首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We performed a whole‐genome scan with 110 informative microsatellites in a commercial Duroc population for which growth, fatness, carcass and meat quality phenotypes were available. Importantly, meat quality traits were recorded in two different muscles, that is, gluteus medius (GM) and longissimus thoracis et lumborum (LTL), to find out whether these traits are determined by muscle‐specific genetic factors. At the whole‐population level, three genome‐wide QTL were identified for carcass weight (SSC7, 60 cM), meat redness (SSC13, 84 cM) and yellowness (SSC15, 108 cM). Within‐family analyses allowed us to detect genome‐wide significant QTL for muscle loin depth between the 3rd and 4th ribs (SSC15, 54 cM), backfat thickness (BFT) in vivo (SSC10, 58 cM), ham weight (SSC9, 69 cM), carcass weight (SSC7, 60 cM; SSC9, 68 cM), BFT on the last rib (SSC11, 48 cM) and GM redness (SSC8, 85 cM; SSC13, 84 cM). Interestingly, there was low positional concordance between meat quality QTL maps obtained for GM and LTL. As a matter of fact, the three genome‐wide significant QTL for colour traits (SSC8, SSC13 and SSC15) that we detected in our study were all GM specific. This result suggests that QTL effects might be modulated to a certain extent by genetic and environmental factors linked to muscle function and anatomical location.  相似文献   

2.
3.
The purpose of this study was to measure the relative contributions of 4 hip and thigh muscles while performing squats at 3 depths. Ten experienced lifters performed randomized trials of squats at partial, parallel, and full depths, using 100-125% of body weight as resistance. Electromyographic (EMG) surface electrodes were placed on the vastus medialis (VMO), the vastus lateralis, (VL), the biceps femoris (BF), and the gluteus maximus (GM). EMG data were quantified by integration and expressed as a percentage of the total electrical activity of the 4 muscles. Analysis of variance (ANOVA) and Tukey post hoc tests indicated a significant difference (p < 0.001*, p = 0.056**) in the relative contribution of the GM during the concentric phases among the partial- (16.9%*), parallel- (28.0%**), and full-depth (35.4%*) squats. There were no significant differences between the relative contributions of the BF, the VMO, and the VL at different squatting depths during this phase. The results suggest that the GM, rather than the BF, the VMO, or the VL, becomes more active in concentric contraction as squat depth increases.  相似文献   

4.
The present study aimed at assessing the test–retest reliability of wavelet – and Fourier derived (instantaneous) median frequencies of surface electromyographic (EMG) measurements of back and hip muscles during isometric back extensions. Twenty healthy subjects (10 males and 10 females) performed a modified Biering-Sørensen test on two separate days, with a 1-week interval between the two tests. Surface EMG measurements were bilaterally performed from the latissimus dorsi, the thoracic and lumbar parts of the longissimus thoracis, the thoracic and lumbar parts of the iliocostalis lumborum, the multifidus, the gluteus maximus and the biceps femoris. In addition, three-dimensional kinematic data were recorded of the subjects’ lumbar vertebrae. The (instantaneous) median frequencies were calculated from the EMG signals using continuous wavelet (IMDF) – and short-time Fourier transforms (MDF). Linear regressions performed on the IMDF and MDF data as a function of time yielded slopes (IMDFslope and MDFslope) and intercepts (IMDFinit and MDFinit) of the regression lines. Test–retest reliability was assessed on the normalized slopes and intercept parameters by means of intraclass correlation coefficients (ICC) and standard errors of measurements expressed as percentages of the mean values (% SEM). The results of IMDFslope and MDFslope parameters indicated ICCs for back and hip muscles between .443 and .727 for IMDFslope, values between .273 and .734 for MDFslope, % SEM between 7.6% and 58.9% for IMDFslope and % SEM between 8.2% and 25.3% for MDFslope, respectively. The ICCs for IMDFinit and MDFinit parameters varied between .376 and .907 for IMDFinit and between .383 and .883 for MDFinit, and % SEM ranged from 2.7% to 6.3% for IMDFinit and from 2.6% to 4.7% for MDFinit, respectively. These results indicate that both wavelet – and Fourier based (instantaneous) median frequency parameters generally are reliable in the analysis of back and hip muscle fatigue during a modified Biering-Sørensen test.  相似文献   

5.

Objectives:

To evaluate the effects of performing battling rope exercise with and without the addition of whole-body vibration (WBV) on muscle activity of the leg, trunk, and upper body.

Methods:

Twenty-eight recreationally active university students completed 20-s of battling rope undulation for 6 separate conditions: 1) alternating arm motion no WBV -Alt_NoWBV; 2) alternating arm motion 30 Hz low amplitude WBV -Alt_30 Hz-L; 3) alternating arm motion 50 Hz high amplitude -Alt_50 Hz-H; 4) double arm motion no WBV -Double_NoWBV; 5) double arm motion 30Hz low amplitude WBV -Double_30Hz-L; 6) double arm motion 50 `Hz high amplitude -Double_50 Hz-H. Electromyography (EMG) was measured for the gastrocnemius medialis (GM), vastus medialis oblique (VMO), vastus lateralis (VL), rectus abdominis (RA), multifidus (MF), biceps brachii (BB), and triceps brachii (TB) muscles.

Results:

The double arm motion during undulation resulted in greater (p<0.05) muscle activity in the VMO, VL, RA, and MF muscles while the GM was more active during the alternating arm motion. WBV at 50Hz increased EMG in all muscles measured vs NoWBV and the 30 Hz condition.

Conclusion:

These results are the first to demonstrate that the exercise stimulus of performing battling rope exercise can be augmented by completing the exercise while being exposed to WBV from a ground-based platform.  相似文献   

6.
We examined the influence of the application of postural taping on the kinematics of the lumbo–pelvic–hip complex, electromyographic (EMG) activity of back extensor muscles, and the rating of perceived exertion (RPE) in the low back during patient transfer. In total, 19 male physical therapists with chronic low back pain performed patient transfers with and without the application of postural taping on the low back. The kinematics of the lumbo–pelvic–hip complex and EMG activity of the erector spinae were recorded using a synchronized 3-D motion capture system and surface EMG. RPE was measured using Borg’s CR-10 scale. Differences in kinematic data, EMG activity, and RPE between the two conditions were analyzed using a paired t-test. Peak angle and range of motion (ROM) of lumbar flexion, EMG activity of the erector spinae, and RPE decreased significantly, while peak angle and ROM of pelvic anterior tilt and hip flexion increased significantly during patient transfer under the postural taping condition versus no taping (p < 0.05). These findings suggest that postural taping can change back extensor muscle activity and RPE as well as the kinematics of the lumbo–pelvic–hip complex in physical therapists with chronic low back pain during patient transfer.  相似文献   

7.
The aims of this study were to assess the effect of the pelvic compression belt on the electromyographic (EMG) activities of gluteus medius (GM), quadratus lumborum (QL), and lumbar multifidus (LM) during side-lying hip abduction. Thirty-one volunteers (15 men and 16 women) with no history of pathology volunteered for this study. Subjects were instructed to perform hip abduction in side-lying position with and without applying the pelvic compression belt. The pelvic compression belt was adjusted just below the anterior superior iliac spines with the stabilizing pressure using elastic compression bands. Surface EMG data were collected from the GM, QL, and LM of the dominant limb. Significantly decreased EMG activity in the QL (without the pelvic compression belt, 60.19 ± 23.66% maximal voluntary isometric contraction [MVIC]; with the pelvic compression belt, 51.44 ± 23.00% MVIC) and significantly increased EMG activity in the GM (without the pelvic compression belt, 26.71 ± 12.88% MVIC; with the pelvic compression belt, 35.02 ± 18.28% MVIC) and in the LM (without the pelvic compression belt, 30.28 ± 14.60% MVIC; with the pelvic compression belt, 37.47 ± 18.94% MVIC) were found when the pelvic compression belt was applied (p < 0.05). However, there were no significant differences of the EMG activity between male and female subjects. The findings suggest that the pelvic compression belt may be helpful to prevent unwanted substitution movement during side-lying hip abduction, through increasing the GM and LM and decreasing the QL.  相似文献   

8.
This prospective study evaluated differences in vastus medialis (VM) and gluteus medius (GM) EMG amplitude:composite hip abductor (gluteus maximus, gluteus medius, tensor fascia lata) EMG amplitude ratios among subjects with low or high relative femoral anteversion. Data were collected during the performance of a non-weight bearing, non-sagittal plane maximal volitional effort isometric combined hip abduction-external rotation maneuver. Eighteen nonimpaired athletically active females participated in this surface EMG study. Medial hip rotation (relative femoral anteversion estimate) was measured with a handheld goniometer. Subjects were grouped by medial hip rotation displacement (group 1 < or = 42 degrees =36.1+/-7 degrees and group 2 > 42 degrees =52.7+/-7 degrees ) for statistical analysis (Mann Whitney U-tests, p < 0.05). Group 2 had decreased VM (42+/-23% vs. 69+/-30%, U=19, p=0.034) and GM (62+/-25% vs. 96+/-39%, U=19, p=0.034) normalized mean peak EMG amplitude:composite mean peak hip abductor EMG amplitude ratios compared to group 1. Decreased normalized VM (-27%) and GM (-34%) EMG amplitudes among subjects with increased relative femoral anteversion suggest reduced dynamic frontal and transverse plane femoral control from these muscles, possibly contributing to the increased incidence of non-contact knee injury observed among athletic females.  相似文献   

9.
The purpose of this study was to determine, for different back muscles, if the median frequency (MF) of the electromyographic (EMG) power spectrum changes according to the position of the time window during a 5 s step contraction. Twenty males with no known back problems were standing upright in a dynamometer allowing lower limb and pelvis stabilization. Trunk extension efforts were performed by pushing on a force platform positioned at the T4 level while the extension moment at L5/S1 was displayed as visual feedback. The EMG signals from four homologous back muscles (multifidus at L5, ilicostalis lumborum at L3, and longissimus at L1 and T10) were collected using active surface electrodes during two 5 s static step contractions performed at five force levels (10, 20, 40, 60 and 80% of the maximal voluntary contraction). The root mean square (RMS) and MF values of the EMG signals corresponding to three 250 ms time windows (beginning, middle and end of each step contraction) were computed. The RMS values of several back muscles increased from the first to the third time window for contractions performed at high force levels only. However, a concomitant decrease in the MF values was observed only for the left multifidus muscle. It was concluded that muscle fatigue does not generally manifest itself during 5 s step contractions through the EMG signal. However, it is recommended to use step contractions lasting less than 5 s and to choose a time window located in the first 1-3 s to completely eliminate the possible effects of fatigue.  相似文献   

10.
Changes in the EMG power spectrum during static fatiguing contractions are often attributed to changes in muscle fibre action potential conduction velocity. Mathematical models of the EMG power spectrum, which have been empirically confirmed, predict that under certain conditions a distinct maximum occurs in the low-frequency part of the spectrum, indicating the dominant firing rate of the motor units. The present study investigated the influence of this firing rate peak on the spectral changes during a static fatiguing contraction at 50% of maximum EMG amplitude in the frontalis and corrugator supercilii muscles. An exponential decrease of the median frequency (MF) of the EMG power spectrum was observed when the firing rate peak was absent. When the firing rate peak was present, an exaggerated decrease of MF in the beginning of the contraction was found, which was associated with an increase in firing rate peak magnitude. In later stages of the contraction, a partial recovery of MF occurred, concomitant with a decrease in firing rate peak magnitude. The influence of the firing rate peak on MF was also investigated during nonfatiguing contractions of the frontalis muscle at 20, 40, 60, and 80% of maximum EMG amplitude. A curvilinear relationship between MF and contraction strength was found, whether firing rate peaks were present or absent. The presence of firing rate peaks, however, was associated with a decrease in MF which was inversely related to contraction strength, due to the inverse relationship between firing rate peak magnitude and contraction strength.  相似文献   

11.
The primary purpose of the present study was to compare the fast Fourier transform (FFT) with the discrete wavelet transform (DWT) for determining the mechanomyographic (MMG) and electromyographic (EMG) center frequency [mean power frequency (mpf), median frequency (mdf), or wavelet center frequency (cf)] patterns during fatiguing isokinetic muscle actions of the biceps brachii. Seven men (mean+/-SD age=23+/-3 years) volunteered to perform 50 consecutive maximal, concentric isokinetic muscle actions of the dominant forearm flexors at a velocity of 180 degrees s(-1). Non-parametric "run" tests indicated significant (p<0.05) trends in the MMG and EMG signals for the 5th, 25th, and 45th muscle actions for all subjects, thereby confirming non-stationarity of the MMG and EMG signals. There were significant (p<0.05) correlations among the average normalized mpf, mdf, and cf values for contractions 1-50 for both MMG (r=0.671-0.935) and EMG (r=0.956-0.987). Polynomial regression analyses demonstrated quadratic decreases in normalized MMG mpf (R2=0.439), MMG mdf (R2=0.258), MMG cf (R2=0.359), EMG mpf (R2=0.952), EMG mdf (R2=0.914) and EMG cf (R2=0.888) across repetitions. The primary finding of this study was the similarity in the mpf, mdf, and cf patterns for both MMG and EMG, which suggested that, despite the concerns over non-stationarity, Fourier based methods are acceptable for determining the patterns for normalized MMG and EMG center frequency during fatiguing dynamic muscle actions at moderate velocities.  相似文献   

12.
The aims of the current study were to examine the stationarities of surface electromyographic (EMG) signals obtained from eight bilateral back and hip muscles during a modified Biering-Sørensen test, and to investigate whether short-time Fourier (STFT) and continuous wavelet transforms (CWT) provided similar information with regard to EMG spectral parameters in the analysis of localized muscle fatigue. Twenty healthy subjects participated in the study after giving their informed consent. Reverse arrangement tests showed that 91.6% of the EMG signal epochs demonstrated no significant trends (all p > 0.05), meaning 91.6% of the EMG signal epochs could be considered as stationary signals. Pearson correlation coefficients showed that STFT and CWT in general provide similar information with respect to the EMG spectral variables during isometric back extensions, and as a consequence STFT can still be used.  相似文献   

13.
The purposes of this study were 1) to evaluate gender differences in back extensor endurance capacity during isometric and isotonic muscular contractions, 2) to determine the relation between absolute load and endurance time, and 3) to compare men [n = 10, age 22.4 +/- 0.69 (SE) yr] and women (n = 10, age 21.7 +/- 1.07 yr) in terms of neuromuscular activation patterns and median frequency (MF) shifts in the electromyogram (EMG) power spectrum of the lumbar and hip extensor muscles during fatiguing submaximal isometric trunk extension exercise. Subjects performed isotonic and isometric trunk extension exercise to muscular failure at 50% of maximum voluntary contraction force. Women exhibited a longer endurance time than men during the isometric task (146.0 +/- 10.9 vs. 105.4 +/- 7.9 s), but there was no difference in endurance performance during the isotonic exercise (24.3 +/- 3.4 vs. 24.0 +/- 2.8 repetitions). Absolute load was significantly related to isometric endurance time in the pooled sample (R(2) = 0.34) but not when men and women were analyzed separately (R(2) = 0.05 and 0.04, respectively). EMG data showed no differences in neuromuscular activation patterns; however, gender differences in MF shifts were observed. Women demonstrated a similar fatigability in the biceps femoris and lumbar extensors, whereas in men, the fatigability was more pronounced in the lumbar musculature than in the biceps femoris. Additionally, the MF of the lumbar extensors demonstrated a greater association with endurance time in men than in women (R(2) = 0.45 vs. 0.19). These findings suggest that gender differences in muscle fatigue are influenced by muscle contraction type and frequency shifts in the EMG signal but not by alterations in the synergistic activation patterns.  相似文献   

14.
Hip and knee functions are intimately connected and reduced hip abductor function might play a role in development of knee osteoarthritis (OA) by increasing the external knee adduction moment during walking. The purpose of this study was to test the hypothesis that reduced function of the gluteus medius (GM) muscle would lead to increased external knee adduction moment during level walking in healthy subjects. Reduced GM muscle function was induced experimentally, by means of intramuscular injections of hypertonic saline that produced an intense short-term muscle pain and reduced muscle function. Isotonic saline injections were used as non-painful control. Fifteen healthy subjects performed walking trials at their self-selected walking speed before and immediately after injections, and again after 20 min of rest, to ensure pain recovery. Standard gait analyses were used to calculate three-dimensional trunk and lower extremity joint kinematics and kinetics. Surface electromyography (EMG) of the glutei, quadriceps, and hamstring muscles were also measured. The peak GM EMG activity had temporal concurrence with peaks in frontal plane moments at both hip and knee joints. The EMG activity in the GM muscle was significantly reduced by pain (?39.6%). All other muscles were unaffected. Peaks in the frontal plane hip and knee joint moments were significantly reduced during pain (?6.4% and ?4.2%, respectively). Lateral trunk lean angles and midstance hip joint adduction and knee joint extension angles were reduced by ?1°. Thus, the gait changes were primarily caused by reduced GM function. Walking with impaired GM muscle function due to pain significantly reduced the external knee adduction moment. This study challenge the notion that reduced GM function due to pain would lead to increased loads at the knee joint during level walking.  相似文献   

15.
The purpose of this study was to assess different measurement strategies to increase the reliability of different electromyographic (EMG) indices developed for the assessment of back muscle impairments. Forty male volunteers (20 controls and 20 chronic low back pain patients) were assessed on three sessions at least 2 days apart within 2 weeks. Surface EMG signals were recorded from four pairs (bilaterally) of back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10) while the subjects performed, in a static dynamometer, two static trunk extension tasks at 75% of the maximal voluntary contraction separated by a 60 s rest period: (1) a 30 s fatigue task and (2) a 5 s recovery task. Different EMG indices (based on individual muscles or averaged across bilateral homologous muscles or across all muscles) were computed to evaluate muscular fatigue and recovery. Intra-class correlation coefficient (ICC) and standard error of measurement (SEM) in percentage of the grand mean were calculated for each EMG variable. Reliable EMG indices are achieved for both healthy and chronic low back pain subjects when (1) electrodes are positioned on medial back muscles (multifidus at the L5 level and longissimus at L1) and (2) measures are averaged across bilateral muscles and/or across two fatigue tests performed within a session. The most reliable EMG indices were the bilateral average of medial back muscles (ICC range: 0.68-0.91; SEM range: 5-35%) and the average of all back muscles (ICC range: 0.77-0.91; SEM range: 5-30%). The averaging of measures across two fatigue tests is predicted to increase the reliability by about 13%. With regards to EMG indices of fatigue, the identification of the most fatigable muscle also lead to satisfactory results (ICC range: 0.74-0.79; SEM range: 21-26%). The assessment of back muscle impairments through EMG analysis necessitates the use of multiple electrodes to achieve reliable results.  相似文献   

16.
Ultrasonography was used to measure pennation angle and electromyography (EMG) to record muscle activity of the human tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and soleus (SOL) muscles during graded isometric ankle plantar and dorsiflexion contractions done on a Biodex dynamometer. Data from 8 male and 8 female subjects were collected in increments of approximately 25% of maximum voluntary contraction (MVC) ranging from rest to MVC. A significant positive linear relationship (p<0.05) between normalized EMG and pennation angle for all muscles was observed when subject specific pennation angles at rest and MVC were included in the analysis. These were included to account for gender differences and inter-subject variability in pennation angle. The coefficient of determination, R(2), ranged between 0.76 for the TA and 0.87 for the SOL. The EMG-pennation angle relationships have ramifications for use in EMG-driven models of muscle force. The regression equations can be used to characterize fiber pennation angle more accurately and to determine how it changes with contraction intensity, thus providing improved estimates of muscle force when using musculoskeletal models.  相似文献   

17.
The validity of the Sorensen test as a measure for back muscle endurance is controversial due to a possible impact of hip extensor muscles. The aim of this study was to investigate the criterion validity of an alternative test (Ito test) compared to the Sorensen test. Both procedures were performed by 29 healthy subjects (11 women) for 5 s and until exhaustion (randomized order). EMG activity was measured from 3 lumbar back and 3 hip extensor muscles. Muscular involvement in test positions was calculated as percentage of maximal voluntary contraction (MVC). Muscle fatigue was determined by the normalized regression coefficient of the median frequencies of the EMG power spectrum (NMFslope). Prediction of holding time by NMFslope values was investigated using regression analysis. In the test positions, the hamstring muscles were activated to a higher MVC percentage in the Sorensen than in the Ito test, while the iliocostalis muscle was less activated. Similarly, the iliocostalis (p = 0.006) and the multifidi muscles (p = 0.03) significantly contributed to predict holding time in the Ito test, whereas the multifidi muscles (p = 0.001) and the semitendinosus muscle (p = 0.046) did so in the Sorensen test. The results of this study indicate that the Ito test might present a valuable alternative for testing back muscle endurance in LBP patients.  相似文献   

18.
The purpose of this study was to demonstrate the relative effect of electrocardiography (ECG) on back muscle surface electromyography (SEMG) parameters and their corresponding sensitivity in low back pain (LBP) assessment.Back muscle SEMG activities were recorded from 17 healthy subjects and 18 chronic LBP patients under static postures (straight sitting and upright standing), and dynamic action (flexion–extension). ECG cancellation based on independent component analysis (ICA) method was performed. Root mean square (RMS) and median frequency (MF) of raw and denoised SEMG data were computed respectively. Multiple comparisons were then performed.A consistent trend of change (increased MF and decreased RMS) followed ECG removal was noticed. In particular, in SEMG measurements under static postures, a significant decrease in RMS (p < 0.05) and increase in MF (p < 0.05) were found in all recording muscle groups. Level of corruption by ECG artifacts on SEMG measurements was found to be more serious and prominent in static postures than that in dynamic action. After ECG removal, significant improvements in the ability of SEMG to discriminate LBP patients from healthy subjects were seen in RMS amplitude recorded while standing (p < 0.05) and MF in all measuring conditions (p < 0.05).This study provides a more complete understanding on the relative effect of ECG contamination on back muscles SEMG parameters and LBP assessment.  相似文献   

19.
The purpose of the present study was to examine theneuromuscular modifications of cyclists to changes in grade andposture. Eight subjects were tested on a computerized ergometer underthree conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surfaceelectromyography (EMG) of six lower extremity muscles. Results showedthat rectus femoris, gluteus maximus (GM), and tibialis anterior hadgreater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of thecrank cycle in the ST condition. The muscle activities of gastrocnemiusand biceps femoris did not exhibit profound differences amongconditions. Overall, the change of cycling grade alone from 0 to 8%did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphillgrade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patternswere discussed with respect to lower extremity joint moments.Monoarticular extensor muscles (GM, vastus lateralis) demonstratedgreater modifications in activity patterns with the change in posturecompared with their biarticular counterparts. Furthermore, musclecoordination among antagonist pairs of mono- and biarticular muscleswas altered in the ST condition; this finding provides support for thenotion that muscles within these antagonist pairs have differentfunctions.

  相似文献   

20.
During level walking, lumbar spine is subjected to cyclic movements and intricate loading of the spinal discs and trunk musculature. This study aimed to estimate the spinal loads (T12–S1) and trunk muscles forces during a complete gait cycle.Six men, 24–33 years walk barefoot at self-selected speed (4–5 km/h). 3D kinematics and ground reaction forces were recorded using a motion capturing system and two force plates, implemented in an inverse dynamic musculoskeletal model to predict the spinal loads and trunk muscles forces. Additionally, the sensitivity of the intra-abdominal pressure and lumbar segment rotational stiffness was investigated.Peak spinal loads and trunk muscle forces were between the gait instances of heel strike and toe off. In L4–L5 segment, sensitivity analysis showed that average peak compressive, antero-posterior and medio-lateral shear forces were 130–179%, 2–15% and 1–6%, with max standard deviation (±STD) of 40%, 6% and 3% of the body weight. Average peak global muscles forces were 24–55% (longissimus thoracis), 11–23% (iliocostalis thoracis), 12–16% (external oblique), 17–25% (internal oblique) and 0–8% (rectus abdominus) of body weight whereas, the average peak local muscles forces were 11–19% (longissimus lumborum), 14–31% (iliocostalis lumborum) and 12–17% (multifidus). Maximum ± STD of the global and local muscles forces were 13% and 8% of the body weight.Large inter-individual differences were found in peak compressive and trunk muscles forces whereas the sensitivity analysis also showed a substantial variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号