首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basing on materials collected in 1963, 1998, and 2009–2016, we describe subzonal changes in the population of small mammals in the Prealtai Plain, provide their classification, investigate the spatial–typological structure, and estimate the dependence of heterogeneity of communities on environmental factors. We compare the heterogeneity rate of the populations of West Siberian and Prealtai plains and mountain provinces of Altai.  相似文献   

2.
The results of bird route surveys over the territory of the Central Altai during the summer seasons in 1968–2001 were analyzed. Hierarchic classifications of species by the similarities of residence and distribution were compiled on the basis of a multivariate factor analysis. The basic environmental factors that determine the non-uniformity of bird distribution were revealed. It was demonstrated that the classifications of bird species in the central Altai province and in the Altai physiogeographic mountainous region are, in general, similar in structure. The provincial specificity of distribution intensifies with an increase in the altitude of the territory.  相似文献   

3.
4.
The basic features of spatial differentiation of ant communities were studied based on quantitative counts in all the landscapes of Central Altai. Gradual changes in the structure of ant communities on altitudinal belts were observed, as well as the mosaic patterns of the complexes determined by the variations in meso- and microclimatic conditions within the belt. The main trends in the correlated changes of ant communities and environmental factors were revealed. Classification of ant communities which may form the basis for the legend of a medium-scale map was made using multidimensional factor analysis. The specific features of the spatial differentiation of ant communities in Central Altai, as well as those in Northeast Altai studied earlier, are largely determined by fluctuations in the hydrothermal conditions of these regions. Among the anthropogenic factors, the most significant one in both provinces is transformation of habitats caused by plowing, stocking, annual mowing, and construction.  相似文献   

5.
Nearly one in five bird species has separate breeding and overwintering distributions, and the regular migrations of these species cause a substantial seasonal redistribution of avian diversity across the world. However, despite its ecological importance, bird migration has been largely ignored in studies of global avian biodiversity, with few studies having addressed it from a macroecological perspective. Here, we analyse a dataset on the global distribution of the world’s birds in order to examine global spatial patterns in the diversity of migratory species, including: the seasonal variation in overall species diversity due to migration; the contribution of migratory birds to local bird diversity; and the distribution of narrow-range and threatened migratory birds. Our analyses reveal a striking asymmetry between the Northern and Southern hemispheres, evident in all of the patterns investigated. The highest migratory bird diversity was found in the Northern Hemisphere, with high inter-continental turnover in species composition between breeding and non-breeding seasons, and extensive regions (at high latitudes) where migratory birds constitute the majority of the local avifauna. Threatened migratory birds are concentrated mainly in Central and Southern Asia, whereas narrow-range migratory species are mainly found in Central America, the Himalayas and Patagonia. Overall, global patterns in the diversity of migratory birds indicate that bird migration is mainly a Northern Hemisphere phenomenon. The asymmetry between the Northern and Southern hemispheres could not have easily been predicted from the combined results of regional scale studies, highlighting the importance of a global perspective.  相似文献   

6.
Three new species of leaf beetles are described: Oreomela dudkorum sp. n. (Terektinskii Ridge, Central Altai Mountains), O. tuvensis sp. n. (mountains of southeastern Republic of Tuva), and O. romantsovi sp. n. (Western Sayan Mountains). The representatives of this genus, and especially of the nominotypical subgenus, were found in Russia and in the territories mentioned for the first time. Thus, the distribution boundary of this genus is shifted 3–4° northwards. The representatives of Oreomela have most probably migrated from Tien Shan to the mountains of southern Siberia via the Mongolian Altai Mountains.  相似文献   

7.
中国阿勒泰地区位于新疆北部, 与哈萨克斯坦、俄罗斯、蒙古国交界, 该区包含阿尔泰山及山前荒漠和绿洲, 属于全球200个生物多样性最丰富和最具代表性生态区之一的阿尔泰-萨彦岭生物热点地区。阿勒泰地区生境多样, 鸟类物种资源丰富。尽管以往曾在阿勒泰地区进行过一些鸟类调查, 但对于该地区不同景观和生境类型中鸟类物种丰富度和分布尚无详尽报道。本文通过2013-2016年在中国境内阿尔泰山及山前平原地区对不同生境类型中的鸟类进行实地调查, 并总结文献资料及观鸟爱好者的记录数据, 重新整理了阿勒泰地区鸟类名录及地理分布, 分析了鸟类的物种组成、区系成分; 通过鸟类分布位点数据, 选取气候、土地覆被类型、人类足迹指数及地形共4类环境因子作为自变量建立MaxEnt生态位模型, 通过模拟77种鸟类的适宜分布区并叠加分布图层, 获得了阿勒泰地区的鸟类物种丰富度分布格局。结果表明: 阿勒泰共记录鸟类344种, 隶属19目55科149属, 其中雀形目163种。在垂直海拔带上, 鸟类物种数分别为高山裸岩带24种, 高山草甸带35种, 山地森林草原带172种, 低山灌木带130种, 荒漠草原带84种, 平原绿洲带173种, 以及各海拔带的湿地与水域生境中水鸟92种; 在区系成分上, 以北方型鸟类为主(170种, 占49.4%), 其次为广布种(93种, 占27.0%)。阿尔泰山地的鸟类区系呈现出西伯利亚动物区系特征, 山前平原地区呈现蒙新区分布特征, 因此, 阿勒泰地区动物地理区系属于古北界欧洲-西伯利亚亚界阿尔泰-萨彦岭区阿尔泰亚区; 山前平原地区属于古北界中亚亚界蒙新区西部荒漠亚区。MaxEnt模型推测阿勒泰地区山前平原绿洲地区、山地森林草原带和低山灌木带具有较高的鸟类物种丰富度, 尤其是额尔齐斯河流域下游的绿洲带宽阔, 鸟类物种丰富, 而高山区和荒漠生境中鸟类物种相对较少。模型预测的结果与实际调查情况相符。阿勒泰地区应采用生态友好的经济发展策略, 加强对乔木和灌木的保护, 这有助于维持较高的鸟类物种多样性。此外, 降低生境破碎化不仅对该地区物种保护有重要作用, 也对维持阿尔泰-萨彦岭生物热点地区的山地鸟类多样性有重要意义。  相似文献   

8.
Major features of the spatial heterogeneity of the oribatid mite population in the Northeastern Altai are revealed from the data obtained in the field seasons of 2002 and 2006. The impact of environmental factors on the population appearance is evaluated.  相似文献   

9.
The biodiversity in mountainous ecosystems is high but is threatened by rapid environmental change. Urbanization and other anthropogenic factors in the mountains can affect land use and spatial fragmentation. Moreover, patterns of habitat are closely related to elevation and have a major effect on montane biodiversity. The aim of this study was to analyze the effects of spatial fragmentation on the vertical distribution pattern of bird diversity by characterizing the structure of the bird community, species diversity, and landscape factors at different altitudes. From 2016 to 2019, this study made a four years of continuous monitoring of the breeding birds. The result indicated that Mount Tai harbored a high bird diversity. Bird richness, abundance, and Shannon‐Wiener index decreased with latitude in Mount Tai monotonically. Moreover, the structure of bird communities varied along altitudinal gradients, and some special species were supported in different elevational bands due to the environmental filtering. Road density, number of habitat patches, patch density, and the percentage of forest were significantly related to bird diversity. Sufficient habitat and more patches in the low‐mountain belt supported higher bird diversity. The middle‐mountain belt and high‐mountain belt showed contrasting patterns. Our results highlight the effects of on‐going urbanization and human activities on montane biodiversity and emphasize the need for artificial habitats in the mountains to be managed.  相似文献   

10.
For the study of migratory connectivity, birds have been individually marked by metal rings for more than 100 years. The resulting ring recovery data have been compiled in numerous bird migration atlases. However, estimation of what proportion of a particular population is migrating to which region is confounded by spatial heterogeneity in ring recovery probability. We present a product multinomial model that enables quantifying the continent‐wide distribution of different bird populations during different seasons based on ring recovery data while accounting for spatial heterogeneity of ring recovery probability. We applied the model to an example data set of the European robin Erithacus rubecula. We assumed that ring recovery probability was equal between different groups of birds and that survival probability was constant. Simulated data indicate that violation of the assumption of constant survival did not affect our estimated bird distribution parameters but biased the estimates for recovery probability. Posterior predictive model checking indicated a good general model fit but also revealed lack of fit for a few groups of birds. This lack of fit may be due to between‐group differences in the spatial distribution on smaller scales within regions. We found that 48% of the Scandinavian robins, but only 31% of the central European robins, wintered in northern Africa. The remaining parts of both populations wintered in southern and central Europe. Therefore, a substantial part of the Scandinavian population appears to leap over individuals from the central European population during migration. The model is applied to summary tables of numbers of ringed and recovered birds. This allows us to handle very large data sets as, for example, those presented in bird migration atlases.  相似文献   

11.
Understanding factors determining the distribution of species is a key requirement for protecting diversity in a specific area. The aim of this study was to explore the factors affecting diversity and distribution of species of birds on different forested hills in central Nepal. The area is rich in species of birds. Because the area is characterized by steep gradients, we were also interested in the importance of altitude in determining the diversity and species composition of the bird communities. We assessed bird diversity and species composition based on point observations along a gradient of increasing altitude in two valleys (Kathmandu and Palung) in central Nepal. Data on environmental variables were also collected in order to identify the main determinants of bird diversity and species composition of the bird communities. We recorded 6522 individual birds belonging to 146 species, 77 genera and 23 families. Resident birds made up 80% (117 species) of the total dataset. The study supported the original expectation that altitude is a major determinant of species richness and composition of bird communities in the area. More diverse bird communities were found also in areas with steeper slopes. This together with the positive effect of greater heterogeneity suggests that forests on steep slopes intermixed with patches of open habitats on shallow soil at large spatial scales are more important for diverse bird communities than more disturbed habitats on shallow slopes. In addition, we demonstrated that while different habitat characteristics such as presence of forests edges and shrubs play an important role in driving species composition, but they do not affect species richness. This indicates that while habitat conditions are important determinants of the distribution of specific species, the number of niches is determined by large scale characteristics, such as landscape level habitat heterogeneity and altitude. Thus, to protect bird diversity in the mid-hills of central Nepal, we should maintain diverse local habitats (viz. forest, shrubs, open land, etc.) but also make sure the natural habitats on steeper slopes with large scale heterogeneity are maintained.  相似文献   

12.
北京城市及近郊区环境结构对鸟类的影响   总被引:35,自引:0,他引:35  
魏湘岳  朱靖 《生态学报》1989,9(4):285-289
本文研究了北京市区及近郊环境结构与四季鸟类群落的关系,用相对数量路线调查法估计了鸟类的实际分布。环境结构分为面积和空间异质性两个主要因素,后者又包括自然度和环境多样性两个方面。结果表明,空间异质性对鸟类物种数及多样性有显著的影响,其中自然度的作用较环境多样性的作用更为显著。“边缘效应”是由于环境多样造成的。当空间异质性较高时,面积对鸟类物种数的影响是明显的。由于城市环境的空间异质性较低,由少数优势种决定了鸟类群落特征。为改善城市环境结构,建议增加绿化面积,丰富植被层次及物种组成,同时在北京城市环境中适当增加各种形式的水体。  相似文献   

13.
Modern views on the mechanisms of population dynamics in Palearctic birds wintering in tropical Africa are discussed with regard to the distribution of migrants on the African continent and the influence of external factors on conditions of bird wintering. The data on long-term bird trapping at ten ornithological stations in Europe are analyzed. Among 142 long-term trends in the population dynamics of 18 bird species, 34% are negative, 11% are positive, and the remaining trends lack statistical significance. The proportion of negative trends in each species negatively correlates with the number of birds: the more abundant the species, the lower the probability of its long-term population decline. Population dynamics may largely be determined by environmental conditions in wintering regions. Population studies on ten Palearctic species showed that drastic population declines and even local extinction of birds in recent decades resulted from the dramatic decrease in their survival on African wintering grounds because of insufficient precipitation and, in particular, severe droughts in the Sahel.  相似文献   

14.
Based on materials collected during continuous year-round strip censuses, the spatial heterogeneity of bird communities in coniferous and deciduous forests of the Northern Volga region was analyzed for the first time and the key factors determining it were identified. A spatial-temporal classification of bird communities of the study area was made, and a quantitative estimate of the strength and generality of the relationship between the spatial heterogeneity of bird communities and environmental factors is given. The spatial-temporal structure of bird communities is mainly determined by forest cover, seasonal variation in heat supply, tree species composition, build-up area, and relief.  相似文献   

15.
Many factors affect the distribution of species richness. This study examines the relative influence of habitat heterogeneity, climate, human disturbance, and spatial structure on the species-richness distribution of terrestrial vertebrates (amphibians, reptiles, birds and mammals) in mainland Spain. The results indicate that spatial structure and environment exert similar influences on species richness. For all four taxa, species richness increases southward and northward, being lower in the center of the country, when controlled for other variables. This may be the result of a peninsular effect, as found in other studies, and reflect the importance of historical events on species richness in the Iberian Peninsula. Climate is more important than habitat heterogeneity in determining species richness. Temperature is positively correlated with amphibian, reptile, and bird species richness, while mammalian species richness is highest at intermediate temperatures. This effect is stronger in ectotherms than among endotherms, perhaps reflecting physiological differences. Precipitation positively correlates with bird and mammalian species richness, but has no effect on ectotherm species richness. Amphibian species richness increases with altitudinal range, and bird species richness with habitat diversity. Human population density is positively correlated with bird and mammalian species richness, but does not affect ectotherm species richness, while amphibian and bird species richness is highest at moderate levels of human land alteration (farmland). However, unexplained variance remains, and we discuss that the effects of environmental variables on species richness may vary geographically, causing different effects to be obscured on a national scale, diminishing the explanatory power of environmental variables.  相似文献   

16.
Bird habitat conservation may require different management strategies for different seasonal bird assemblages. We studied habitat use by winter birds in forest and scrubland habitat patches in the northern Negev, Israel. Our goal was to assess whether differences in responses to landscape and habitat structure between breeding and non-breeding seasons require changes in future conservation plans that have been suggested for the Negev breeding bird community. We evaluated habitat and area effects on bird abundance and distribution and tested whether species habitat use during winter involves niche shifts. Compared with breeding birds, a larger proportion of winter bird species occupied both scrubland and forest. As in summer, forest bird species responded to habitat structure, whereas scrubland species were associated with both habitat structure and area. Resident birds disperse into habitats in which they were not present during summer. Consequently, for several species, the correlation between bird densities and environmental factors showed a better fit at the landscape rather than at the habitat scale. In addition, rather than niche shift, birds actually extended their niche breadth. Nest site selection may constrain bird distribution into a realized niche, smaller than their fundamental niche. Despite the scale differences in habitat use, the similar species diversity patterns between seasons suggest that both winter and summer birds would benefit from conservation of scrub patches larger than 50 ha, and enrichment of foliage layers within the planted forests.  相似文献   

17.
Amazonian rivers have been proposed to act as geographic barriers to species dispersal, either driving allopatric speciation or defining current distribution limits. The strength of the barrier varies according to the species’ ecological characteristics and the river's physical properties. Environmental heterogeneity may also drive compositional changes but has not been well assessed in Amazonia. Aiming to understand the contributions of riverine barriers and environmental heterogeneity in shaping compositional changes in Amazonian forest bird assemblages, we focus on the Tapajós River. We investigate how spatial variation in species composition is related to physical barriers (Tapajós and Jamanxim rivers), species’ ecological characteristics (distinct guilds), and environmental heterogeneity (canopy reflectance, soils, and elevation). We sampled birds through point-counts and mist nets on both banks of the Tapajós and Jamanxim rivers. To test for relationships between bird composition and environmental data, we used Mantel and partial Mantel tests, NMDS, and ANOVA + Tukey HSD. The Mantel tests showed that the clearest compositional changes occurred across the Tapajós River, which seems to act unequally as a significant barrier to the bird guilds. The Jamanxim River was not associated with differences in bird communities. Our results reinforce that the Tapajós River is a biogeographical boundary for birds, while environmental heterogeneity influences compositional variation within interfluves. We discuss the combined influence of geographical barriers, environmental heterogeneity, and ecological characteristics of species in shaping species distributions and community composition and the complexity of extrapolating the patterns found for birds to other Amazonian organisms. Abstract in Portuguese is available with online material.  相似文献   

18.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

19.
The altitudinal distribution of mountain birds has recently changed following different patterns in space and time, probably due to the variability of the ongoing environmental processes. Although several studies have highlighted the effect of climate warming in affecting birds altitudinal responses, in the Alps, land abandonment and the consequential forest regrowth may have played a fundamental role.We applied the response curve shape method to investigate changes in the altitudinal distribution of breeding birds over a ten-year period in two different alpine areas (Central and Western Italian Alps) and we performed a log-linear analysis to depict the differential responses of species grouped according to their breeding habitat preferences.The patterns of change remarkably differed according to species ecological traits and between mountain areas. We did not highlight clear altitudinal changes in the Central Alps for any ecological groups, while in the Western Alps, woodland birds showed an expansion pattern and grassland birds suffered a retraction pattern. Since the two alpine areas did not suffer a significant temperature increase, but experienced different woodland cover dynamics, we believe that forest regrowth played a key role in shaping the different bird altitudinal responses between the two sites.Our findings illustrate the effect of ecological traits in shaping altitudinal changes and the role of local environmental factors in affecting spatial variation. Particularly, we strongly suggest considering woodland cover expansion as a key driver of bird altitudinal changes in alpine areas.  相似文献   

20.
Productivity, habitat heterogeneity and environmental similarity are of the most widely accepted hypotheses to explain spatial patterns of species richness and species composition similarity. Environmental factors may exhibit seasonal changes affecting species distributions. We explored possible changes in spatial patterns of bird species richness and species composition similarity. Feeding habits are likely to have a major influence in bird–environment associations and, given that food availability shows seasonal changes in temperate climates, we expect those associations to differ by trophic group (insectivores or granivores). We surveyed birds and estimated environmental variables along line‐transects covering an E‐W gradient of annual precipitation in the Pampas of Argentina during the autumn and the spring. We examined responses of bird species richness to spatial changes in habitat productivity and heterogeneity using regression analyses, and explored potential differences between seasons of those responses. Furthermore, we used Mantel tests to examine the relationship between species composition similarity and both the environmental similarity between sites and the geographic distance between sites, also assessing differences between seasons in those relationships. Richness of insectivorous birds was directly related to primary productivity in both seasons, whereas richness of seed‐eaters showed a positive association with habitat heterogeneity during the spring. Species composition similarity between assemblages was correlated with both productivity similarity and geographic proximity during the autumn and the spring, except for insectivore assemblages. Diversity within main trophic groups seemed to reflect differences in their spatial patterns as a response to changes between seasons in the spatial patterns of food resources. Our findings suggest that considering different seasons and functional groups in the analyses of diversity spatial pattern could contribute to better understand the determinants of biological diversity in temperate climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号