首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the effects of the signaling molecule nitric oxide (NO) are mediated by cGMP, which is synthesized by soluble guanylyl cyclase and degraded by phosphodiesterases. Here we show that in platelets and aortic tissue, NO led to a biphasic response characterized by a tremendous increase in cGMP (up to 100-fold) in less than 30 s and a rapid decline, reflecting the tightly controlled balance of guanylyl cyclase and phosphodiesterase activities. Inverse to the reported increase in sensitivity caused by NO shortage, concentrating NO attenuated the cGMP response in a concentration-dependent manner. We found that guanylyl cyclase remained fully activated during the entire course of the cGMP response; thus, desensitization was not due to a switched off guanylyl cyclase. However, when intact platelets were incubated with NO and then lysed, enhanced activity of phosphodiesterase type 5 was detected in the cytosol. Furthermore, this increase in cGMP degradation is paralleled by the phosphorylation of phosphodiesterase type 5 at Ser-92. Thus, our data suggest that NO-induced desensitization of the cGMP response is caused by the phosphorylation and subsequent activity increase of phosphodiesterase type 5.  相似文献   

2.
A procedure is described for isolation of cAMP and cGMP by thin-layer chromatography on polyethylenimine cellulose. Chromatographs are developed (descending) twice in the same direction with two different solvents. This procedure separates cAMP and cGMP from other radioactive metatolites of [3H] or [14C] ATP or GTP. Application of this isolation method to assay of adenylate cyclase, (EC 4.6.1.1), guanylate cyclase (EC 4.6.1.2), and cyclic nucleotide phosphodiesterase (EC 3.1.4.17) has proven convenient and provides results of unusual quality.  相似文献   

3.
The activities of cAMP and cGMP phosphodiesterases (EC 3.1.4.1), adenylate cyclase (EC 4.6.1.1) and protein carboxyl-methylase (EC 2.1.1.24) were measured in the particulate and soluble (105 000 g supernatant) fractions of washed spermatozoa isolated from five segments of the adult rat epididymis. The activities of both phosphodiesterases decreased during epididymal transit, whereas adenylate cyclase and protein carboxyl-methylase underwent a progressive increase, the latter showing the most marked alteration. Both cAMP and cGMP phosphodiesterases as well as the adenylate cyclase were all associated primarily with the particulate fraction, and the extent to which these enzymes were associated with the membranes increased as the spermatozoa passed through the epididymis. Sperm protein carboxyl-methylase activity was, on the other hand, predominantly soluble in all segments of the epididymis. Adenylate cyclase, cAMP phosphodiesterase and protein carboxyl-methylase activities were found predominantly in the sperm tails, whereas cGMP phosphodiesterase was equally distributed between heads and tails. These observations imply that the acknowledged increase in intracellular cAMP levels which occurs in spermatozoa during epididymal transit may be a consequence of both increased synthesis (adenylate cyclase) and reduced hydrolysis (phosphodiesterase).  相似文献   

4.
We have demonstrated previously that atrial natriuretic factor (ANF) augments urinary, plasma and kidney cGMP levels but has no significant effect upon cAMP. Using cGMP as a marker, we searched for specific target sites involved in the action of ANF in the dog kidney, and observed no change of cGMP in the proximal tubules, a 2-fold increase over basal levels in the thick loop of Henle and a 3-fold elevation in the collecting duct. The most striking action on cGMP occurred in the glomeruli with a rise of up to 50-fold being evident at 1-2 min. after the addition of ANF. The results obtained in the absence or presence of a phosphodiesterase inhibitor support the notion that the effects of ANF were exerted at the level of guanylate cyclase stimulation rather than cGMP phosphodiesterase inhibition. The action of sodium nitroprusside (SNP), a direct stimulator of soluble guanylate cyclase, differed from that of ANF. The ability of the factor to enhance cGMP levels was correlated with the distribution of particulate guanylate cyclase. This study identifies the glomeruli and the distal part of the nephron as specific targets of ANF and implicates particulate guanylate cyclase as the enzyme targetted for the expression of its action.  相似文献   

5.
In bullfrog (Rana catesbiana) rods the activity of cyclic GMP (cGMP) phosphodiesterase was stimulated 10 times by washing disc membranes with an isotonic, GTP-containing buffer. This stimulation was maintained following hydrolysis of GTP and after removal of guanine nucleotides. At least 60-70% of the inhibitory gamma subunit of cGMP phosphodiesterase (P gamma) was physically released from membranes by these washing procedures. When cGMP phosphodiesterase was activated by a hydrolysis-resistant GTP analogue, P gamma was found in the supernatant complexed with the transducin alpha subunit (T alpha) using three chromatography systems. When GTP was used to activate cGMP phosphodiesterase, P gamma was also found in the supernatant complexed with GDP.T alpha. This complex was also isolated using the same three chromatography systems, indicating that P gamma remained tightly bound to T alpha even after bound GTP was hydrolyzed. Interaction with the beta,gamma subunits of transducin, which remained associated with disc membranes, was required for the release of P gamma from the GDP.T alpha complex, which resulted in the deactivation of active cGMP phosphodiesterase. We conclude that during activation of cGMP phosphodiesterase, P gamma is complexed with T alpha (both GTP and GDP forms) in the supernatant and that, following GTP hydrolysis, beta,gamma subunits of transducin are necessary for the release of P gamma from the complex and the resulting inactivation of cGMP phosphodiesterase in frog photoreceptors.  相似文献   

6.
It is well established that G protein-coupled receptors stimulate nitric oxide-sensitive soluble guanylyl cyclase by increasing intracellular Ca(2+) and activating Ca(2+)-dependent nitric-oxide synthases. In pituitary cells receptors that stimulated adenylyl cyclase, growth hormone-releasing hormone, corticotropin-releasing factor, and thyrotropin-releasing hormone also stimulated calcium signaling and increased cGMP levels, whereas receptors that inhibited adenylyl cyclase, endothelin-A, and dopamine-2 also inhibited spontaneous calcium transients and decreased cGMP levels. However, receptor-controlled up- and down-regulation of cyclic nucleotide accumulation was not blocked by abolition of Ca(2+) signaling, suggesting that cAMP production affects cGMP accumulation. Agonist-induced cGMP accumulation was observed in cells incubated in the presence of various phosphodiesterase and soluble guanylyl cyclase inhibitors, confirming that G(s)-coupled receptors stimulated de novo cGMP production. Furthermore, cholera toxin (an activator of G(s)), forskolin (an activator of adenylyl cyclase), and 8-Br-cAMP (a permeable cAMP analog) mimicked the stimulatory action of G(s)-coupled receptors on cGMP production. Basal, agonist-, cholera toxin-, and forskolin-stimulated cGMP production, but not cAMP production, was significantly reduced in cells treated with H89, a protein kinase A inhibitor. These results indicate that coupling seven plasma membrane-domain receptors to an adenylyl cyclase signaling pathway provides an additional calcium-independent and cAMP-dependent mechanism for modulating soluble guanylyl cyclase activity in pituitary cells.  相似文献   

7.
The effects of oxytocin and methacholine on cyclic nucleotide levels in estrogen-primed rabbit myometrium were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor. In the absence of MIX, methacholine increased guanosine 3',5'-cyclic monophosphate (cGMP) levels at a time when contraction was decreasing, but had no influence on adenosine 3',5'-cyclic monophosphate (cAMP) levels. In contrast, oxytocin did not elevate cGMP, but rapidly decreased cAMP levels. MIX (1 mM) increased both cAMP and cGMP levels. Oxytocin or methacholine further increased cGMP, indicating activation of guanylate cyclase. Oxytocin- but not methacholine-induced stimulation of guanylate cyclase was abolished in Ca2+-free solution. Oxytocin increased cAMP over the levels produced by MIX alone, whereas methacholine decreased cAMP below the MIX control values; these effects were insensitive to indomethacin. Tissue levels of cGMP and cAMP did not directly correlate with isometric tension. The results also indicate that both oxytocin and methacholine stimulate guanylate cyclase but have opposing effects on adenylate cyclase of rabbit myometrium.  相似文献   

8.
An increase in the K+ concentration in the medium to 60 mM which causes depolarization of cell membranes in the rat cerebral cortex is studied for its effect on the cGMP level, guanylate cyclase and cGMP phosphodiesterase activities in norm and one hour after X-ray irradiation. The cGMP content and guanylate cyclase activity in normal rats and 1 min after depolarization are shown to increase with the external K+ concentration. One hour after irradiation the activity of enzymes under examination is three times as high. The character of changes in the cGMP content caused by a rise of the external KCP concentration is mainly determined by variations in the guanylate cyclase activity under these conditions.  相似文献   

9.
Long-term potentiation (LTP) is a long-lasting enhancement of synaptic transmission efficacy and is considered the base for some forms of learning and memory. Nitric oxide (NO)-induced formation of cGMP is involved in hippocampal LTP. We have studied in hippocampal slices the effects of application of a tetanus to induce LTP on cGMP metabolism and the mechanisms by which cGMP modulates LTP. Tetanus application induced a transient rise in cGMP, reaching a maximum at 10s and decreasing below basal levels 5 min after the tetanus, remaining below basal levels after 60 min. Soluble guanylate cyclase (sGC) activity increased 5 min after tetanus and returned to basal levels at 60 min. The decrease in cGMP was due to sustained tetanus-induced increase in cGMP-degrading phosphodiesterase activity, which remained activated 60 min after tetanus. Tetanus-induced activation of PDE and decrease of cGMP were prevented by inhibiting protein kinase G (PKG). This indicates that the initial increase in cGMP activates PKG that phosphorylates (and activates) cGMP-degrading PDE, which, in turn, degrades cGMP. Inhibition of sGC, of PKG or of cGMP-degrading phosphodiesterase impairs LTP, indicating that proper induction of LTP involves transient activation of sGC and increase in cGMP, followed by activation of cGMP-dependent protein kinase, which, in turn, activates cGMP-degrading phosphodiesterase, resulting in long-lasting reduction of cGMP content. Hyperammonemia is the main responsible for the neurological alterations found in liver disease and hepatic encephalopathy, including impaired intellectual function. Hyperammonemia impairs LTP in hippocampus by altering the modulation of this sGC-PKG-cGMP-degrading PDE pathway. Exposure of hippocampal slices to 1 mM ammonia completely prevents tetanus-induced decrease of cGMP by impairing PKG-mediated activation of cGMP-degrading phosphodiesterase. This impairment is responsible for the loss of the maintenance of LTP in hyperammonemia, and may be also involved in the cognitive impairment in patients with hyperammonemia and hepatic encephalopathy.  相似文献   

10.
Two classes of high affinity, cGMP-specific binding sites have been found in association with a peripheral membrane protein in rod outer segments. [3H]cGMP and a photoaffinity label, 8-N3-[32P]cIMP, have been used to study these cGMP binding sites. The cGMP binding sites co-migrated with rod outer segment phosphodiesterase (EC 3.1.4.17) upon Bio-Gel A-0.5m column chromatography, sucrose density gradient centrifugation, and isoelectric focusing (pI 5.35). Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 8-N3-[32P]cIMP-labeled protein also migrated in a position identical with that of purified phosphodiesterase. Scatchard analysis, using purified phosphodiesterase, revealed the presence of two classes of cGMP binding sites with apparent KD values of 0.16 and 0.83 microM. A number of observations indicated that these high affinity, cGMP-specific binding sites are distinct from the phosphodiesterase catalytic site. cAMP, which is a substrate for phosphodiesterase, did not bind to the high affinity cGMP specific sites. Limited tryptic proteolysis of phosphodiesterase resulted in a striking activation of the catalytic activity and a 96% loss of cGMP binding. 1-Methyl-3-isobutylxanthine inhibited phosphodiesterase activity and enhanced the specific binding of cGMP. Mg2+ was necessary for phosphodiesterase activity, but not for high affinity cGMP binding. Finally, phosphodiesterase activity and the cGMP-specific high affinity sites showed different stabilities on storage in phosphate buffer. These specific high affinity cGMP binding sites may be involved in the regulation of phosphodiesterase activity.  相似文献   

11.
Rat platelets served as a model to evaluate quantitatively how guanylate cyclase (GC)-coupled nitric oxide (NO) receptors and phosphodiesterases (here phosphodiesterase-5) interact to transduce NO signals in cells. The platelets expressed mRNA only for the alpha(1) and beta(1) GC-coupled receptor subunits. In intact platelets, the potency of NO for elevating cGMP (EC(50) = 10 nm) was lower than in lysed platelets (EC(50) = 1.7 nm). The limiting activities of GC and phosphodiesterase in intact platelets were both very high, being equivalent to about 100 microm/s. With low phosphodiesterase activity (imposed by 100 microm sildenafil), the cGMP response over time was hyperbolic in shape for a range of NO concentrations or GC activities due to GC desensitization. Without a phosphodiesterase inhibitor, NO generated only brief cGMP transients, peaking after 2-5 s but amounting maximally to about 150 microm cGMP. The transients were caused partly by GC desensitization, which varied in rate (half-time up to 3 s) and extent (up to 80%) depending on the NO concentration, and partly by an enhancement of the phosphodiesterase catalytic activity with time, which was deduced to be up to 30-fold and to occur with a half-time of up to 5 s. The results were simulated by a quantitative model, which also explains the varied shapes of cGMP responses to NO found in other cells. Downstream phosphorylation in platelets was detectable within 2 s, and, with continuous exposure (1 min), this pathway could be engaged by subnanomolar NO concentrations (EC(50) = 0.5 nm).  相似文献   

12.
Changes have been revealed in the function of cyclic GMP system of thymus and liver of irradiated (8 Gy) mice. In the thymus the cGMP level increased during the first 60 min following irradiation. In the liver the concentration of cGMP exhibited two peaks: 30 min and 24 hr after irradiation. The changes observed in the cGMP level are connected with the increased guanylate cyclase activity of thymocytes and liver of irradiated mice and, less likely, with changes in the activity of cGMP phosphodiesterase of these tissues.  相似文献   

13.
Cyclic nucleotide-gated (CNG) channels are a family of ion channels activated by the binding of cyclic nucleotides. Endogenous channels have been used to measure cyclic nucleotide signals in photoreceptor outer segments and olfactory cilia for decades. Here we have investigated the subcellular localization of cGMP signals by monitoring CNG channel activity in response to agonists that activate either particulate or soluble guanylyl cyclase. CNG channels were heterologously expressed in either human embryonic kidney (HEK)-293 cells that stably overexpress a particulate guanylyl cyclase (HEK-NPRA cells), or cultured vascular smooth muscle cells (VSMCs). Atrial natriuretic peptide (ANP) was used to activate the particulate guanylyl cyclase and the nitric oxide donor S-nitroso-n-acetylpenicillamine (SNAP) was used to activate the soluble guanylyl cyclase. CNG channel activity was monitored by measuring Ca2+ or Mn2+ influx through the channels using the fluorescent dye, fura-2. We found that in HEK-NPRA cells, ANP-induced increases in cGMP levels activated CNG channels in a dose-dependent manner (0.05-10 nM), whereas SNAP (0.01-100 microM) induced increases in cGMP levels triggered little or no activation of CNG channels (P < 0.01). After pretreatment with 100 microM 3-isobutyl-1-methylxanthine (IBMX), a nonspecific phosphodiesterase inhibitor, ANP-induced Mn2+ influx through CNG channels was significantly enhanced, while SNAP-induced Mn2+ influx remained small. In contrast, we found that in the presence of IBMX, both 1 nM ANP and 100 microM SNAP triggered similar increases in total cGMP levels. We next sought to determine if cGMP signals are compartmentalized in VSMCs, which endogenously express particulate and soluble guanylyl cyclase. We found that 10 nM ANP induced activation of CNG channels more readily than 100 muM SNAP; whereas 100 microM SNAP triggered higher levels of total cellular cGMP accumulation. These results suggest that cGMP signals are spatially segregated within cells, and that the functional compartmentalization of cGMP signals may underlie the unique actions of ANP and nitric oxide.  相似文献   

14.
Two soluble cyclic nucleotide phosphodiesterase activities, designated Peak I (Mr = 216,000) and Peak II (Mr = 230,000), have been isolated from bovine adrenal medulla by DEAE-cellulose chromatography. Peak I has Ca2+-independent, cGMP-specific phosphodiesterase activity and Peak II has cGMP-stimulated cyclic nucleotide phosphodiesterase activity. Peak I hydrolyzes cGMP with hyperbolic kinetics and demonstrates a Km of 23 microM. Peak II hydrolyzes cGMP with hyperbolic kinetics but hydrolyzes cAMP with slightly sigmoidal kinetics and demonstrates Km values of 54 +/- 0.7 microM cGMP and 38 +/- 6 microM cAMP. Cyclic AMP and cGMP are competitive inhibitors of each other's hydrolysis, suggesting that these nucleotides may be hydrolyzed at the same catalytic site. Micromolar concentrations of cGMP cause a 5-fold stimulation of the hydrolysis of subsaturating concentrations of cAMP by the Peak II phosphodiesterase. Half-maximal activation occurs at 0.5 microM cGMP and the result of activation is a decrease in the apparent Km for cAMP. Stimulation of the hydrolysis of subsaturating concentrations of cGMP by cAMP was also detected; however, cAMP is a less potent activator of the enzyme than cGMP. Cyclic AMP causes a 1.5-fold stimulation of cGMP hydrolysis and half-maximal activation occurs at 2.5 microM cAMP.  相似文献   

15.
The relationships between changes in in vivo airway reactivity and levels cyclicAMP and cyclicGMP were determined in guinea-pig lungs after exposure to inhaled lipopolysaccharide (LPS). After LPS (30 microg.ml(-1), 1 h), guinea-pigs displayed in vivo airway hyperreactivity (AHR) at 1 h and hyporeactivity (AHOR) at 48 h, to inhaled (20 s) histamine (1 or 3 mM, respectively). Isoprenaline-stimulated cAMP or SNAP-stimulated cGMP were determined in the lungs isolated from guinea-pigs exposed to LPS inhalation to determine whether there was a relationship between AHR or AHOR and adenylyl/guanylyl cyclase and phosphodiesterase (PDE) activities. Assays were performed in the absence and presence of the non-selective PDE inhibitor, 3-isobutyl-1-methylxanthine (IBMX). Levels of cAMP and cGMP in its presence indicated adenylyl and guanylyl cyclase activities, respectively. The difference between cAMP and cGMP levels, in the absence and presence of IBMX, reflected relevant PDE activity. In vivo AHR was associated with increased PDE activity towards cAMP and cGMP (67 and 278%, respectively) and also increased adenylyl (47%) and guanylyl (210%) cyclase activities. In vivo AHOR at 48 h after LPS inhalation was also associated with raised cyclase activity (p < 0.05), whereas relevant PDE activity declined by 79 and 68%, compared with 48 h after vehicle. Although net stimulated cGMP levels increased during AHR and AHOR and net stimulated cAMP increased during AHOR, our index of PDE activity increased during AHR and decreased during AHOR. These results therefore support the rationale for the use of PDE-inhibitors in the treatment of respiratory diseases associated with AHR.  相似文献   

16.
This study examines the regulation of cGMP by illumination and by calcium during signal transduction in vertebrate retinal photoreceptor cells. We employed an electropermeabilized rod outer segment (EP-ROS) preparation which permits perfusion of low molecular weight compounds into the cytosol while retaining many of the features of physiologically competent, intact rod outer segments (ROS). When nucleotide-depleted EP-ROS were incubated with MgGTP, time- and dose- dependent increases in intracellular cGMP levels were observed. The steady state cGMP concentration in EP-ROS (0.007 mol cGMP per mol rhodopsin) approached the cGMP concentration in intact ROS. Flash illumination of EP-ROS in a 250-nM free calcium medium resulted in a transient decrease in cGMP levels; this occurred in the absence of changes in calcium concentration. The kinetics of the cGMP response to flash illumination of EP-ROS were similar to that of intact ROS. To further examine the effects of calcium on cGMP metabolism, dark-adapted EP-ROS were incubated with MgGTP containing various concentrations of calcium. We observed a twofold increase in cGMP steady state levels as the free calcium was lowered from 1 microM to 20 nM; this increase was comparable to the behavior of intact ROS. Measurements of guanylate cyclase activity in EP-ROS showed a 3.5-fold increase in activity over this range of calcium concentrations, indicating a retention of calcium regulation of guanylate cyclase in EP-ROS preparations. Flash illumination of EP-ROS in either a 50- or 250-nM free calcium medium revealed a slowing of the recovery time course at the lower calcium concentration. This observation conflicts with any hypothesis whereby a reduction in free calcium concentration hastens the recovery of cytoplasmic cGMP levels, either by stimulating guanylate cyclase activity or by inhibiting phosphodiesterase activity. We conclude that changes in the intracellular calcium concentration during visual transduction may have more complex effects on the recovery of the photoresponse than can be accounted for solely by guanylate cyclase activation.  相似文献   

17.
Responsiveness of Dictyostelium discoideum amoebae to cAMP, a chemotactic mediator, was investigated in a strain defective in cAMP-phosphodiesterase production. Cells were subjected to a high cAMP signal (10(-6) M) in the presence or absence of exogenous phosphodiesterase, and the changes of intracellular cAMP and cGMP concentrations and of adenylate cyclase activity were measured. In the presence of cAMP hydrolysis, both adenylate and guanylate cyclases are transiently activated. In the absence of hydrolysis, the high and constant extracellular cAMP concentration is sufficient to elicit a re-activation of adenylate cyclase a few minutes after the first transient response. In contrast, levels of cGMP remain basal for at least 20 min after termination of the initial response to the cAMP addition.  相似文献   

18.
Soluble cyclic nucleotide phosphodiesterase of rat uterus displays distinct structural and regulatory properties. Like phosphodiesterases from many mammalian sources the soluble uterine enzyme system exhibits nonlinear Lineweaver--Burk kinetics with cyclic adenosine 3':5'-monophosphate (cAMP) as substrate (apparent Kms congruent to 3 and 20 micron) and linear kinetics with cyclic guanosine 3':5'-monophosphate (cGMP) as substrate (apparent Km congruent to 3 micron). Unlike most other mammalian phosphodiesterases, however, numerous separation procedures reveal only a single form of uterine phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP. A single form of the enzyme is observed upon sucrose gradient centrifugation (7.9 S), agarose gel filtration, and DEAE-cellulose chromatography at either pH 8.0 OR 6.0. Heat denaturation (50 degrees C) of soluble uterine phosphodiesterase causes the loss of both cAMP and cGMP hydrolytic activities at the same rate. Isoelectric focusing reveals major (pI = 5.2) and minor forms (pI = 5.8) of phosphodiesterase which both catalyze the hydrolysis of the two cyclic nucleotide substrates. In vivo administration of estradiol produces identical decreases in the activities of cAMP and cGMP phosphodiesterase. These results raise the possibility that the uterus contains a single form of soluble phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP.  相似文献   

19.
Sustained increases in intracellular cGMP concentrations ([cGMP]i) inhibit cell growth and induce apoptosis. We now report that a cGMP-specific phosphodiesterase, PDE5, plays a dominant role in regulating [cGMP]i transitions that inhibit cell growth and control susceptibility to apoptosis in pulmonary endothelium. Atrial natriuretic peptide (ANP) activates guanylyl cyclase A/B and induces a rapid [cGMP]i rise 2-5 min after its application, in both pulmonary arterial endothelial cells (PAECs) and pulmonary microvascular endothelial cells (PMVECs). However, increased [cGMP]i in PAECs is transient and decays within 10 min due to cytosolic PDE5 hydrolytic activity. Increased [cGMP]i in PMVECs is sustained for >3 h due to the absence of PDE5. Indeed, at any ANP concentration, the sustained (30 min) [cGMP]i rise is greater in PMVECs than in PAECs, unless PAECs are also treated with the PDE5 inhibitor zaprinast. Using RT-PCR, Western blot analysis, immunoprecipitation, and DEAE chromatography, we resolved the expression and activity of PDE 5A1/A2 only in PAECs. Similarly, PDE5 expression was restricted to extra-alveolar endothelium in vivo. ANP induced growth inhibition and apoptosis in PMVECs, but similar effects were not seen in PAECs unless ANP treatment was combined with zaprinast. ANP blocked the VEGF-induced proliferation and migration in PMVECs. Collectively, these data suggest that PDE5-regulated [cGMP]i controls endothelial cell growth and apoptosis, representing a mechanism of heterogeneity between two endothelial phenotypes.  相似文献   

20.
Vertebrate phototransduction is mediated by cGMP, which is generated by retGC (retinal guanylate cyclase) and degraded by cGMP phosphodiesterase. Light stimulates cGMP hydrolysis via the G-protein transducin, which directly binds to and activates phosphodiesterase. Bright light also causes relocalization of transducin from the OS (outer segments) of the rod cells to the inner compartments. In the present study, we show experimental evidence for a previously unknown interaction between G(alphat) (the transducin alpha subunit) and retGC. G(alphat) co-immunoprecipitates with retGC from the retina or from co-transfected COS-7 cells. The retGC-G(alphat) complex is also present in cones. The interaction also occurs in mice lacking RGS9 (regulator of G-protein signalling 9), a protein previously shown to associate with both G(alphat) and retGC. The G(alphat)-retGC interaction is mediated primarily by the kinase homology domain of retGC, which binds GDP-bound G(alphat) stronger than the GTP[S] (GTPgammaS; guanosine 5'-[gamma-thio]triphosphate) form. Neither G(alphat) nor G(betagamma) affect retGC-mediated cGMP synthesis, regardless of the presence of GCAP (guanylate cyclase activating protein) and Ca2+. The rate of light-dependent transducin redistribution from the OS to the inner segments is markedly accelerated in the retGC-1-knockout mice, while the migration of transducin to the OS after the onset of darkness is delayed. Supplementation of permeabilized photoreceptors with cGMP does not affect transducin translocation. Taken together, these results suggest that the protein-protein interaction between G(alphat) and retGC represents a novel mechanism regulating light-dependent translocation of transducin in rod photoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号