首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ion microscope, based on secondary ion mass spectrometry, has been used to demonstrate the distribution of calcium in the root tip cells of two plant species, Allium cepa and Vicia faba. Interphase nuclei showed higher intensities of calcium than cytoplasm, while nucleoli exhibited higher calcium intensities than the rest of the nucleoplasm. The chromosomes showed high intensities of calcium at all stages of mitosis. Calcium was also detected in the cell plate and phragmoplast region of dividing cells. It appears that during prophase calcium concentrates in the condensing chromosomes, and during telophase it is transferred to nucleoli. These observations suggest that chromosomes may serve as a reservoir of calcium during mitosis.  相似文献   

3.
Summary— In order to determine the localization of actin, growing and fully grown rat oocytes were immunocytochemically examined using a post-embedding ultrastructural protein-A gold technique. In quiescent oocytes, the nucleoplasm showed slightly lower levels of actin signal when compared to the surrounding cytoplasm. The highest levels of labeling were found on nucleoli showing a reticular type morphology. In oocytes at the diakinesis stage in which nucleolar compaction had occurred, the levels of labeling increased by 5–6 times those found in quiescent oocytes. Except for conspicuous accumulation of actin under the plasma membrane, compact nucleoli had significantly higher levels of labeling when compared with those found on the general cytoplasm, while the nucleoplasm with homogeneously dispersed chromatin showed significantly lower levels of associated actin signal than the general cytoplasm. In oocytes at metaphase I, the cytoplasmic region had comparable or lower levels of labeling than the cytoplasm of oocytes at diakinesis. The meiotic spindle embedded in material with medium electron density showed a similar level of labeling as the surrounding cytoplasm. On the other hand, significantly higher levels of associated actin were observed on the chromosomes of metaphase I. The actin signals were dispersed over the chromosomes and not concentrated on a specific region. These results suggest that nuclear actin may be involved in the process of chromosome construction and also the formation of the compacted structure of the nucleolus.  相似文献   

4.
Nuclear organelles, unlike many cytoplasmic organelles, lack investing membranes and are thus in direct contact with the surrounding nucleoplasm. Because the properties of the nucleoplasm and nuclear organelles influence the exchange of molecules from one compartment to another, it is important to understand their physical structure. We studied the density of the nucleoplasm and the density and permeability of nucleoli, Cajal bodies (CBs), and speckles in the Xenopus oocyte nucleus or germinal vesicle (GV). Refractive indices were measured by interferometry within intact GVs isolated in oil. The refractive indices were used to estimate protein concentrations for nucleoplasm (0.106 g/cm3), CBs (0.136 g/cm3), speckles (0.162 g/cm3), and the dense fibrillar region of nucleoli (0.215 g/cm3). We determined similar protein concentrations for nuclear organelles isolated in aqueous media, where they are no longer surrounded by nucleoplasm. To examine the permeability of nuclear organelles, we injected fluorescent dextrans of various molecular masses (3-2000 kDa) into the cytoplasm or directly into the GV and measured the extent to which they penetrated the organelles. Together, the interferometry and dextran penetration data show that organelles in the Xenopus GV have a low-density, sponge-like structure that provides access to macromolecules from the nucleoplasm.  相似文献   

5.
DNA topoisomerase I is a nucleolar protein, which relocates to the nucleoplasm in response to drugs stabilizing topoisomerase I.DNA intermediates (e.g. camptothecin). Here we demonstrate that this phenomenon is solely caused by the drug's impact on the interplay between mobility and localization of topoisomerase I in a living cell nucleus. We show by photobleaching of cells expressing biofluorescent topoisomerase I-chimera that the enzyme moves continuously between nucleoli and nucleoplasm. Complex kinetics of fluorescence recovery after photobleaching indicates that two enzyme fractions with different mobility coexist in nucleoli and nucleoplasm. However, the whole complement of topoisomerase I is in continuous flux between these compartments and nucleolar accumulation can plausibly explained by the enzyme's 2-fold lesser overall mobility in nucleoli versus nucleoplasm. Upon addition of camptothecin, topoisomerase I relocates within 30 s from the nucleoli to radial nucleoplasmic structures. At these sites, the enzyme becomes retarded in a dose-dependent manner. Inside nucleoli the mobility of topoisomerase I is much less affected by camptothecin. Thus, the enzyme's distribution equilibrium is shifted toward the nucleoplasm, which causes nucleolar delocalization. In general, topoisomerase I is an entirely mobile nuclear component, unlikely to require specific signaling for movements between nuclear compartments.  相似文献   

6.
Growing and differentiating nerve cells of the fifth cranial ganglion of the chick embryo were studied by several means. During the period of 70 hours to 11 days of incubation (Hamburger-Hamilton stages 19 to 37) average cell mass increased more than 4.5 times while cells changed from relatively undifferentiated neuroblasts to morphologically characteristic nerve cells with long processes. By making simplifying assumptions about thickness of nucleus and nucleolus, relative to cytoplasmic thickness, it was possible to calculate solute concentration of nucleus and nucleolus relative to that of the cytoplasm from measurements of optical retardations through living cells. Differences in relative solute concentration were observed in nucleolus, cytoplasm, and nucleoplasm in the approximate ratio 1.2:1.0:0.8, respectively. The ratio remained essentially constant during the growth period examined despite the fact that the cell components grow at markedly different rates. This suggests that solid concentrations are physical characteristics of nucleus, nucleolus, and cytoplasm which are maintained even during rapid growth and differentiation. By cytochemical means it was demonstrated that mass increase in the nucleus is not associated with increase in deoxyribonucleic acid. Both ribonucleic acid and protein are in greater concentration in nucleolus and cytoplasm than in the nucleoplasm. Electron microscopy shows interruptions in the nuclear envelope as well as an approximately even distribution of electron density in nucleus and cytoplasm. It is pointed out that consistent differences in solid concentration can exist on either side of the nuclear envelope even though it contains "pores." Implications of these data are discussed.  相似文献   

7.
Ovarian nests in the ovaries of sexually maturing Russian sturgeon Acipenser gueldenstaedtii and North American paddlefish Polyodon spathula were investigated. They comprised early previtellogenic, diplotene stage oocytes and somatic cells. In the nucleoplasm, these oocytes contained chromatin in the form of grains, threads and lampbrush chromosomes, primary nucleoli and multiple nucleoli. Two stages of oocytes in nests were distinguished by differences in the distribution of mitochondria with distorted cristae and lipid droplets in the ooplasm. These stages were as follows: pre‐early stage 1 (PE 1) and early stage 1 (EP 1) previtellogenic oocytes. In PE 1 oocytes few mitochondria with distorted cristae and lipid droplets were distributed randomly. The ooplasm of PE 1 oocytes was not differentiated into homogeneous and granular compartments. In EP 1 oocytes, mitochondria with distorted cristae were more numerous and grouped in the vicinity of the nucleus, lipid droplets accumulated near these mitochondria. In the nucleoplasm of EP 1 oocytes several low electron‐dense spherical bodies, possibly Cajal bodies, were present.  相似文献   

8.
The ultrastructural investigation of the root cells ofAllium cepa L. exposed to 1 mM and 10 mM cadmium (Cd) for 48 and 72 h was carried out. The results indicated that Cd induced several obvious ultrastructural changes such as increased vacuolation, condensed cytoplasm with increased density of the matrix, reduction of mitochondrial cristae, severe plasmolysis and highly condensed nuclear chromatin. Electron dense granules appeared between the cell wall and plasmalemma. In vacuoles, electron dense granules encircled by the membrane were aggregated and formed into larger precipitates, which increase in number and volume as a consequence of excessive Cd exposure. Data from electron energy loss spectroscopy (EELS) confirmed that these granules contained Cd and showed that significantly higher level of Cd in vacuoles existed in the vacuolar precipitates of meristematic or cortical parenchyma cells of the differentiating and mature roots treated with 1 mM and 10 mM Cd. High levels of Cd were also observed in the crowded electron dense granules of nucleoli. However, no Cd was found in cell walls or in cells of the vascular cylinder. A positive Gomori-Swift reaction showed that small metallic silver grains were abundantly localized in the vesicles, which were distributed in the cytoplasm along the cell wall.  相似文献   

9.
10.
Proteasomes are present in the cytoplasm and in the nuclei of all eukaryotic cells, however their relative abundance within those compartments is highly variable. In the cytoplasm, proteasomes associate with the centrosomes, cytoskeletal networks and the outer surface of the endoplasmic reticulum (ER). In the nucleus, proteasomes are present throughout the nucleoplasm but are void from the nucleoli. Sometimes they associate with discrete subnuclear domains called the PML nuclear bodies (POD domains). PML bodies in the nucleus, and the pericentrosomal area of the cytoplasm may function as proteolytic centers of the cell, since they are enriched in components of the proteasome system. Under conditions of impaired proteolysis proteasomes and ubiquitinated proteins further accumulate at these locations, forming organized aggregates. In case of the pericentrosomal area those aggregates have been termed "aggresomes". Once formed, aggresomes can impair the function of the proteasome system, which may promote apoptosis. Under favorable conditions they can be cleared, probably by autophagy.  相似文献   

11.
The lymphoid cell population of thymus in the rattlesnake and king snake is similar to that of mammals. Lymphocytes occupy the interstices of an epithelial cell framework. An abudance of tonofilaments and desmosomes occupy the cytoplasm of epithelial cells with light, homogeneous nuclei and prominent nucleoli. Other epithelial cells contain phagocytized material in a dense cytoplasm which surrounds an irregular nucleus with heavily clumped chromatin. Small, granular vesicles are found within some epithelial cells. Myoid cells occur in the medullary area. In mature forms, myofibrils are arranged in a concentric fashion around the nucleus and occupy much of the cytoplasmic volume. The presence of developmental stages of these cells suggests their differentiation within the thymus of the adult animal.  相似文献   

12.
The site of H3-uridine incorporation and the fate of labeled RNA during early embryo-genesis of the newt Triturus pyrrhogaster were studied with electron microscopic autoradiography. Isolated ectodermal and mesodermal tissues from the embryos were treated in H3-uridine for 3 hours and cultured in cold solution for various periods before fixation with OsO4 and embedding in Epon. At the blastula stage, the only structural component of the nucleus seen in electron micrographs is a mass of chromatin fibrils. At the early gastrula stage, the primary nucleoli originate as small dense fibrous bodies within the chromatin material. These dense fibrous nucleoli enlarge during successive developmental stages by the acquisition of granular components 150 A in diameter, which form a layer around them. Simultaneously larger granules (300 to 500 A) appear in the chromatin, and they fill the interchromatin spaces by the tail bud stage. Autoradiographic examination has demonstrated that nuclear RNA synthesis takes place in both the nucleolus and the chromatin, with the former consistently showing more label per unit area than the latter. When changes in the distribution pattern of radioactivity were studied 3 to 24 hours after immersion in isotope at each developmental stage, the following results were obtained. Labeled RNA is first localized in the fibrous region of the nucleolus and in the peripheral region of chromatin material. After longer culture in non-radioactive medium, labeled materials also appear in the granular region of the nucleolus and in the interchromatin areas. Further incubation gives labeling in cytoplasm.  相似文献   

13.
Summary Nucleic acids have been localized inAllium porrum interphase meristematic cells by means of labelling with nuclease-gold complexes, a technique which provides high resolution and improved specificity. DNase-gold labelling was observed over dense chromatin and to a lesser extent over dispersed chromatin. Nucleolar labelling was restricted to the dense fibrillar component, very few particles being located over the fibrillar centres. Labelling by the RNase-gold complex was present over both the cytoplasm and the nucleoplasm. Cytoplasm labelling was intense over the rough endoplasmic reticulum but absent over vacuoles. In the nucleoplasm many gold particles were located at the border between the condensed and the dispersed chromatin. Nucleolar labelling was intense over the granular zones but many gold particles were also seen over the dense fibrillar component. Fibrillar centres showed, however, no labelling with the RNase-gold complex. These results are consistent with previous autoradiographic and cytochemical observations carried out on the same plant material.  相似文献   

14.
The nucleus of eukaryotes is organized into functional compartments, the two most prominent being heterochromatin and nucleoli. These structures are highly enriched in DNA, proteins or RNA, and thus thought to be crowded. In vitro, molecular crowding induces volume exclusion, hinders diffusion and enhances association, but whether these effects are relevant in vivo remains unclear. Here, we establish that volume exclusion and diffusive hindrance occur in dense nuclear compartments by probing the diffusive behaviour of inert fluorescent tracers in living cells. We also demonstrate that chromatin‐interacting proteins remain transiently trapped in heterochromatin due to crowding induced enhanced affinity. The kinetic signatures of these crowding consequences allow us to derive a fractal model of chromatin organization, which explains why the dynamics of soluble nuclear proteins are affected independently of their size. This model further shows that the fractal architecture differs between heterochromatin and euchromatin, and predicts that chromatin proteins use different target‐search strategies in the two compartments. We propose that fractal crowding is a fundamental principle of nuclear organization, particularly of heterochromatin maintenance.  相似文献   

15.
In order to investigate the accessibility of the nucleoplasm for macromolecules with different physical properties, we microinjected FITC-conjugated dextrans of different sizes as well as anionic FITC-dextrans and FITC-poly-L-lysine into mammalian cell nuclei. Small dextrans displayed a homogeneous nuclear distribution. With increasing molecular mass (42 to 2500 kDa), FITC-dextrans were progressively excluded from chromatin regions, accumulating in and thereby outlining an apparently extended interchromatin space. Anionic FITC-dextrans (500 kDa) showed complete exclusion from labeled chromatin regions, while the positively charged FITC-poly-L-lysine was to some extent present within the chromatin regions. Moreover, the FITC-poly-L-lysine preferentially localized at the nuclear periphery. We also found a size-dependent exclusion of FITC-dextrans from nucleoli regions, while the FITC-poly-L-lysine accumulated in the nucleoli. Thus, the distinct and restricted nuclear accessibility for macromolecules is dependent on molecule size and electrical charge.  相似文献   

16.
The structure of nuclei and nucleoli of hepatic cells after short-term ethionine administration was investigated with the electron microscope. By 1½ hr after the injection, a distinct alteration occurred in the nucleoli which was characterized by the appearance of electron-opaque masses in the nucleolonema. After 6–8 hr, the nucleoli showed partial fragmentation into small, dense masses. Large aggregates of interchromatinic granules appeared in the nucleoplasm. Condensation of chromatin became prominent in the nucleoplasm particularly along the nuclear membrane. By 12 hr almost complete fragmentation of nucleoli had occurred. The administration of adenine or methionine at 4 hr prevented the development of nucleolar changes. Also, adenine administration at 8 hr after ethionine completely reversed the nucleolar lesion by 12 hr. After methionine administration at 8 hr, many nucleoli showed incomplete reconstruction with many twisted ropelike structures when viewed 4 hr later. Identical structures were found when adenine was given at 8 hr, and animals were sacrificed 2 hr later. On the basis of this observation, the simplified structures of nucleoli found 2 hr after adenine or 4 hr after methionine appeared to be precursors of the nucleolonema. It is suggested that nucleoli show at least two basic reaction patterns to inhibitors of RNA synthesis, one typified by actinomycin D and one by ethionine.  相似文献   

17.
Selected nuclear and cytoplasmic changes of pollen grains of Hyoscyamus niger during normal gametophytic development and embryogenic development, induced by anther culture, were analyzed and compared ultrastructurally using stereological methods. Potentially embryogenic, uninucleate pollen could be identified within 6 hr of culture by an increased ratio of the volume density of the nucleolar granular zone to the volume density of the fibrillar zone and an increased ratio of dispersed to condensed chromatin in the nucleoplasm. Nonembryogenic pollen in vitro and in vivo possessed prominent nucleolar fibrillar zones and low ratios of dispersed to condensed chromatin. These differences may reflect changes in nuclear activity in potentially embryogenic pollen grains during early stages of culture. Following the first haploid mitosis, in potentially embryogenic pollen the generative cell maintained its large granular nucleolus and high ratio of dispersed to condensed chromatin through its first division to form a proembryoid. The volume fraction of the cytoplasm occupied by mitochondria and plastids and the area fraction occupied by RER and Golgi cisternae differed in the generative cells of potentially embryogenic and nonembryogenic pollen. Those changes only detected in generative cells of potentially embryogenic pollen include: increased area and complexity of cytoplasmic membranes, increased mitochondrial volume, and the presence of plastids at all stages of development. These results support the idea that embryogenic induction of H. niger takes place at the uninucleate stage of development and that subsequent nuclear and cytoplasmic changes are essential for continued sporophytic development.  相似文献   

18.
Guigas G  Kalla C  Weiss M 《FEBS letters》2007,581(26):5094-5098
Macromolecular crowding provides the cytoplasm and the nucleoplasm with strongly viscoelastic properties and renders the diffusion of soluble proteins in both fluids anomalous. Here, we have determined the nanoscale viscoelasticity of the cytoplasm and the nucleoplasm in different mammalian cell lines. In contrast to the cell-specific response on the macroscale the nanoscale viscoelasticity (i.e. the behavior on length scales about 100-fold smaller than the cell size) only showed minor variations between different cell types. Similarly, the associated anomalous diffusion properties varied only slightly. Our results indicate a conserved state of macromolecular crowding in both compartments for a variety of mammalian cells with the cytoplasm being somewhat more crowded than the nucleus.  相似文献   

19.
This paper describes the subfractionation of nuclei isolated from guinea pig liver by the procedure presented in the first article of the series (8). Centrifugation in a density gradient system of nuclear fractions disrupted by sonication permits the isolation of the following subfractions: (a) a nucleolar subfraction which consists mainly of nucleoli surrounded by a variable amount of nucleolus-associated chromatin and contaminated by chromatin blocks derived primarily from von Kupffer cell nuclei; (b) and (c), two nucleoplasmic subfractions (I and II) which consist mainly of chromatin threads in a coarser (I) or finer (II) degree of fragmentation. The protein, RNA, and DNA content of these subfractions was determined, and their RNA's characterized in terms of NaCl-solubility, nucleotide composition, and in vivo nucleotide turnover, using inorganic 32P as a marker. The results indicate that there are at least three types of RNA in the nucleus (one in the nucleolus and two in the nucleoplasm or chromatin), which differ from one another in NaCl-solubility, nucleotide composition, turnover, and possibly sequence. Possible relations among these RNA's and those of the cytoplasm are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号