‐Asp. Although l ‐Suc was converted to l ‐β‐Asp, d ‐Suc was liable to return to the original d ‐β‐Asp, the reverse reaction marked enough to consider d ‐β‐Asp as apparently stable. d ‐β‐Asp was also resistant to the peptide bond cleavage. Such apparent less reactivity is probably the reason for gradual and abnormal accumulation of d ‐β‐Asp in a living body under physiological conditions. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Lipoic acid and its reduced form, dihydrolipoic acid, are thought to be strong antioxidants. There are also reports of dihydrolipoic acid acting as a pro-oxidant under certain circumstances. This article reports the direct observation by ESR spectrometry of the disulfide radical anion and the spin trapping of the primary thiyl radical formed from the oxidation of dihydrolipoic acid through thiol pumping with phenol and horseradish peroxidase. The disulfide radical anion reacts rapidly with oxygen to form the reactive radical superoxide, which is also trapped. The radical species formed show a potential for pro-oxidant activity of this compound. Although antioxidants, in general, have been shown to have pro-oxidant potential, the pro-oxidant chemistry of dihydrolipoic acid has not been well characterized.  相似文献   

9.
The hypolipidemic fibrates have been identified as agonists of the peroxisome proliferator-activated receptor alpha (PPARalpha), which plays a critical role in the regulation of cardiac fatty acid metabolism. Despite the widespread clinical use of fibrates, their role in myocardial oxidative stress and fatty acid composition is less known. In this study, male Sprague-Dawley rats were treated with either vehicle (olive oil, 1 ml/kg) or clofibrate (300 mg/kgday i.p.) for 1-14 days. Lipid peroxidation in heart homogenate was determined by thiobarbituric acid reactive substance (TBARS) assay. Results show that hearts from clofibrate-treated rats are more susceptible to FeSO(4)-induced TBARS production. The antioxidants including catalase and glutathione-related enzymes were marginally affected. We demonstrated that myocardial fatty acid composition was dramatically altered by clofibrate treatment. In hearts from clofibrate-treated rats, the principal n-6 polyunsaturated fatty acids (PUFAs), linoleic acid (C18:2 n-6) and arachidonic acid (C20:4 n-6), was significantly reduced, while the content of the principal n-3 PUFA, docosahexaenoic acid (C22:6 n-3), was markedly increased. The overall effect was to reduce n-6/n-3 ratio and increase the unsaturation extent of myocardial fatty acids. Functional study showed that hearts from clofibrate-treated rats had an improved recovery of post-ischemic contractile function and reduced ischemia/reperfusion (I/R)-induced infarct size. The data shows that clofibrate has a profound impact on cardiac fatty acid composition, which may contribute to its cardioprotective effect.  相似文献   

10.
11.
Cyclic AMP-dependent protein kinases from several mammalian sources inhibit Na+-dependent α-aminoisobutyric acid transport by membrane vesicles isolated from 3T3 cells. Evidence is provided that phosphorylation of membrane proteins by the enzyme is responsible for the inhibition. Lysis of the vesicles, or a reduction in the intravesicular volume is not the cause of reduced transport.The cyclic AMP-dependent protein kinase and its catalytic subunit phosphorylate a number of membrane proteins. Most of these proteins are phosphorylated, but to a lesser extent in the absence of protein kinase or cyclic AMP. The phosphorylated proteins remain associated with the membranes during hypotonic lysis treatments, which would be expected to release intra-vesicular contents and loosely associated membrane proteins. 32P-labeled bands detected on sodium dodecyl sulfate polyacrylamide gels after phosphorylation of membranes by the catalytic subunit of the cyclic AMP-dependent kinase are eliminated by treatment with either pronase or 1 N NaOH, but not by ribonuclease nor by phospholipase C. The stability of the incorporated radioactivity to hot acid and hydroxylamine relative to hot base suggests that most of the 32P from [γ-32P]ATP is incorporated into protein phosphomonoester linkages.  相似文献   

12.
α-Synuclein (αS) is a membrane-binding protein with sequence similarity to apolipoproteins and other lipid-carrying proteins, which are capable of forming lipid-containing nanoparticles, sometimes referred to as “discs.” Previously, it has been unclear whether αS also possesses this property. Using cryo-electron microscopy and light scattering, we found that αS can remodel phosphatidylglycerol vesicles into nanoparticles whose shape (ellipsoidal) and dimensions (in the 7–10-nm range) resemble those formed by apolipoproteins. The molar ratio of αS to lipid in nanoparticles is ∼1:20, and αS is oligomeric (including trimers and tetramers). Similar nanoparticles form when αS is added to vesicles of mitochondrial lipids. This observation suggests a mechanism for the previously reported disruption of mitochondrial membranes by αS. Circular dichroism and four-pulse double electron electron resonance experiments revealed that in nanoparticles αS assumes a broken helical conformation distinct from the extended helical conformation adopted when αS is bound to intact vesicles or membrane tubules. We also observed αS-dependent tubule and nanoparticle formation in the presence of oleic acid, implying that αS can interact with fatty acids and lipids in a similar manner. αS-related nanoparticles might play a role in lipid and fatty acid transport functions previously attributed to this protein.  相似文献   

13.
Abstract

The biomimetic model of micelles of linoleic acid containing 2-mercaptoethanol and the antioxidant was examined under gamma irradiation up to 400?Gy in aerobic or deoxygenated conditions where thiyl radicals are the main reactive species. Lipid peroxidation was retarded by ascorbic acid and α-tocopherol, whereas this process was strongly inhibited by resveratrol as effectively as the ascorbic acid/α-tocopherol mixture. Furthermore, antioxidants have a much stronger inhibitory effect on the peroxidation in the presence of 2-mercaptoethanol, and at the same time show protective properties of the double bond, decreasing the cistrans isomerization. Under anaerobic conditions, cistrans isomerization occurred and antioxidants efficiency increased along the series: resveratrol < α-tocopherol?<?ascorbic acid. This result is explained taking into account the double bond localization in the hydrophobic core of the micelle and the need of co-localization of the antioxidant in order to get an anti-isomerizing activity and protection of the natural lipid geometry.  相似文献   

14.
15.
In this study, we show that 5α‐reductase derived from rat fresh liver was inhibited by certain aliphatic free fatty acids. The influences of chain length, unsaturation, oxidation, and esterification on the potency to inhibit 5α‐reductase activity were studied. Among the fatty acids we tested, inhibitory saturated fatty acids had C12–C16 chains, and the presence of a C?C bond enhanced the inhibitory activity. Esterification and hydroxy compounds were totally inactive. Finally, we tested the prostate cancer cell proliferation effect of free fatty acids. In keeping with the results of the 5α‐reductase assay, saturated fatty acids with a C12 chain (lauric acid) and unsaturated fatty acids (oleic acid and α‐linolenic acid) showed a proliferation inhibitory effect on lymph‐node carcinoma of the prostate (LNCaP) cells. At the same time, the testosterone‐induced prostate‐specific antigen (PSA) mRNA expression was down‐regulated. These results suggested that fatty acids with 5α‐reductase inhibitory activity block the conversion of testosterone to 5α‐dihydrotestosterone (DHT) and then inhibit the proliferation of prostate cancer cells.  相似文献   

16.
A modified version of the comet assay was employed to investigate the effect in vitro of dietary antioxidants in the subcellular environment. Human lymphocytes were isolated, embedded in agarose gel, lysed in high ionic strength solution with Triton X-100, and then incubated for 30 min with antioxidants at different concentrations. Gels were washed, and the comet assay performed on cells stressed by 5 min incubation with 45 microM hydrogen peroxide and on unstressed cells in parallel. Results showed that alpha-tocopherol was protective against oxidant stress, whereas caffeic acid did not protect, and at high concentration (100 microM) caused increased DNA damage. Results for quercetin suggested a direct damaging effect, but this did not reach statistical significance. However, at low concentration (3.1 microM), quercetin appeared protective. Thus some dietary antioxidants that have been shown previously to have a protective effect in the 'standard', whole-cell, comet assay cause DNA damage in this lysed-cell version. The cell membrane may have an important role in limiting cellular access of these 'double-edged' antioxidants. Furthermore, the absolute concentration and the presence of complementary or synergistic intracellular antioxidants may delineate the type of action of a putative antioxidant. We suggest that, used in conjunction with the standard comet assay, this lysed-cell version is useful for assessing the effect of the cell membrane and intracellular systems on susceptibility of DNA to oxidative damage, and will help determine the mechanism of protection or damage by phytochemicals.  相似文献   

17.
The oxidation of aminopyrine to an aminopyrine cation radical was investigated using a solubilized microsomal preparation or prostaglandin H synthase purified from ram seminal vesicles. Aminopyrine was oxidized to an aminopyrine cation radical in the presence of arachidonic acid, hydrogen peroxide, t-butyl hydroperoxide or 15-hydroperoxyarachidonic acid. Highly purified prostaglandin H synthase, which processes both cyclo-oxygenase and hydroperoxidase activity, oxidized aminopyrine to the free radical. Purified prostaglandin H synthase reconstituted with Mn2+ protoporphyrin IX, which processes only cyclo-oxygenase activity, did not catalyze the formation of the aminopyrine free radical. Aminopyrine stimulated the reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11-13-eicosatetraenoic acid. Approximately 1 molecule of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid was reduced for every 2 molecules of aminopyrine free radical formed, giving a stoichiometry of 1:2. The decay of the aminopyrine radical obeyed second-order kinetics. These results support the proposed mechanism in which aminopyrine is oxidized by prostaglandin H synthase hydroperoxidase to the aminopyrine free radical, which then disproportionates to the iminium cation. The iminium cation is further hydrolyzed to the demethylated amine and formaldehyde. Glutathione reduced the aminopyrine radical to aminopyrine with the concomitant oxidation of GSH to its thiyl radical as detected by ESR of the glutathione thiyl radical adduct.  相似文献   

18.
The medium‐length peptaibiotics are characterized by a primary structure of 14–16 amino acid residues. Despite the interesting antibiotic and antifungal properties exhibited by these membrane‐active peptides, their exact mechanism of action is still unknown. Here, we present our results on heptaibin, a 14‐amino acid peptaibiotic found to exhibit antimicrobial activity against Staphylococcus aureus. We carried out the very challenging synthesis of heptaibin on solid phase and a detailed conformational analysis in solution. The peptaibiotic is folded in a mixed 310‐/α‐helix conformation which exhibits a remarkable amphiphilic character. We also find that it is highly stable toward degradation by proteolytic enzymes and nonhemolytic. Finally, fluorescence leakage experiments using small unilamellar vesicles of three different compositions revealed that heptaibin, although uncharged, is a selective compound for permeabilization of model membranes mimicking the overall negatively charged surface of Gram‐positive bacteria. This latter finding is in agreement with the originally published antimicrobial activity data. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The double bond geometry of most of the naturally occurring unsaturated fatty acid residues is cis. Due to the relevance of fatty acids as structural components of cell membranes and as biologically active molecules, the change of the cis geometry means a change of the associated functions and activities. The finding that the cis to trans isomerization is effective in phospholipids by the intervention of radical species led to the discovery that there can indeed occur an endogenous formation of trans fatty acids, whose significance in biological systems started to be addressed with in vitro and in vivo studies. Studies of liposome models simulating the formation of isomerizing species and evaluating their ability to interact with the hydrophobic part of the membrane bilayer has contributed to the gain in knowledge of the fundamental features of the lipid isomerization in membranes. Further work is in progress for the identification of the real culprits of the in vivo lipid isomerization, and recent results are shown on oleic acid micelles, where NO2 radicals are not able to induce double bond isomerization in comparison with amphiphilic thiol, such as 2-mercaptoethanol. H2S and sulfur-containing amino acid residues are two of the possible species involved in this process at a biological level. An update of the scenario of the geometrical isomerization in membranes by free radicals is provided, together with applications and perspectives in life sciences.  相似文献   

20.
The lipase-catalyzed preparation of acyl thioesters from unsaturated fatty acids and alkanethiols is accompanied by the formation of geometrical isomers via stereomutation and of thioether derivatives via addition at the olefinic bond, both induced by thiyl radicals. Therefore, a method was developed in order to inhibit radical generation by the addition of antioxidants and thus prevent the formation of geometrical isomers and thioether derivatives during the lipase-catalyzed preparation of unsaturated acyl thioesters. In the presence of antioxidants such as 2,6-di-t-butyl-4-methylphenol (BHT) and octyl gallate thioesterification of oleic and elaidic acids with 1-tetradecanethiol as well as transthioesterification of methyl linoleate with 1-tetradecanethiol led to the corresponding geometrically uniform thioesters without radical-induced side reactions. In the absence of antioxidants rapid stereomutation of unsaturated acyl moieties as well as formation of high proportions of thiyl radical-induced addition products such as isomeric 9(10)-S-tetradecyl stearic acids and 9(10)-S-tetradecyl stearic acid tetradecyl thioesters were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号