首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The dispersion properties and field distribution of plasma waves in a periodic plasma-filled waveguide are correctly analyzed for the first time with allowance for all spatial harmonics. It is shown that the plasma wave spectrum has a zonal structure and a lower cutoff frequency. The widths of the forbidden bands and the lower cutoff frequency are determined by the waveguide corrugation depth. For a planar periodic plasma-filled waveguide, the allowed and forbidden frequency bands are evaluated analytically. The waveguide periodicity substantially influences the field of the plasma waves at frequencies close to the forbidden bands. This leads to the formation of regions in which the energy density of plasma waves exceeds the average level by more than one order of magnitude. This effect is related to the contribution from the higher spatial harmonics.  相似文献   

2.
The spectra of electromagnetic waves propagating perpendicular to the axis of a plasma-filled metal waveguide in a magnetic field are studied with allowance for the effects exerted upon the wave frequency by the radial plasma density variation and by the emission of waves through a narrow axial slit in a waveguide wall. The case of wave propagation along the boundary between a plasma and a cylindrical metal waveguide wall with a periodically varying radius of curvature is also considered. The electromagnetic properties of the plasma are described by a dielectric tensor in the hydrodynamic approximation. The spatial distribution of the wave field is determined by the method of successive approximations. Results are presented from both analytical and numerical investigations. Analytical expressions for the corrections to the wave frequency due to the emission of the wave energy from the waveguide and due to the slight corrugation of the waveguide wall are obtained. The rates of wave damping due to the emission of the wave energy through a narrow axial slit and due to collisions between the plasma particles are found. The correction to the frequency that comes from the periodic variation of the radius of curvature of the plasma surface is calculated to within terms proportional to the square of the small parameter describing the azimuthal corrugation of the waveguide wall. The effect of the radial plasma density variation on the dispersion of the surface modes is examined both analytically and numerically.  相似文献   

3.
The dispersion properties of ordinary surface cyclotron waves in a semiinfinite nonuniform plasma are investigated. The waves propagate across the external magnetic field directed along the plasma surface in a metal waveguide the internal surface of which is covered with a dielectric. The problem is solved analytically in the framework of a kinetic model for plasma particles under the assumption of weak spatial dispersion. The influence of the parameters of the dielectric layer separating the plasma from the metal wall, the shape of the plasma density profile, and the value of the external magnetic field on the dispersion properties of surface cyclotron waves is studied both numerically and analytically.  相似文献   

4.
Effective boundary conditions for the electromagnetic field of the slow surface waves of a thinwalled annular plasma in a metal waveguide are derived and justified. With the boundary conditions obtained, there is no need to solve field equations in the plasma region of the waveguide, so that the dispersion properties of plasma waveguides can be investigated analytically for an arbitrary strength of the external magnetic field. Examples are given that show how to use the effective boundary conditions in order to describe surface waves with a normal and an anomalous dispersion. The boundary conditions are then employed to construct a theory of the radiative Cherenkov instabilities of a thin-walled annular electron beam in a waveguide with a thinwalled annular plasma. The single-particle and collective Cherenkov effects associated with low-and high-frequency surface waves in an arbitrary external magnetic field are studied analytically. The method of the effective boundary conditions is justified in the context of application to the problems of plasma relativistic microwave electronics.  相似文献   

5.
The evolution of initial perturbations in a spatially inhomogeneous cold electron plasma in the absence of an external magnetic field is considered. The excitation of both continuous-spectrum bulk plasma waves and surface plasma waves with a discrete frequency spectrum is investigated. Analytic solutions are obtained in the long-wavelength limit, and the excitation of waves of arbitrary length is analyzed numerically. The local, integral, and spatial spectra are calculated, as well as the field structures and dispersion properties of waves in waveguides filled nonuniformly with a plasma. It is shown that, in a plasma with a smooth boundary, there also exist surface waves with a discrete spectrum (although with somewhat different properties as compared to those in a plasma with a sharp boundary), which are excited together with continuous-spectrum bulk waves during the evolution of the initial perturbation.  相似文献   

6.
Theoretical study of the propagation of a packet of surface electromagnetic surface waves with a zero axial wavenumber in a circular-cross-section cylindrical metal waveguide within the frequency range that is higher than upper hybrid resonance is carried out. The waveguide is partially filled by plasma and immersed into axial magnetic field. The cross section of the plasma column is assumed to differ from circular shape. The effect of this shape on the dispersion properties of azimuthal surface modes is investigated by the method of successive approximations. The fields of the waves and their eigenfrequencies are determined up to terms of the second order in the deviation of the plasma cross section shape from the ring one. The correction to the eigenfrequency of azimuthal surface modes caused by this feature of the plasma column section is proved to increase with decreasing the external magnetic field and increasing the value of the dielectric constant of the dielectric, that separates the plasma from the metal wall of the waveguide. The spectral composition of the wave packet, in the form of which these modes propagate, is studied. The amplitudes of the satellite harmonics of these modes are found to increase with increasing the plasma density and decreasing the external magnetic field.  相似文献   

7.
Propagation and amplification of extraordinary electromagnetic waves in a dipole magnetic field in a narrow 3D plasma cavity in which a weakly relativistic electron beam propagates along the magnetic field in the direction of the gradient of the magnetic field strength is investigated. The domain of wave vectors at the starting point for which the wave amplification factors at the output of the density cavity reach their maximum values is found, and the amplification factor as a function of the wave frequency is determined. It is shown that the longitudinal velocity of fast electrons, which enables generation of waves in a broader frequency range, plays an important role in the formation of the spectrum of the auroral kilometric radiation (AKR). In this case, waves with the largest amplification factors at the output of the cavity have frequencies exceeding the cutoff frequency of the background plasma at the wave generation altitude. The global inhomogeneity of the magnetic field and plasma density, which governs the residence time of the waves in the amplification region, plays a key role in the formation of the AKR spectrum. It is shown that this time is the main factor determining the energy of the waves emerging from the source.  相似文献   

8.
The electrodynamics of a circular waveguide with a dielectric rod surrounded by a magnetized plasma layer is considered. A general dispersion relation for azimuthally asymmetric perturbations is derived, and its solutions describing slow waves—specifically, electromagnetic and plasma modes, as well as (and primarily) hybrid waves that combine the properties of both mode types—are investigated numerically. For the fundamental waveguide mode of the system—the HE11 mode—the parameters of the plasma layer are determined at which the mode cannot be subject to Cherenkov interaction with a relativistic electron beam at a given frequency. For both waveguide and plasma modes, the radial profiles of the longitudinal components of the electric field and Poynting vector, the fractions of RF power carried within the dielectric and plasma regions and vacuum gap, and the coupling impedance are calculated as functions of the parameters of the plasma layer. The evolution of the field structure during the formation of asymmetric hybrid waves is traced. The results of calculating the dispersion and coupling impedance are analyzed as applied to an antenna-amplifier—a relativistic traveling-wave tube operating on the HE11 mode of the dielectric rod: specifically, the implementability of the concept in the presence of a plasma at the rod surface is estimated, and the possible role of azimuthally asymmetric and symmetric plasma modes is examined.  相似文献   

9.
A plasma microwave amplifier based on a relativistic electron beam in an electrodynamic system in the form of a coaxial waveguide with a thin tubular plasma in a strong external magnetic field has been considered. Dispersion relations for determining the spectra of plasma and beam waves in the coaxial waveguide, as well as the general dispersion relation describing beam-plasma interaction, have been obtained in the linear approximation. The frequency dependences of the spatial growth rates for different plasma radii and different plasma frequencies, as well as the characteristic frequencies of the plasma amplifier, have been obtained by numerically and analytically solving the dispersion relations. The parameters of the plasma amplifier and generator with the coaxial electrodynamic system have been estimated for their experimental implementation.  相似文献   

10.
A theory of cylindrical surface waves in a circular waveguide filled with a smoothly inhomogeneous plasma is presented. For a special radial profile of the plasma density, dispersion relations for the complex frequencies of surface waves are derived analytically. The dispersion relations are solved numerically (in the long-wavelength limit) and numerically. It is shown that there are two types of surface waves. When passing to the case of a sharply bounded plasma, one of the waves becomes an ordinary surface wave, while the other becomes strongly damped.  相似文献   

11.
Excitation of extraordinarily polarized azimuthal surface eigenwaves is shown to be possible in the frequency range above the upper hybrid resonance in waveguides with metal walls which are partially filled by cold magnetoactive plasma. Interaction of these waves with flows of electrons which rotate around the plasma column in the narrow gap separating the plasma from the wall of the waveguide is studied. Conditions of resonant interaction of the beam with the mentioned high-frequency azimuthal surface waves are shown by numerical methods to be reachable ones in the case of enough strong external magnetic fields without passing to the field of ultra-relativistic velocities of the beam.  相似文献   

12.
The potentialities of the diagnostic method for determining the plasma parameters by recording the surface waves guided by a dielectric waveguide and scattered by plasma oscillations are discussed. The use of surface (slowed) waves makes it possible to improve both the sensitivity and spatial resolution of measurements. The scattering is the most intense near the waveguide cutoff, at which the dependence of the wave propagation constant on the plasma density is the steepest. It is shown experimentally that the method proposed makes it possible to determine the discharge plasma density and electron energy and to estimate the amplitude of the RF field of the plasma waves forming the discharge and the amplitude of plasma density oscillations in these waves. The data obtained from the measurements of the amplitudes of both high-and low-frequency plasma density oscillations by the proposed method agree satisfactorily with theoretical predictions. The experimental data on the plasma density are confirmed by other diagnostic measurements. The ways of reducing measurement errors are proposed.  相似文献   

13.
An initial stage of the interaction of an electron beam ring rotating along Larmor orbits in a gap between the plasma column and a circular metal chamber of a cylindrical waveguide with extraordinarily polarized electromagnetic waves of the surface type is studied. These waves propagate along the azimuthal angle across an axial magnetic field in the range above the upper hybrid frequency. Using numerical analysis of the dispersion relation, it is shown that by the aid of an appropriate choice of the shape of the plasmavacuum interface one can achieve a significant increasing of growth rates of the resonant beam instability of these waves.  相似文献   

14.
A nonlinear theory is developed that describes the interaction between an annular electron beam and an electromagnetic surface wave propagating strictly transverse to a constant external axial magnetic field in a cylindrical metal waveguide partially filled with a cold plasma. It is shown theoretically that surface waves with positive azimuthal mode numbers can be efficiently excited by an electron beam moving in the gap between the plasma column and the metal waveguide wall. Numerical simulations prove that, by applying a constant external electric field oriented along the waveguide radius, it is possible to increase the amplitude at which the surface waves saturate during the beam instability. The full set of equations consisting of the waveenvelope equation, the equation for the wave phase, and the equations of motion for the beam electrons is solved numerically in order to construct the phase diagrams of the beam electrons in momentum space and to determine their positions in coordinate space (in the radial variable-azimuthal angle plane).  相似文献   

15.
The efficiency of the wave energy loss from a nonuniform MHD waveguide due to the conversion of the trapped magnetosonic waveguide modes into runaway Alfvén waves is estimated theoretically. It is shown that, if the waveguide parameters experience a jumplike change along the waveguide axis, the interaction between the waveguide modes and Alfvén waves occurs precisely at this “jump.” This effect is incorporated into the boundary conditions. A set of coupled integral equations with a singular kernel is derived in order to determine the transmission and reflection coefficients for the waveguide modes. The poles in the kernels of the integral operators correspond to the surface waves. When the jump in the waveguide parameters is small, analytic expressions for the frequency dependence of the transformation coefficients are obtained by using a model profile of the Alfvén velocity along the magnetic field. For the jump characterized by the small parameter value ε=0.3, the wave-amplitude transformation coefficient can amount to 5–10%. Under the phase synchronization condition (when the phase velocities of the waveguide modes on both sides of the jump are the same), the wave-energy transformation coefficient is much higher: it increases from a fraction of one percent to tens of percent. The transformation of fast magnetosonic waves into Alfvén waves is resonant in character, which ensures the frequency and wavelength filteringof the emitted Alfvén perturbations.  相似文献   

16.
A theoretical study is made of the propagation of a packet of surface electromagnetic waves with a zero axial wavenumber in a circular-cross-section cylindrical metal waveguide partially filled with plasma in an axial magnetic field. The cross section of the plasma column is assumed to be noncircular. The effect of the noncircular shape of the plasma cross section on the dispersion properties of azimuthal surface modes is investigated by the method of successive approximations. The fields of the waves and their eigenfrequencies are determined to second order in a small parameter.  相似文献   

17.
A theoretical study is made of the resonant effect of the shape of the cross section of the plasma column on the propagation of a packet of extraordinary electromagnetic waves with a zero axial wavenumber in a circular-cross-section cylindrical metal waveguide in an axial magnetic field. The waveguide is assumed to be partially filled with a plasma. The effect of the noncircular shape of the plasma cross section on the dispersion properties of surface eigenmodes propagating strictly transverse to the external magnetic field is investigated by the method of successive approximations for the case in which the angular period of the wave perturbations is twice the ripple period of the interface between the plasma and the dielectric. In this resonant case, the fields and eigenfrequencies of the eigenmodes are determined to second order in the small parameter describing the rippling of the plasma-dielectric interface.  相似文献   

18.
The propagation of MHD plasma waves in a sheared magnetic field is investigated. The problem is solved using a simplified model: a cold plasma is inhomogeneous in one direction, and the magnetic field lines are straight. The waves are assumed to travel in the plane perpendicular to the radial coordinate (i.e., the coordinate along which the plasma and magnetic field are inhomogeneous). It is shown that the character of the singularity at the resonance surface is the same as that in a homogeneous magnetic field. It is found that the shear gives rise to the transverse dispersion of Alfvén waves, i.e., the dependence of the radial component of the wave vector on the wave frequency. In the presence of shear, Alfvén waves are found to propagate across magnetic surfaces. In this case, the transparent region is bounded by two turning points, at one of which, the radial component of the wave vector approaches infinity and, at the other one, it vanishes. At the turning point for magnetosonic waves, the electric and magnetic fields are finite; however, the radial component of the wave vector approaches infinity, rather than vanishes as in the case with a homogeneous field.  相似文献   

19.
A linear theory of the Cherenkov amplification in a transversely nonuniform waveguide in an infinitely strong magnetic field is constructed with allowance for both ordered and thermal motions of plasma electrons. The effect of these electron motions on the threshold for the onset of Cherenkov instability is investigated. The amplification coefficients and the conditions for the onset of the instability are determined.  相似文献   

20.
Alfvén waves in a dipole magnetosphere with a rotating plasma are studied theoretically. The plasma-motion-related properties of azimuthally small-scale standing Alfvén waves having nearly poloidal or nearly toroidal polarization are analyzed. Equations are obtained that describe the longitudinal (along the magnetic field) structure and spectra of the waves having such polarizations. The equations obtained are then solved both analytically (in the Wentzel-Kramers-Brillouin approximation) and numerically. Attention is focused on the polarization splitting of the spectrum—the difference between the eigenfrequencies of the toroidally and poloidally polarized Alfvén waves. The distribution of this difference in a direction across the magnetic shells is analyzed. It is shown that, unlike in the models in which the plasma is assumed to be at rest, taking into account rotation of the magnetosphere plasma results in an additional splitting of the spectrum of the poloidal Alfvén waves due to the difference in their azimuthal mode numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号