首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Therapies for lung adenocarcinoma (LUAD) are mainly limited by drug resistance, metastasis or recurrence related to cancer stem cells (CSCs) with high proliferation and self-renewing. This research validated that miR-31 was over-expressed in LUAD by the analysis of generous clinical samples data. And the results of clinical data analysis showed that high expression of miR-31 was more common in patients with worse prognosis. The genes differentially expressed in LUAD tissues compared with normal tissues and A549CD133+ cells (LUAD CSCs) compared with A549 cells were separately screened from Gene Expression Profiling Interactive Analysis and GEO datasets. The target genes that may play a role in the regulation of lung adenocarcinoma was screened by comparison between the differential genes and the target genes of miR-31. The functional enrichment analysis of GO Biological Processes showed that the expression of target genes related to cell proliferation was increased, while the expression of target genes related to cell invasion and metastasis was decreased in LUAD tissues and A549CD133+ cells. The results suggested that miR-31 may have a significant inhibitory effect on the differentiation, invasion, metastasis and adhesion of LUAD CSCs, which was verified in vivo and in vitro experiments. Knock down of miR-31 accelerated xenograft tumor growth and liver metastasis in vivo. Likewise, the carcinogenicity, invasion and metastasis of A549CD133+ CSCs were promoted after miR-31 knockdown. The study validated that miR-31 was up regulated in LUAD and its expression may affect the survival time of patients with lung adenocarcinoma, which indicated that miR-31 may have potential value for diagnosis and prognosis of LUAD. However, the inhibitory effect of miR-31 on tumorigenesis, invasion and metastasis of lung adenocarcinoma CSCs suggested its complexity in the regulation of lung adenocarcinoma, which may be related to its extensive regulation of various target genes.  相似文献   

2.
Lung adenocarcinoma (LUAD) is usually found at the metastatic stage. Circular RNA dihydrouridine synthase 2-like (DUS2L) (circDUS2L) has been discovered to be upregulated in LUAD. Nevertheless, the function of circDUS2L in LUAD has not been verified. Levels of circDUS2L, microRNA-590-5p (miR-590-5p), and phosphoglycerate mutase 1 (PGAM1) mRNA were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, metastasis, and invasion were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), colony formation, 5-ethynyl-2′-deoxyuridine (Edu), flow cytometry, and transwell assays. Protein levels were detected by western blotting. Cell glycolysis was analyzed by measuring cell glucose consumption, lactate production, and extracellular acidification rate (ECAR). The regulatory mechanism of circDUS2L in LUAD cells was analyzed by bioinformatics analysis, dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft assay was conducted to confirm the function of circDUS2L in vivo. CircDUS2L was highly expressed in LUAD tissues and cells. CircDUS2L silencing constrained xenograft tumor growth in vivo. CircDUS2L knockdown induced apoptosis, repressed viability, colony formation, proliferation, metastasis, invasion, and glycolysis of LUAD cells in vitro by releasing miR-590-5p via functioning as a miR-590-5p sponge. MiR-590-5p was lowly expressed in LUAD tissues and cells, and miR-590-5p mimic curbed malignant behaviors and glycolysis of LUAD cells by targeting PGAM1. PGAM1 was overexpressed in LUAD tissues and cells, and circDUS2L sponged miR-590-5p to regulate PGAM1 expression. CircDUS2L elevated PGAM1 expression through functioning as a miR-590-5p sponge, thus driving malignant behaviors and glycolysis of LUAD cells.  相似文献   

3.
4.
Lung adenocarcinoma (LUAD) is a common type of lung cancer with high frequent metastasis and a high death rate. However, genes responsible for LUAD metastasis are still largely unknown. Here, we identify an important role of ras homolog family member V (RHOV) in LUAD metastasis using a combination of bioinformatic analysis and functional experiments. Bioinformatic analysis shows five hub LUAD metastasis driver genes (RHOV, ZIC5, CYP4B1, GPR18 and TCP10L2), among which RHOV is the most significant gene associated with LUAD metastasis. High RHOV expression predicted shorter overall survival in LUAD patients. RHOV overexpression promotes proliferation, migration, and invasion of LUAD cells, whereas RHOV knockdown inhibits these biological behaviors. Moreover, knockdown of RHOV suppresses LUAD tumor growth and metastasis in nude mice. Mechanistically, RHOV activates Jun N-terminal Kinase (JNK)/c-Jun signalling pathway, an important pathway in lung cancer development and progression, and regulates the expression of markers of epithelial-to-mesenchymal transition, a process involved in cancer cell migration, invasion and metastasis. RHOV-induced malignant biological behaviors are inhibited by pyrazolanthrone, a JNK inhibitor. Our findings indicate a critical role of RHOV in LUAD metastasis and may provide a biomarker for prognostic prediction and a target for LUAD therapy.  相似文献   

5.
Osteosarcoma is the most common primary tumor of the bone. It leads to many deaths because of its rapid proliferation and metastasis. Recent studies have shown that microRNAs are important gene regulators that are involved in various cancer-related processes. In this study, we found that miR-135b was down-regulated in both osteoscarcoma patient tumor tissues and osteoscarcoma cell lines in comparison to paired adjacent non-tumor bone tissue. We observed that a lower level of miR-135b was associated with metastasis. The ectopic expression of miR-135b markedly suppressed osteoscarcoma cell proliferation, migration, and invasion. Conversely, the inhibition of miR-135b expression dramatically accelerated cell proliferation, migration, and invasion. The forced expression of miR-135b in osteosarcoma cells resulted in a significant reduction in the protein level of c-Myc and repressed the activity of a luciferase reporter that contained the 3′-untranslated region of the c-Myc mRNA. These effects were abolished by the mutation of the predicted miR-135b-binding site, which indicates that c-Myc may be a miR-135b target gene. Moreover, the ectopic expression of c-Myc partially reversed the inhibition of cell proliferation and invasion that was caused by miR-135b. These data therefore suggest that miR-135b may function as a tumor suppressor to regulate osteosarcoma cell proliferation and invasion through a mechanism that targets the c-Myc oncogene. These findings indicate that miR-135b may play a role in the pathogenesis of osteosarcoma.  相似文献   

6.
Pre-eclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality but the exact underlying mechanisms of PE pathogenesis remain elusive. Accumulated data suggested that the long noncoding RNAs (lncRNAs) play important roles in the pathogenesis of PE. The present study identified the changes of lncRNA Linc00261 in PE and its effects on trophoblasts invasion and migration. Our results showed that the expression of Linc00261 was upregulated in placental tissues of PE women compared with those of healthy pregnant women. Overexpression of Linc00261 suppressed cell invasion and migration, induced cell apoptosis, and caused cell-cycle arrest at G0/G1 phase of HTR-8/SVneo cells; while knockdown of Linc00261 had the opposite effects on the HTR-8/SVneo cells. Mechanistic studies showed Linc00261 functioned as a competing endogenous RNA for miR-558 in HTR-8/SVneo cells, and miR-558 was negatively regulated by Linc00261. The expression level of miR-558 in the PE group was significantly lower than the control group, and the expression level of Linc00261 was negatively correlated with the expression level of miR-558 in the placental tissues of women with PE. Furthermore, miR-558 was found to negatively regulate the expression of TIMP metallopeptidase inhibitor 4 (TIMP4) via targeting the 3′ untranslated region in the HTR-8/SVneo cells. Overexpression of miR-558 increased HTR-8/SVneo cell invasion and migration, which was attenuated by TIMP4 overexpression. More importantly, both overexpression of miR-558 and knockdown of TIMP4 partially reversed the suppressive effects of Linc00261 overexpression on cell invasion and migration of HTR-8/SVneo cells. Collectively, our results for the first time showed the upregulation of Linc00261 in the placental tissues of severe PE patients. The mechanistic results indicated that Linc00261 exerted the suppressive effects on the trophoblast invasion and migration via targeting miR-558/TIMP4 axis, which may involve in the pathogenesis of PE.  相似文献   

7.
研究表明,microRNA(miRNA)可作为癌基因或抑癌基因发挥功能、调控细胞增殖和凋亡等生物学行为,与肿瘤的发生发展密切相关. 在本研究中,我们检测了miR- 455在宫颈癌组织中的表达变化及其对宫颈癌SiHa细胞生物学功能的影响. Real- time PCR实验结果显示,miR-455在宫颈癌组织样本中较正常宫颈组织表达明显降低. 瞬时转染miR-455 mimics使其在SiHa细胞中过表达. CCK-8及流式细胞术分析显示, 过表达miR-455明显抑制细胞增殖,促进细胞凋亡,导致细胞G1/S期阻滞. Real- time PCR分析显示,PI3KR1,BCL2L2 mRNA明显降低.上述研究结果表明, miR-455可显著降低SiHa细胞存活能力,是一个潜在的抑癌基因.  相似文献   

8.
9.
10.
MicroRNAs (miRs) are small, endogenous, non-coding RNAs that regulate the stability and/or translation of complementary mRNA targets. MiRs have emerged not only as critical modulators of normal physiologic processes, but their deregulation may significantly impact prostate and other cancers. The expression of miR-23b and miR-27b, which are encoded by the same miR cluster (miR-23b/-27b), are downregulated in metastatic, castration-resistant tumors compared to primary prostate cancer and benign tissue; however, their possible role in prostate cancer progression is unknown. We found that ectopic expression of miR-23b/-27b in two independent castration-resistant prostate cancer cell lines resulted in suppression of invasion and migration, as well as reduced survival in soft agar (a measure of anoikis). However, there was no effect of miR-23b/-27b on cell proliferation suggesting that these miRs function as metastasis (but not growth) suppressors in prostate cancer. Conversely, inhibition of miR-23b/-27b in the less aggressive androgen-dependent LNCaP prostate cancer cell line resulted in enhanced invasion and migration also without affecting proliferation. Mechanistically, we found that introduction of miR-23b/-27b in metastatic, castration-resistant prostate cancer cell lines resulted in a significant attenuation of Rac1 activity without affecting total Rac1 levels and caused increased levels of the tumor suppressor E-cadherin. Inhibition of these miRs had the opposite effect in androgen-dependent LNCaP cells. These results suggest that miR-23b/-27b are metastasis suppressors that might serve as novel biomarkers and therapeutic agents for castration-resistant disease.  相似文献   

11.
Extracellular vesicles (EVs) play an essential role in the communication between cells and the tumor microenvironment. However, the effect of tumor-derived EVs on the growth and metastasis of lung adenocarcinoma (LUAD) remains to be explored. This study aimed to elucidate the role of miR-153-3p-EVs in the invasion and migration capabilities of LUAD cells and explore its mechanism through in vivo and in vitro experiments. We found that miR-153-3p was specifically and highly expressed in LUAD and its secreted EVs. Furthermore, the expression of BANCR was negatively regulated by miR-153-3p and identified as a target gene of miR-153-3p using luciferase reporter assays. Through further investigation, we found that the downregulation of BANCR activates the PI3K/AKT pathway and accelerates the process of epithelial-mesenchymal transition (EMT), which ultimately leads to the aggravation of LUAD. The orthotopic xenograft mouse model was established to illustrate the effect of miR-153-3p-EVs on LUAD. Animal studies showed that miR-153-3p-EVs accelerated tumor growth in mice. Besides, we found that miR-153-3p-EVs could damage the respiratory ability of mice and produce a mass of inflammatory cells around the lung tissue of mice. Nevertheless, antagomir-153-3p treatment could inhibit the deterioration of respiratory function and inhibit the growth of lung tumors in mice. In conclusion, our study reveals the potential molecular mechanism of miR-153-3p-EVs in the development of LUAD and provides a potential strategy for the treatment of LUAD.  相似文献   

12.
Recently, long noncoding RNAs (lncRNAs) have become the key gene regulators and prognostic biomarkers in various cancers. Through microarray data, Linc00339 was identified as a candidate oncogenic lncRNA. We compared the expression levels of Linc00339 in several breast cancer cell lines and normal mammary gland epithelial cell line. The effects of Linc00339 on tumor progression were examined both in vitro and in vivo. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were applied to evaluate the functions of Linc00339, miR-377-3p, and HOXC6 on cell proliferation. Flow cytometry analysis was used to detect apoptosis and cell cycle distribution. Overall survival (OS) was analyzed using data from The Cancer Genome Atlas and molecular taxonomy of breast cancer international consortium (METABRIC). Dual luciferase assay and RNA immunoprecipitation were performed to confirm the interaction between Linc003339 and miR-377-3p. Linc00339 was increased in breast cancer cell lines compared with the normal epithelial cell. Through in vitro and in vivo experiments, Linc00339 overexpression promoted triple-negative breast cancer (TNBC) proliferation, inhibited cell cycle arrest, and suppressed apoptosis. Silencing of Linc00339 obtained the opposite effects. Mechanistic investigations demonstrated that Linc00339 could sponge miR-377-3p and regulate its expression. Higher expression of miR-377-3p indicated longer OS in breast cancer patients, especially in TNBC patients. Overexpression of miR-377-3p retarded TNBC cell growth through regulating cell cycle distribution and apoptosis. And miR-377-3p was involved in Linc00339-mediated TNBC proliferation through regulating HOXC6 expression. Knockdown of HOXC6 inhibited TNBC progression. In conclusion, our results illuminated that the novel Linc00339/miR-377-3p/HOXC6 axis played a critical role in TNBC progression and might be a promising therapeutic target for TNBC treatment.  相似文献   

13.
14.
Several studies have brought about increasing evidence to support the hypothesis that miRNAs play a pivotal role in multiple processes of carcinogenesis, including cell growth, apoptosis, differentiation, and metastasis. In this study, we investigated the potential role of miR-31 in colorectal cancer (CRC) aggressiveness and its underlying mechanisms. We found that miR-31 increased in CRC cells originated from metastatic foci and human primary CRC tissues with lymph node metastases. Furthermore, the high-level expression of miR-31 was significantly associated with a more aggressive and poor prognostic phenotype of patients with CRC (p < 0.05). The stable over-expression of miR-31 in CRC cells was sufficient to promote cell proliferation, invasion, and migration in vitro. It facilitated tumor growth and metastasis in vivo too. Further studies showed that miR-31 can directly bind to the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2. Ectopic expression of SATB2 by transiently transfected with pCAG-SATB2 vector encoding the entire SATB2 coding sequence could reverse the effects of miR-31 on CRC tumorigenesis and progression. In addition, ectopic over-expression of miR-31 in CRC cells induced epithelial-mesenchymal transition (EMT). Our results illustrated that the up-regulation of miR-31 played an important role in CRC cell proliferation, invasion, and metastasis in vitro and in vivo through direct repressing SATB2, suggesting a potential application of miR-31 in prognosis prediction and therapeutic application in CRC.  相似文献   

15.
Exosomal microRNAs (miRNAs) have great potentials as a novel biomarker to predict lung cancer. We applied a miRNA microarray to identify aberrantly expressed serum exosomal miRNAs as candidate biomarkers for patients with lung adenocarcinoma (LUAD). Compared with the normal control, 31 exosomal miRNAs were found to be upregulated and 29 exosomal miRNAs were downregulated in the serum of LUAD respectively. Then, 10 dysregulated exosomal miRNAs expression levels in serum were further validated via qRT-polymerase chain reaction. Notably, exosomal miR-7977 was highest expressed and miR-98-3p was lowest expressed in the patients with LUAD, and exosomal miR-7977 showed significant correlation with the N stage and TNM stage with patients with LUAD (P < .05). Receiver operating characteristic curve showed that the abundant level of exosomal miR-7977 may predict LUAD with an area of under the curve (AUC) of 0.787. In comparison with exosomal miR-7977, exosomal miR-98-3p had a smaller area (0.719). The combination of exosomal miR-7977 and miR-98-3p improved the AUC to 0.816. Furthermore, in vitro experiments revealed that inhibition of miR-7977 enhanced the proliferation, invasion, and inhibited apoptosis in A549 cells, the opposite results were performed by miR-7977 mimics. In conclusion, exosomal miR-7977 was identified as a novel biomarker for patients with LUAD and may play as a tumor suppressor in lung cancer.  相似文献   

16.
17.
Emerging evidence has indicated that long noncoding RNA (lncRNAs) play crucial roles in regulating thyroid cancer (TC) development. Linc00210 is a newly identified lncRNA which plays an oncogenic role in hepatocellular carcinoma and nasopharyngeal carcinoma, but whether Linc00210 can modulate the development of TC remains elusive. Here, we found that Linc00210 expression was upregulated in TC tissues compared to the matched noncancerous tissues. Overexpression of Linc00210 augmented the proliferation, migration, and invasion of TC cells. Mechanistically, Linc00210 served as a sponge for miR-195-5p, thereby counteracting its ability in downregulating the expression of IGF1R and the activation of PI3K/Akt signaling. Moreover, inhibition of Linc00210 suppressed the growth of TC cells in nude mice. Our findings for the first time uncovered the oncogenic property of Linc00210 in TC.  相似文献   

18.
19.
MicroRNAs (miRNAs) play key roles in cancer development and progression. In the present study, we investigated the role of miR-340 in the progression and metastasis of osteosarcoma (OS). Our results showed that miR-340 was frequently downregulated in OS tumors and cell lines. Overexpression of miR-340 in OS cell lines significantly inhibited cell proliferation, migration, and invasion in vitro, and tumor growth and metastasis in a xenograft mouse model. ROCK1 was identified as a target of miR-340, and ectopic expression of miR-340 downregulated ROCK1 by direct binding to its 3′ untranslated region. siRNA-mediated silencing of ROCK1 phenocopied the effects of miR-340 overexpression, whereas restoration of ROCK1 in miR-340-overexpressing OS cells reversed the suppressive effects of miR-340. Together, these findings indicate that miR-340 acts as a tumor suppressor and its downregulation in tumor tissues may contribute to the progression and metastasis of OS through a mechanism involving ROCK1, suggesting miR-340 as a potential new diagnostic and therapeutic target for the treatment of OS.  相似文献   

20.
Lung adenocarcinoma (LUAD), a general kind of bronchogenic malignancy globally, is depicted as one of the most critical factors affecting human health severely. Featured with loop structure, circular RNA (circRNA) has been described as an essential regulator of multiple human malignancies. Nevertheless, knowledge concerning the regulatory function of circRNA in LUAD progression remains limited. Identified as a novel circRNA, circABCC4 has not been studied in LUAD as yet. This is the first time to probe into the underlying role of circABCC4 in LUAD. In this study, a notably elevated expression of circABCC4 was found in LUAD tissues and cells. Besides, circABCC4 is verified to be characterized with a circular structure in LUAD. Functional assays elucidated that knockdown of circABCC4 significantly impaired LUAD cell proliferation, migration as well as accelerated cell apoptosis. Molecular mechanism experiments later revealed that circABCC4 could bind with miR-3186-3p and miR-3186-3p was a tumor suppressor in LUAD. Moreover, TNRC6B was validated to combine with miR-3186-3p, and its expression was respectively negatively and positively regulated by miR-3186-3p and circABCC4 in LUAD. Final rescue experiments further delineated that TNRC6B upregulation partially restored circABCC4 downregulation-mediated effect on LUAD progression. In sum, circABCC4 regulates LUAD progression via miR-3186-3p/TNRC6B axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号