首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Migratory divides are thought to facilitate behavioral, ecological, and genetic divergence among populations with different migratory routes. However, it is currently contentious how much genetic divergence is needed to maintain distinct migratory behavior across migratory divides. Here we investigate patterns of neutral genetic differentiation among Blackcap (Sylvia atricapilla) populations with different migratory strategies across Europe. We compare the level of genetic divergence of populations migrating to southwestern (SW) or southeastern (SE) wintering areas with birds wintering in the British Isles following a recently established northwesterly (NW) migration route. The migratory divide between SW and SE wintering areas can be interpreted as a result of a re-colonization process after the last glaciation. Thus we predicted greater levels of genetic differentiation among the SW/SE populations. However, a lack of genetic differentiation was found between SW and SE populations, suggesting that interbreeding likely occurs among Blackcaps with different migratory orientations across a large area; therefore the SW/SE migratory divide can be seen as diffuse, broad band and is, at best, a weak isolating barrier. Conversely, weak, albeit significant genetic differentiation was evident between NW and SW migrants breeding sympatrically in southern Germany, suggesting a stronger isolating mechanism may be acting in this population. Populations located within/near the SW/SE contact zone were the least genetically divergent from NW migrants, confirming NW migrants likely originated from within the contact zone. Significant isolation-by-distance was found among eastern Blackcap populations (i.e. SE migrants), but not among western populations (i.e. NW and SW migrants), revealing different patterns of genetic divergence among Blackcap populations in Europe. We discuss possible explanations for the genetic structure of European Blackcaps and how gene flow influences the persistence of divergent migratory behaviors.  相似文献   

2.
A novel migratory polymorphism evolved within the last 60 years in blackcaps (Sylvia atricapilla) breeding sympatrically in southwestern Germany. While most individuals winter in the traditional areas in the Mediterranean, a growing number of blackcaps started migrating to Britain instead. The rapid microevolution of this new strategy has been attributed to assortative mating and better physical condition of birds wintering in Britain. However, the isolating barriers as well as the physical condition of birds are not well known. In our study, we examined whether spatial isolation occurred among individuals with distinct migratory behaviour and birds with different arrival dates also differed in physical and genetic condition. We caught blackcaps in six consecutive years upon arrival on the breeding grounds and assigned them via stable isotope analysis to their wintering areas. Analysis of the vegetation structure within blackcap territories revealed different microhabitat preferences of birds migrating to distinct wintering areas. Blackcaps arriving early on the breeding grounds had higher survival rates, better body condition and higher multilocus heterozygosities than later arriving birds. We did however not find an effect of parasite infection status on arrival time. Our results suggest that early arriving birds have disproportionate effects on population dynamics. Allochrony and habitat isolation may thus act together to facilitate ongoing divergence in hybrid zones, and migratory divides in particular.  相似文献   

3.
Summary Blackcaps (Sylvia atricapilla) that breed in central Europe have usually migrated to Mediterranean or African wintering grounds. In the past several decades, a portion of this breeding population has started migrating to the British Isles to overwinter and this population has increased dramatically. Several factors, including higher annual survivorship (due to supplemental feeding and reduced migratiry distance), assortative mating, and enhanced reproductive success may be involved in this rapid population growth. As part of an intensive, long-term study of this population, we tested the hypothesis that the differences in photoperiod experienced by British-wintering versus Mediterranean-wintering blackcaps might lead to relatively early vernal (i.e., migratory and/or reproductive) physiological condition in members of the former group. We found that birds exposed to photoperiodic conditions that simulated migration to Britain to overwinter generally initiated vernal migratory activity earlier than birds held under conditions simulating migration to traditional wintering areas in central Spain. This difference, coupled with the shorter migratory distance to the British Isles, leads to significantly earlier estimated arrival dates for blackcaps that winter in Britain compared to central Spain. Bimodality in arrival times suggests that assortative mating on central European breeding grounds might occur between members of the different wintering populations. Males exposed to British-winter photoperiods showed significantly earlier testicular development than males kept under Spanish-winter photoperiods. Early arrival on the breeding grounds, coupled with accelerated reproductive condition, should lead to a relatively early reproductive effort, perhaps increasing average reproductive success. In general, these results support the hypothesis that differences in photoperiod on the wintering grounds may play an important role in the dynamic state of this population.  相似文献   

4.
The recent formation of a migratory divide in the blackcap (Sylvia atricapilla) involves sympatrically breeding birds migrating to different overwintering quarters. Within the last 50 years, a novel migratory strategy has evolved resulting in an increasing proportion of birds now wintering in Britain instead of migrating to the traditional sites in the Mediterranean area. This rapid microevolution has been attributed to allochronic spring arrival of migrants from the respective wintering quarters leading to assortative mating. Moreover, blackcaps wintering in Britain may experience fitness advantages owing to improved local wintering conditions. We used stable hydrogen isotope signatures (δD) to scrutinize the degree of temporal segregation of blackcaps upon spring arrival and to test for carry-over effects in body condition associated with the disparate wintering environments. Although we found that migrants from Britain arrive significantly earlier on German breeding grounds than migrants from the Mediterranean region, we also found a considerable overlap in arrival times. In a resampling model, the mean probability of assortative mating of birds wintering in Britain is ≤28% in both years. These results suggest that allochrony alone is not a strong isolating barrier between the two subpopulations. Migrants from both wintering locations did not differ in terms of body mass, mass-tarsus residuals or mass-tarsus ratio and arrived in a similar reproductive disposition. Thus, blackcaps wintering in Britain do not gain an apparent fitness advantage on spring migration due to carry-over effects in body condition. Future studies should explore additional factors such as differences in song quality and habitat that might contribute to the rapid microevolution of the blackcap.  相似文献   

5.
Migratory divides represent narrow zones of overlap between parapatric populations with distinct migration directions and, consequently, expected divergent non‐breeding distributions. The composition of the mixed population at a migratory divide and the corresponding non‐breeding ranges remain, however, unknown for many Palaearctic‐African migrants. Here, we used light‐level geolocation to track migration direction and non‐breeding grounds of Eurasian reed warblers Acrocephalus scirpaceus from three breeding populations across the species’ migratory divide. Moreover, by using feathers grown at non‐breeding grounds, we quantified stable isotope composition for individuals with known southwestern (SW) and southeastern (SE) migration directions. On a larger sample per population, we then assessed the proportions of SW‐ and SE‐migrating phenotypes in each of the three populations. All tracked reed warblers from Germany and two thirds of the birds tagged from the Czech population headed initially SW. Nevertheless, about one third of the birds from the Czech site migrated towards SE. No tracking data have been obtained for the Bulgarian population. The initial migration direction determined by geolocators was a strong predictor of the non‐breeding region, with SW migrants staying in west Africa and SE migrants in central Africa. Feather δ34S and δ15N values confirmed the predominance of SW migrants in the German population, the co‐occurrence of SW and SE migrants in the Czech population, and indicated a high (72%) proportion of SE migrants in the Bulgarian population. Thus, the combined approach of geolocator tracking and stable isotopic assignments provided clear evidence for the existence of a migratory divide in the southeast of central Europe and predicted non‐breeding range in central and central‐eastern Africa for the eastern population.  相似文献   

6.
Directional Preferences of Autumnal Migratory Restlessness in Two Populations of Blackcaps (Sylvia atricapilla) with Different Migratory Directions The directional preferences in the orientation behavior of blackcaps, Sylvia atricapilla, were investigated. Two populations on different sides of the migratory divide were studied; one which flies in a SE direction in autumn and one which flies in a SW direction. The populations were from Lake Constance in the F.R.G. and Lake Neusiedl in Austria. Directional preference during fall migratory restlessness was determined by using Emlen funnels. The birds were hand-raised from the nestling phase on under identical conditions. The results demonstrated significant differences between the populations in the autumnal directional preferences. For SW migrants it was 240.7° and for SE migrants 185.0°. One can conclude from these results that there are population-specific differences in the innate directional preferences of fall migratory restlessness. A number of possibilities are discussed as causes for the extreme westward orientation of the birds from Lake Constance:
  • 1 The WSW orientation of the Alps could be genetically programmed into the pattern of migration.
  • 2 It could have been the result of a compensation for the transport from Lake Constance to Lake Neusiedl and therefore explained by goal area navigation.
  • 3 Recently, there have been many reports of German blackcaps wintering in Holland, England and Ireland. It is possible that a number of the experimental birds had already chosen this direction and with their WNW preference, the overall preference is shifted westward.
  相似文献   

7.
To investigate migratory connectivity in the Reed Warbler Acrocephalus scirpaceus, we analysed (1) all available sub-Saharan ringing recoveries and (2) stable isotopes in feathers grown in Africa sampled at 17 European breeding sites across a migratory divide. A cluster analysis of ringing recoveries showed remarkable connectivity between breeding and non-breeding grounds. Two main clusters represented populations taking the two main migratory routes [southwesterly (SW) and southeasterly (SE)]. Stable isotope analysis confirmed the separation of wintering areas of SW- and SE-migrating populations. Higher δ15N values in feathers of SE-migrating birds indicated that they occupied more xeric biome types. Values of δ13C that did not differ significantly among populations were higher than those from feathers of known European origin and indicated a C4 biome. Three populations with an unknown migratory direction were assigned to the SE-migrating populations on the basis of δ15N values.  相似文献   

8.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

9.
The population decline of the Lesser Kestrel Falco naumanni has been the subject of studies across its Western Palaearctic breeding range, but little is known about its use of pre‐migratory areas or African wintering quarters. We used geolocators to describe the temporal and spatial patterns of Portuguese Lesser Kestrel migration and wintering behaviour. Data on the complete migration were obtained from four individuals and another three provided further information. Prior to southward migration, Lesser Kestrels showed two different behaviours: northward‐orientated movements to Spain and movements in the proximity of the breeding area. Autumn migration took place mostly in late September; spring departures occurred mainly in the first half of February. Wintering grounds included Senegal, Mauritania and Mali, with individuals overlapping considerably in Senegal. Movements registered within the wintering grounds suggest itinerant behaviour in relation to local flushes of prey. During spring migration, birds crossed the Sahara Desert through Mauritania, Western Sahara and Morocco before passing over the Mediterranean to reach Portugal. Autumn migration lasted 4.8 ± 1.1 days, and spring migration lasted 4.1 ± 0.3 days. The mean daily flight range varied between approximately 300 and 850 km for an entire journey of around 2500 km. Effective protection of roosting sites in both pre‐migratory and wintering areas and maintaining grasshopper populations in Sahelian wintering quarters appear crucial in preserving this threatened migratory raptor across its African–Eurasian flyway. There was no evidence of any deleterious effects of fitting birds with loggers.  相似文献   

10.
Determining patterns in annual movements of animals is an important component of population ecology, particularly for migratory birds where migration timing and routes, and wintering habitats have key bearing on population dynamics. From 2009 to 2011, we used light‐level geolocators to document the migratory movements of Flammulated Owls (Psiloscops flammeolus). Four males departed from breeding areas in Colorado for fall migration between ≤5 and 21 October, arrived in wintering areas in Mexico between 11 October and 3 November, departed from wintering areas from ≤6 to 21 April, and returned to Colorado between 15 and 21 May. Core wintering areas for three males were located in the Trans‐Mexican Volcanic Belt Mountains in the states of Jalisco, Michoacán, and Puebla in central and east‐central Mexico, and the core area for the other male was in the Sierra Madre Oriental Mountains in Tamaulipas. The mean distance from breeding to wintering centroids was 2057 ± 128 km (SE). During fall migration, two males took a southeastern path to eastern Mexico, and two males took a path due south to central Mexico. In contrast, during spring migration, all four males traveled north from Mexico along the Sierra Madre Oriental Mountains to the Rio Grande Valley and north through New Mexico. The first stopovers in fall and last stopovers in spring were the longest in duration for all males and located 300–400 km from breeding areas. Final spring stopovers may have allowed male Flammulated Owls to fine tune the timing of their return to high‐elevation breeding areas where late snows are not uncommon. One male tracked in both years had similar migration routes, timing, and wintering areas each year. Core wintering and final stopover areas were located primarily in coniferous forests and woodlands, particularly pine‐oak forests, suggesting that these are important habitats for Flammulated Owls throughout their annual cycle.  相似文献   

11.
For many bird species, recovery of ringed individuals remains the best source of information about their migrations. In this study, we analyzed the recoveries of ringed European Hoopoe (Upupa epops) and the Eurasian Wryneck (Jynx torquilla) from 1914 to 2005 from all European ringing schemes. The aim was to define general migration directions and to make inferences about the winter quarters, knowing that hardly any recoveries are available from sub-Saharan Africa. For the autumn migration, there is evidence of a migratory divide for the Hoopoe in Central Europe, at approximately 10–12°E. Autumn migration directions of Wrynecks gradually change from SW to SE depending on the longitude (west to east) of the ringing place. In both species, only a few recoveries were available indicating spring migration directions, but they showed similar migration axes as for autumn migration, and hence no evidence for loop-migration. Due to a paucity of recoveries on the African continent, we can make only limited inferences about wintering grounds: extrapolating migration directions are only indicative of the longitude of the wintering area. The directions of autumn migration indicate a typical pattern observed in European long-distance migrants: west-European Hoopoes and Wrynecks are likely to winter in western Africa, while central- and east-European birds probably winter more in the east. Due to the migratory divide, for the Hoopoe, this phenomenon is more pronounced.  相似文献   

12.
Andreas J. Helbig 《Ostrich》2013,84(2):151-159
Helbig, A. J. 1994. Genetic basis and evolutionary change of migratory directions in a European Passerine migrant Sylvia atricapilla. Ostrich 65: 157–159.

Early displacement experiments and more recent experimental studies with hand-raised Blackcaps Sylvia atricapilla are reviewed in order to describe our current state of understanding of the genetic basis and recent evolutionary changes of migratory directions in birds. Hand-raised Blackcaps from east and west of the Central European migratory divide, when tested under identical conditions, exibited population-specific migratory directions in orientation cages. Cross-breeding of birds from these two populations demonstrated an intermediate mode of inheritance of this behavioural character.

New data on the mitochondrial genetic population structure of the Blackcap indicate that population differentiation at the behavioural level is not necessarily related to long periods of geographic isolation (e.g. during ice ages). Migratory adaptations may have evolved recently, in some cases rapidly, as is illustrated by the establishment of a new migration route of central European Blackcaps to winter quarters in the British Isles. This new route is shown (in a captive breeding experiment) to be based on a novel, genetically determined WNW migratory direction that must have spread from almost zero to 7–11% frequency in parts of central Europe within only three decades. The inheritance of this novel trait also follows a phenotypically intermediate mode and is not influenced by the origin of the female parent (i.e. non-genetic factors can be excluded). The evolutionary flexibility of migratory adaptations is discussed in relation to changes in the environment, both natural and accelerated by man. The need is stressed to study the population-genetic mechanisms of such adaptation with the help of molecular markers as well as large-scale ringing on the breeding grounds.  相似文献   

13.
Aim To identify the migration routes and wintering grounds of the core populations of the near‐threatened pallid harrier, Circus macrourus, and highlight conservation needs associated with these phases of the annual cycle. Location Breeding area: north‐central Kazakhstan; Wintering areas: Sahel belt (Burkina Faso to Ethiopia) and north‐west India. Methods We used ring recovery data from Kazakhstan and satellite tracking data from 2007 to 2008 on six adults breeding in north‐central Kazakhstan to determine migration routes and locate wintering areas. In addition, one first‐year male was tagged in winter 2007–2008 in India. Results Data evidenced an intercontinental migratory divide within the core pallid harrier population, with birds wintering in either Africa or India. The six individuals tagged in north‐central Kazakhstan followed a similar route (west of the Caspian Sea and Middle East) towards east Africa, before spreading along the Sahel belt to winter either in Sudan, Ethiopia, Niger or Burkina Faso. Spring migration followed a shorter, more direct route, with marked interindividual variation. The bird tagged in India spent the summer in central Kazakhstan. Half of the signal losses (either because of failure or bird mortality) occurred on the wintering areas and during migration. Main conclusions Our study shows that birds from one breeding area may winter over a strikingly broad range within and across continents. The intercontinental migratory divide of pallid harriers suggests the coexistence of distinct migratory strategies within the core breeding population, a characteristic most likely shared by a number of threatened species in central Asia. Conservation strategies for species like the pallid harrier, therefore, require considering very large spatial scales with possibly area‐specific conservation issues. We highlight urgent research priorities to effectively inform the conservation of these species.  相似文献   

14.
For many migratory bird species, the latitudinal range of the winter distribution spans thousands of kilometres, thus encompassing considerable variation in individual migration distances. Pressure to winter near breeding areas is thought to be a strong driver of the evolution of migration patterns, as individuals undertaking a shorter migration are generally considered to benefit from earlier arrival on the breeding grounds. However, the influence of migration distance on timing of arrival is difficult to quantify because of the large scales over which individuals must be tracked. Using a unique dataset of individually‐marked Icelandic black‐tailed godwits Limosa limosa islandica tracked throughout the migratory range by a network of hundreds of volunteer observers, we quantify the consequences of migrating different distances for the use of stop‐over sites and timing of arrival in Iceland. Modelling of potential flight distances and tracking of individuals from across the winter range shows that individuals wintering further from the breeding grounds must undertake a stop‐over during spring migration. However, despite travelling twice the distance and undertaking a stop‐over, individuals wintering furthest from the breeding grounds are able to overtake their conspecifics on spring migration and arrive earlier in Iceland. Wintering further from the breeding grounds can therefore be advantageous in migratory species, even when this requires the use of stop‐over sites which lengthen the migratory journey. As early arrival on breeding sites confers advantages for breeding success, the capacity of longer distance migrants to overtake conspecifics is likely to influence the fitness consequences of individual migration strategies. Variation in the quality of wintering and stopover sites throughout the range can therefore outweigh the benefits of wintering close to the breeding grounds, and may be a primary driver of the evolution of specific migration routes and patterns.  相似文献   

15.
The blackcap Sylvia atricapilla shows a complex migratory pattern and is a suitable species for the studies of morphological migratory syndrome, including adaptations of wing shape to different migratory performance. Obligate migrants of this species that breed in northern, central, and Eastern Europe differ by migration distance and some cover shorter distance to the wintering grounds in the southern part of Europe/North Africa or the British Isles, although others migrate to sub-Saharan Africa. Based on ˃40 years of ringing data on blackcaps captured during autumn migration in the Southern Baltic region, we studied age- and sex-related correlations in wing pointedness and wing length of obligate blackcap migrants to understand the differences in migratory behavior of this species. Even though the recoveries of blackcaps were scarce, we reported some evidence that individuals which differ in migration distance differed also in wing length. We found that wing pointedness significantly increased with an increasing wing length of migrating birds, and adults had longer and more pointed wings than juvenile birds. This indicates stronger antipredator adaptation in juvenile blackcaps than selection on flight efficiency, which is particularly important during migration. Moreover, we documented more pronounced differences in wing length between adult and juvenile males and females. Such differences in wing length may enhance a faster speed of adult male blackcaps along the spring migration route and may be adaptive when taking into account climatic effects, which favor earlier arrival from migration to the breeding grounds.  相似文献   

16.
We attempted to establish migratory connectivity patterns for American redstarts Setophaga ruticilla between their breeding and wintering grounds by characterizing the composition of their haematozoan parasite assemblages in different parts of their range. We detected significant but limited geographic structuring of haematozoan parasite lineages across the breeding range of the redstart. We found that redstarts from the south-eastern (SE) region of the breeding range had a significantly different haematozoan parasite assemblage compared with populations sampled throughout the rest of the breeding range. Evidence using stable isotopes from feathers previously demonstrated that redstarts from the SE of the breeding range also have a unique and separate wintering range. Thus, although two methods of estimating migratory connectivity have now both shown the SE US breeding sub-population of redstarts to be distinct from other populations on both the breeding and wintering grounds, conclusive migratory connectivity for this species as a whole could not be established.  相似文献   

17.
Long-distance migration is widespread among birds, connecting breeding and wintering areas through a set of stopover localities where individuals refuel and/or rest. The extent of the stopover is critical in determining the migratory strategy of a bird. Here, we examined the relationship between minimum length of stay of PVC-ringed birds in a major stopover site and the remaining flight distance to the overwintering area in the Eurasian spoonbill (Platalea l. leucorodia) during four consecutive autumn migrations. We also analysed the potential effect of timing (arrival date), as well as the role of experience in explaining stopover duration of spoonbills. Overall, birds wintering in Africa, and facing long-distance travel from the stopover site (ca. 3,000 km) stay for longer (2.7 ± 0.4 days) than Iberian winterers (1.5 ± 0.2 days) that perform a much shorter migration (ca. 800 km). These differences were consistent between years. Stopover duration was not significantly affected by the age of the bird. However, there was a significant reduction as migration advanced. Our results suggest that spoonbills develop different stopover strategies depending on the expected distance to the wintering grounds. Adults, especially long-distance migratory ones, could reduce the potential negative effects of density-dependence processes by avoiding stopover at the end of the migration period. These findings are of significant relevance for understanding differences in migratory behaviour within single populations, especially for declining waterbirds, as well as stress the relevance of preserving stopover localities for the conservation of intraspecific diversity in migratory species.  相似文献   

18.
Populations of most North American aerial insectivores have undergone steep population declines over the past 40 years but the relative importance of factors operating on breeding, wintering, or stopover sites remains unknown. We used archival light-level geolocators to track the phenology, movements and winter locations of barn swallows (Hirdundo rustica; n = 27) from populations across North America to determine their migratory connectivity. We identified an east-west continental migratory divide for barn swallows with birds from western regions (Washington State, USA (n = 8) and Saskatchewan, Canada (n = 5)) traveling shorter distances to wintering areas ranging from Oregon to northern Colombia than eastern populations (Ontario (n = 3) and New Brunswick (n = 10), Canada) which wintered in South America south of the Amazon basin. A single swallow from a stable population in Alabama shared a similar migration route to eastern barn swallows but wintered farther north in northeast Brazil indicating a potential leap frog pattern migratory among eastern birds. Six of 9 (67%) birds from the two eastern populations and Alabama underwent a loop migration west of fall migration routes including around the Gulf of Mexico travelling a mean of 2,224 km and 722 km longer on spring migration, respectively. Longer migration distances, including the requirement to cross the Caribbean Sea and Gulf of Mexico and subsequent shorter sedentary wintering periods, may exacerbate declines for populations breeding in northeastern North America.  相似文献   

19.
Autumn migration routes and orientation of Swedish Ospreys Pandion haliaetus were studied by satellite tracking of 18 birds. Of these, 13 could be followed during the entire migration (6 females, 5 males and 2 juveniles). Most birds migrated across western and central Europe to winter in tropical West Africa. However, one juvenile flew to Cameroon and one female used a very easterly route and reached Mozambique. On average, the birds travelled a total distance of about 6700 km, with little variation except for the female wintering in Mozambique, who travelled more than 10 000 km. Of 21 stopovers (of >1 day), only five were made south of 45°N; three of these in Africa. Females departed before males and juveniles and flew to a stopover site they probably were familiar with. After 3–4 weeks there, they continued to their wintering grounds. Also males and juveniles usually made one or more stopovers. Adults seemed to travel to a known wintering site, where they remained stationary, whereas juveniles were more mobile after reaching tropical regions, probably looking for good wintering sites. Males generally left the breeding area in directions similar to the mean migratory direction, whereas a few females departed in diverging initial directions. Apart from these diversions, adult Ospreys followed very straight migratory routes, with overall mean directions of 185–209° and with mean angular deviations of 6–33°. Some juveniles also departed in diverging directions. Moreover, young birds tended to show a larger variability in orientation. Thus, the Ospreys kept a fairly straight direction and did not avoid geographical obstacles such as mountain ranges and desert areas. However, they seemed reluctant to cross large water bodies. There was no correlation between angular deviation and length of the migrational segment, indicating that the principles of orientation by vector summation may not be valid for Osprey migration. Moreover, the geographic direction of migration did not vary in accordance with variations in the magnetic declination, suggesting that the Ospreys did not orient along magnetic loxodromes.  相似文献   

20.
Identifying an organism's migratory strategies and routes has important implications for conservation. For most species of European ducks, information on the general course of migration, revealed by ringing recoveries, is available, whereas tracking data on migratory movements are limited to the largest species. In the present paper, we report the results of a tracking study on 29 Eurasian Teals, the smallest European duck, captured during the wintering period at three Italian sites. The departure date of spring migration was determined for 21 individuals, and for 15 the entire spring migratory route was reconstructed. Most ducks departed from wintering grounds between mid‐February and March following straight and direct routes along the Black Sea‐Mediterranean flyway. The breeding sites, usually reached by May, were spread from central to north‐Eastern Europe to east of the Urals. The migratory speed was slow (approximately 36 km/day on average) because most birds stopped for several weeks at stopover sites, mainly in south‐eastern Europe, especially at the very beginning of migration. The active flight migration segments were covered at much higher speeds, up to 872 km/day. Stopover duration tended to be shorter when birds were closer to their breeding site. These results, based on the largest satellite tracking effort for this species, revealed for the first time the main features of the migratory strategies of individual Teals wintering in Europe, such as the migration timing and speed and stopover localization and duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号