首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wild birds are an important nonpoint source of fecal contamination of surface waters, but their contribution to fecal pollution is mostly difficult to estimate. Thus, to evaluate the relation between feces production and input of fecal indicator bacteria (FIB) into aquatic environments by wild waterfowl, we introduced a new holistic approach for evaluating the performance of FIB in six shallow saline habitats. For this, we monitored bird abundance, fecal pellet production, and the abundance of FIB concomitantly with a set of environmental variables over a 9-month period. For estimating fecal pellet production, a new protocol of fecal pellet counting was introduced, which was called fecal taxation (FTX). We could show that, over the whole range of investigated habitats, bird abundance, FTX values, and FIB abundance were highly significantly correlated and could demonstrate the good applicability of the FTX as a meaningful surrogate parameter for recent bird abundances and fecal contamination by birds in shallow aquatic ecosystems. Presumptive enterococci (ENT) were an excellent surrogate parameter of recent fecal contamination in these saline environments for samples collected at biweekly to monthly sampling intervals while presumptive Escherichia coli and fecal coliforms (FC) were often undetectable. Significant negative correlations with salinity indicated that E. coli and FC survival was hampered by osmotic stress. Statistical analyses further revealed that fecal pollution-associated parameters represented one system component independent from other environmental variables and that, besides feces production, rainfall, total suspended solids (direct), and trophy (indirect) had significant positive effects on ENT concentrations. Our holistic approach of linking bird abundance, feces production, and FIB detection with environmental variables may serve as a powerful model for application to other aquatic ecosystems.  相似文献   

3.
Wild birds are an important nonpoint source of fecal contamination of surface waters, but their contribution to fecal pollution is mostly difficult to estimate. Thus, to evaluate the relation between feces production and input of fecal indicator bacteria (FIB) into aquatic environments by wild waterfowl, we introduced a new holistic approach for evaluating the performance of FIB in six shallow saline habitats. For this, we monitored bird abundance, fecal pellet production, and the abundance of FIB concomitantly with a set of environmental variables over a 9-month period. For estimating fecal pellet production, a new protocol of fecal pellet counting was introduced, which was called fecal taxation (FTX). We could show that, over the whole range of investigated habitats, bird abundance, FTX values, and FIB abundance were highly significantly correlated and could demonstrate the good applicability of the FTX as a meaningful surrogate parameter for recent bird abundances and fecal contamination by birds in shallow aquatic ecosystems. Presumptive enterococci (ENT) were an excellent surrogate parameter of recent fecal contamination in these saline environments for samples collected at biweekly to monthly sampling intervals while presumptive Escherichia coli and fecal coliforms (FC) were often undetectable. Significant negative correlations with salinity indicated that E. coli and FC survival was hampered by osmotic stress. Statistical analyses further revealed that fecal pollution-associated parameters represented one system component independent from other environmental variables and that, besides feces production, rainfall, total suspended solids (direct), and trophy (indirect) had significant positive effects on ENT concentrations. Our holistic approach of linking bird abundance, feces production, and FIB detection with environmental variables may serve as a powerful model for application to other aquatic ecosystems.  相似文献   

4.
Multichannel omnivory by generalist predators, especially the use of both grazing and epigeic prey, has the potential to increase predator abundance and decrease herbivore populations. However, predator use of the epigeic web (soil surface detritus/microbe/algae consumers) varies considerably for reasons that are poorly understood. We therefore used a stable isotope approach to determine whether prey availability and predator hunting style (active hunting vs. passive web-building) impacted the degree of multichannel omnivory by the two most abundant predators on an intertidal salt marsh, both spiders. We found that carbon isotopic values of herbivores remained constant during the growing season, while values for epigeic feeders became dramatically more enriched such that values for the two webs converged in August. Carbon isotopic values for both spider species remained midway between the two webs as values for epigeic feeders shifted, indicating substantial use of prey from both food webs by both spider species. As the season progressed, prey abundance in the grazing food web increased while prey abundance in the epigeic web remained constant or declined. In response, prey consumption by the web-building spider shifted toward the grazing web to a much greater extent than did consumption by the hunting spider, possibly because passive web-capture is more responsive to changes in prey availability. Although both generalist predator species engaged in multichannel omnivory, hunting mode influenced the extent to which these predators used prey from the grazing and epigeic food webs, and could thereby influence the strength of trophic cascades in both food webs.  相似文献   

5.
In this study I assess the statistical power to detect a significantly greater increase in bird population size on treatment farms than on control farms given that there is a substantial treatment effect. Computer simulations of bird populations on New?Zealand sheep/beef farms were used to generate significant changes in bird abundance from (a) controlling predation by introduced small mammals, (b) habitat structural complexity, and (c) an interaction of both. A simplified computer model of bird population dynamics was developed that predicted a birth pulse of 357% when predators were controlled and 110% if not, and a target of detecting the experimental elevation of bird abundance at a statistically significant level (P 相似文献   

6.
This field study investigated the colonization process of soil contaminated with different petroleum products (petrol, diesel fuel, spent engine oil; dose: 6000 mg of fuel·kg?1 dry mass [d.m.] of soil) by epigeic and edaphic invertebrates during the progress of natural bioremediation and bioremediation enhanced using selected microorganisms (ZB-01 biopreparation). Epigeic fauna was captured using pitfall traps. Occurrence of edaphic fauna in soil samples as well as total petroleum hydrocarbon contents (TPH) were also investigated. Results showed that inoculation with ZB-01 biocenosis allowed the degradation of petroleum derivatives in the soil contaminated with diesel fuel and engine oil, with 82.3% and 75.4% efficiency, respectively. Applying bioremediation to all contaminated soils accelerated the process of recolonization by edaphic invertebrates. However, the 28-month period was too short to observe full population recovery in soils contaminated with diesel fuel and engine oil. Microbe-enhanced bioremediation accelerated recolonization by epigeic invertebrates on soil contaminated with diesel fuel, whereas it exerted inhibitory effect on recolonization of soil contaminated with engine oil (especially by Collembola). The observed discrepancies in the rates of recolonization for soils contaminated with petrol and diesel fuel that were still noted at the stage of no longer different TPH levels justify the idea to include the survey of edaphic faunal density as one of the parameters in the ecological risk assessment of various bioremediation techniques.  相似文献   

7.
Mountains harbor rich biodiversity and high levels of endemism, particularly due to changes in environmental conditions over short spatial distances, which affects species distribution and composition. Studies on mountain ecosystems are increasingly needed, as mountains are highly threatened despite providing ecosystem services, such as water supply for half of the human population. We aimed to understand the patterns and drivers of alpha and beta diversities of aquatic invertebrates in headwater streams along an altitudinal gradient in the second largest South American mountain range, the Espinhaço mountains. Headwater streams were selected at each 100 m of elevation along an altitudinal gradient ranging from 800 to 1400 m asl, where three substrate types per stream were sampled: leaf litter, gravel, and cobbles. Environmental variables were sampled to represent local riparian canopy cover, instream physical habitat, water quality, climatic data, and land use. Generalized linear models and mixed models were used to test relationships between altitude and the richness and abundance of invertebrates and to assess the influence of environmental variables on the same metrics. Patterns of spatial variation in aquatic invertebrate assemblages along the altitudinal gradient were assessed using multiplicative beta diversity partitioning. The richness and abundance of aquatic invertebrates decreased with increasing altitude, whereas beta diversity increased with increasing altitude. Significant differences in assemblage composition and in relative abundance of invertebrates were observed for both substrates and altitude. We thus show that the high regional beta diversity in aquatic ecosystems in the studied site is due to the high turnover among areas. Abstract in Portuguese is available with online material.  相似文献   

8.
The effect of two different integrated pest management (IPM) practices and conventional spraying (CHEM) on the composition of epigeic spiders and harvestmen in an apple orchard was investigated over 4 years. Conventional spraying included more frequent and nonselective pesticide applications, whilst IPM plots were treated with selective pesticides and less frequently. One of the IPM plots was undersown with various plantings, the other with grass, and the plot under conventional spraying was covered with weeds. In total, eight species of harvestmen and 65 species of spiders were recorded whose abundance peaked in spring and autumn. Arachnids were on average over the 4 years less abundant on both IPM plots than on CHEM which seems to be due to lower plant density of weed cover. Seasonal oscillations were only slightly different in particular seasons between plots, in particular during spraying. In 1992 the arachnids were a little more abundant on the conventional spraying plot, in 1993 on IPM plots and during subsequent 2 years the difference diminished. The seasonal abundance appeared to be influenced by herbicide applications. Species diversity of all plots were higher than in crop fields, but did not reveal disagreement between plots. The numerical hierarchical classification (TWINSPAN) detected that the composition of arachnids was influenced in particular by annual variation. The arachnid assemblages of the studied plots were not found to be markedly different during the whole study. The effect of IPM practices and conventional spraying on the composition of epigeic arachnids was far less apparent than it was in arboreal species. However, nearly 20% of spiders were found common with crown stratum. Some of them occupied both strata, a few occurred in epigeon only accidently, while others moved vertically during the season. Thus the epigeic fauna seems to support arboreal spiders.  相似文献   

9.
To identify the environmental changes responsible for the declines in abundance shown by many granivorous bird species, the demographic mechanism through which the changes have acted must be determined. Ring-recovery data were used to estimate the annual survival rates (since 1962) of six seed-eating bird species with contrasting population trends to identify whether variations in survival could have been the mechanism behind population change. The survival rates of Bullfinch Pyrrhula pyrrhula , Chaffinch Fringilla coelebs , Goldfinch Carduelis carduelis , Greenfinch C. choris , Linnet C. cannabina and House Sparrow Passer domesticus were estimated using models allowing age- and time-specificity in survival (reporting rates could be assumed to be constant). Three tests of the importance of variations in survival in determining population trend were conducted: (1) simple population models with constant productivity showed whether temporal changes in survival were sufficient alone to explain observed trends in abundance, (2) survival models incorporating changes in abundance as a covariate identified whether annual survival rates were associated with population changes, and (3) mean survival rates found in objectively identified periods of increase, decline and stability in each species' population trend were compared. These analyses suggested that environmental change has led to the observed population trends for Goldfinch and House Sparrow largely through effects on survival. Weaker relationships between variations in survival and population trend were found for Bullfinch, Chaffinch and Linnet, but other factors such as breeding success are likely to have been at least as important for these species, and also for Greenfinch. Checking analyses incorporating density-dependence did not alter these conclusions.  相似文献   

10.
Many studies have demonstrated the importance of early‐successional forest habitat for breeding bird abundance, composition, and diversity. However, very few studies directly link measures of bird diversity, composition and abundance to measures of forest composition, and structure and their dynamic change over early succession. This study examines the relationships between breeding bird community composition and forest structure in regenerating broadleaf forests of southern New England, USA, separating the influences of ecological succession from retained stand structure. We conducted bird point counts and vegetation surveys across a chronosequence of forest stands that originated between 2 and 24 years previously in shelterwood timber harvests, a silvicultural method of regenerating oak‐mixed broadleaf forests. We distinguish between vegetation variables that relate to condition of forest regeneration and those that reflect legacy stand structure. Using principal components analyses, we confirmed the distinction between regeneration and legacy vegetation variables. We ran regression analysis to test for relationships between bird community variables, including nesting and foraging functional guild abundances, and vegetation variables. We confirmed these relationships with hierarchical partitioning. Our results demonstrate that regenerating and legacy vegetation correlate with bird community variables across stand phases and that the strength with which they drive bird community composition changes with forest succession. While measures of regeneration condition explain bird abundance and diversity variables during late initiation, legacy stand structure explains them during stem exclusion. Canopy cover, ground‐story diversity, and canopy structure diversity are the most powerful and consistent explanatory variables. Our results suggest that leaving varied legacy stand structure to promote habitat heterogeneity in shelterwood harvests contributes to greater bird community diversity. Interestingly, this is particularly important during the structurally depauperate phase of stem exclusion of young regenerating forests.  相似文献   

11.
Food resources can limit populations of insectivorous birds. Previous studies have shown strong correlations between bird population densities and their invertebrate food, with declining populations being attributed to loss of prey. This might also be the case for the threatened Knysna warbler (Bradypterus sylvaticus), which in the last 20 years has declined precipitously on the Cape Peninsula, South Africa. The bird is abandoning natural, protected forests, retreating to narrow belts of suburban, riverine woodland with dense, tangled understoreys. The potential invertebrate food availability in natural forests and suburban woodland was assessed against what is known of the bird’s preferred prey. The invertebrate food resource spectrum and abundance were determined using three sampling techniques in both natural forest and suburban woodland. Despite greater overall abundance of invertebrates in suburban woodland, the warbler’s preferred prey items were equally abundant in both habitats. This suggests that reduced food supply does not explain abandonment of natural forests by the warbler. Rather, it is concluded that the availability of suitable nesting substrata, which are more abundant in suburban woodland, has driven the biotope shift. This is an unusual case of a localized and threatened bird species faring better under transformed conditions than in natural habitats.  相似文献   

12.
ABSTRACT.   Although ephemeral ponds act as small hotspots of plant, invertebrate, and salamander diversity, the importance of such ponds for birds has been little studied. We hypothesized that ephemeral ponds on the Cumberland Plateau in Tennessee would support a greater abundance, richness, and diversity of birds than the surrounding hardwood forests. In 2004, we recorded all birds seen or heard in 10 min within 50-m radius circles at 25 ephemeral ponds. We repeated the counts at control sites located 150 m from each pond in the surrounding forest. To quantify potential food availability, we captured aerial invertebrates using sweep nets at four points around a subsample of eight ephemeral ponds and at an equal number of control sites. We found significantly greater bird abundance, richness, and species diversity at ephemeral ponds than at control sites, and that pond area was not associated with either bird abundance or richness. Bird community composition at pond and control sites was similar. Aerial invertebrates were significantly more abundant at ephemeral ponds than at adjacent forest sites, providing one possible explanation for greater bird abundance at ephemeral ponds.  相似文献   

13.
Predicting biodiversity responses to climate change remains a difficult challenge, especially in climatically complex regions where precipitation is a limiting factor. Though statistical climatic envelope models are frequently used to project future scenarios for species distributions under climate change, these models are rarely tested using empirical data. We used long‐term data on bird distributions and abundance covering five states in the western US and in the Canadian province of British Columbia to test the capacity of statistical models to predict temporal changes in bird populations over a 32‐year period. Using boosted regression trees, we built presence‐absence and abundance models that related the presence and abundance of 132 bird species to spatial variation in climatic conditions. Presence/absence models built using 1970–1974 data forecast the distributions of the majority of species in the later time period, 1998–2002 (mean AUC = 0.79 ± 0.01). Hindcast models performed equivalently (mean AUC = 0.82 ± 0.01). Correlations between observed and predicted abundances were also statistically significant for most species (forecast mean Spearman′s ρ = 0.34 ± 0.02, hindcast = 0.39 ± 0.02). The most stringent test is to test predicted changes in geographic patterns through time. Observed changes in abundance patterns were significantly positively correlated with those predicted for 59% of species (mean Spearman′s ρ = 0.28 ± 0.02, across all species). Three precipitation variables (for the wettest month, breeding season, and driest month) and minimum temperature of the coldest month were the most important predictors of bird distributions and abundances in this region, and hence of abundance changes through time. Our results suggest that models describing associations between climatic variables and abundance patterns can predict changes through time for some species, and that changes in precipitation and winter temperature appear to have already driven shifts in the geographic patterns of abundance of bird populations in western North America.  相似文献   

14.
During their annual mid- to late-summer southward migration, Semipalmated Sandpipers (Calidris pusilla) feed intensively on the amphipod Corophium volutator on intertidal mudflats in the Bay of Fundy. Corophium, in turn, feed on diatoms and bacteria. Using a series of bird exclosures and fertilizer addition, we examined top–down and bottom–up effects, and investigated the presence of a trophic cascade in the mudflat community during the period when birds are abundant. Although both top–down and bottom–up forces were present in this system, neither transmitted beyond a single trophic link. Predation by shorebirds, which may be less size-selective than previously thought, reduced Corophium abundance in control plots by approximately 80% relative to exclosures, but most other species were unaffected. Shorebird predation did not result in an increase in diatom abundance, as predicted under the trophic cascade hypothesis. Fertilizer increased diatom abundance, but had no effect on Corophium abundance or bird predation, and little effect on other mudflat invertebrates. The only indirect effect observed was on mud snails (Ilyanassa obsoleta), which, by rapidly responding to changes in diatom abundance, compensated for both bird exclusion and fertilizer addition, and prevented the trophic cascade. This population response by snails, possibly stemming from competition with Corophium, probably contributed to the stability of the community. Our results provide an example of short-term compensation in a simple intertidal community, and highlight the importance of considering direct and indirect effects in community ecological studies. We conclude that while compensatory interactions that block trophic cascades may be more common in more complex ecosystems, they are not restricted to them.  相似文献   

15.
Globally, insectivorous birds are at high risk of decline. One explanation of this relates to changes in invertebrate resources due to anthropogenic pressures. The northern population of the eastern bristlebird (Dasyornis brachypterus) relies heavily on invertebrate food resources, and has experienced an 80% population reduction over the past 40 years. We investigated invertebrate abundance and nutritional quality across 23 currently and historically occupied northern bristlebird sites to determine whether extant territories were associated with more, or more nutritious, invertebrate resources. Pitfall and leaf‐litter invertebrate sampling were done in both breeding and non‐breeding seasons from 2014 to 2016. There was no difference in abundance, biomass or nutritional value of invertebrates between occupied and abandoned territories; however, within territories invertebrate abundance and nutritional value did correspond to the habitat characteristics with which bristlebirds are associated. Nutritional value of invertebrates increased with proximity to rainforest, while the abundance of macro‐invertebrates (>1 mm) was correlated with grass height. Bristlebird territories are often close to rainforest margins, and these ecotones may provide more nutritious mesic‐associated invertebrates. Higher abundances of large invertebrates in tall grasses may also contribute to the known association of bristlebirds with tall grasses. Maintenance of tall grass adjacent to rainforest through appropriate fire and grazing management is likely to be important for northern bristlebird recovery and long‐term persistence of the population.  相似文献   

16.
Hoyer  Mark V.  Canfield  Daniel E. 《Hydrobiologia》1994,279(1):107-119
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris).  相似文献   

17.
In total, 1406 samples of scat of 19 arctic fox families and 1755 prey remains collected near the dens of 32 families during the cub rearing period were analyzed. This is the first attempt to evaluate the food use in the population according to averaged data for a large number of families. After the population had passed through the bottleneck, the arctic fox diet changed considerably. Colonies of petrels—the northern fulmar Fulmarus glacialis rodgersii and the storm-petrels Oceanodroma furcata and O. leucorhoa—became the main food source, whereas the use of alternative resources (alcids, cormorants, marine invertebrates, and otarid rookery products) decreased considerably. The following factors are assumed to determine the arctic fox foraging strategy, i.e., the selectivity in food acquisition: (1) passing of the population through the bottleneck; (2) termination of anthropogenic influence due to the liquidation of human settlements on the island; (3) decrease in both the bird populations and abundance of marine invertebrates (sea urchins and mussels); and (4) stable low density of the current arctic fox population. A hypothetical scenario for formation of the foraging specialization in the island population is discussed.  相似文献   

18.
Aim To determine the factors influencing the distribution of birds in remnants in a fragmented agricultural landscape. Location Forty‐seven eucalypt remnants and six sites in continuous forest in the subhumid Midlands region of Tasmania, Australia. Methods Sites were censused over a two‐year period, and environmental data were collected for remnants. The avifauna of the sites was classified and ordinated. The abundances of bird species, and bird species composition, richness, abundance and diversity were related to environmental variables, using simple correlation and modelling. Results There were two distinct groups of sample sites, which sharply differed in species composition, richness, diversity and bird abundance, separated on the presence/absence of noisy miner (Manorina melanocephala Latham) colonies, remnant size, vegetation structural attributes and variables that reflected disturbance history. The approximate remnant size threshold for the change from one group to another was 20–30 ha. Remnant species richness and diversity were most strongly explained by remnant area and noisy miner abundance, with contributions from structural and isolation attributes in the second case. Segment richness was explained by precipitation, logging history and noisy miner abundance. Bird abundance was positively related to precipitation and negatively related to tree dieback. The 28 individual bird species models were highly individualistic, with vegetation structural variables, noisy miner abundance, climatic variables, variables related to isolation, area, variables related to floristics, disturbance variables, the nature of the matrix and remnant shape all being components in declining order of incidence. Age of the remnant did not relate to any of the dependent variables. Main conclusions Degraded and small remnants may have become more distinct in their avifaunal characteristics than might otherwise be the case, as a result of the establishment of colonies of an aggressive native bird, the noisy miner. The area, isolation and shape of remnants directly relate to the abundance of relatively few species, compared to vegetation attributes, climate and the abundance of the noisy miner. The nature of the matrix is important in the response of some species to fragmentation.  相似文献   

19.
Potential consequences of the coqui frog invasion in Hawaii   总被引:5,自引:1,他引:4  
The Puerto Rican frog, Eleutherodactylus coqui, has invaded Hawaii and has negatively impacted the state's multimillion dollar floriculture, nursery and tourist industries; however, little is known about the ecological consequences of the invasion. Using data from Puerto Rico and Hawaii, the authors summarize the potential consequences of the invasion and describe future research needs. It could be predicted that the coqui would reduce the abundance of Hawaii's endemic invertebrates. However, data suggest that coquis are mostly consuming non‐native invertebrates, and not invertebrate pests, such as mosquitoes and termites. Endemic invertebrates are likely to represent a portion of the coqui diet, but it remains uncertain which endemic invertebrates are most threatened by coqui predation and whether there will be indirect effects that benefit or harm them. It could be predicted that coquis would compete with endemic birds for invertebrate prey, but there is presently little overlap in the habitats used by coquis and endemic birds. Although, coquis may make bird re‐invasion into lowland ecosystems more difficult; alternatively, coquis could serve as an additional food source for some endemic birds. Finally, it could be predicted that coquis serve as a food source for endemic‐bird predators, such as rats and mongoose, and bolster their abundance. Preliminary data suggest that coquis will not bolster rat or mongoose populations. Managing coqui populations in Hawaii has been a challenge. A population has not yet been eradicated using citric acid, the only federally approved pesticide for coquis. It is unlikely that coquis will ever be eradicated from the islands of Hawaii and Maui, where there are now hundreds of populations. Quick and severe responses to new introductions may be the only effective means of containing the spread of the coqui.  相似文献   

20.
Balancing food production and biodiversity conservation is a global challenge today. Livestock grazing is one of the main activities triggering habitat degradation and land-use change around the world. Its effects on biodiversity have been widely explored, with birds being the most studied vertebrates. However, its impact seems to be contradictory given the disparity of the results. To understand the influence of livestock grazing on birds, we conducted a meta-analysis exploring the effects of several grazing characteristics on bird abundance and species richness. Our results showed that livestock grazing has a significant negative effect on bird abundance (mean effect size -0.422 ± 0.140), and species richness (mean effect size -0.391 ± 0.141). Livestock grazing affected negatively the bird abundance in riparian habitats in contrast to the other habitat types. Species richness was negatively affected by grazing in woody habitats and Afrotropical and Neotropical regions. Grazing by cattle was more detrimental for both bird richness and abundance than sheep grazing or a mixture of domestic livestock. Moreover, intermediate grazing intensity seems appropriate to maintain bird abundance and richness, as high grazing intensity dropped both bird abundance and species richness substantially, and low grazing intensity reduced bird species richness. This pattern supposes a non-linear effect of grazing intensity on birds. Therefore, the management of grazing intensity and type of livestock could help to reduce the negative effect on bird abundance and richness, as moderate grazing intensities and mix of livestock types appear to have a minor or null impact on bird abundance and richness. Future studies should explore in-depth the effect of moderate grazing intensities on bird diversity and composition to provide better management recommendations to enhance avian conservation in rangelands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号