首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1''s function in endocytosis.  相似文献   

2.
The retromer complex facilitates the sorting of integral membrane proteins from the endosome to the late Golgi. In mammalian cells, the efficient recruitment of retromer to endosomes requires the lipid phosphatidylinositol 3-phosphate (PI3P) as well as Rab5 and Rab7 GTPases. However, in yeast, the role of Rabs in recruiting retromer to endosomes is less clear. We identified novel physical interactions between retromer and the Saccharomyces cerevisiae VPS9-domain Rab5-family guanine nucleotide exchange factors (GEFs) Muk1 and Vps9. Furthermore, we identified a new yeast VPS9 domain-containing protein, VARP-like 1 (Vrl1), which is related to the human VARP protein. All three VPS9 domain–containing proteins show localization to endosomes, and the presence of any one of them is necessary for the endosomal recruitment of retromer. We find that expression of an active VPS9-domain protein is required for correct localization of the phosphatidylinositol 3-kinase Vps34 and the production of endosomal PI3P. These results suggest that VPS9 GEFs promote retromer recruitment by establishing PI3P-enriched domains at the endosomal membrane. The interaction of retromer with distinct VPS9 GEFs could thus link GEF-dependent regulatory inputs to the temporal or spatial coordination of retromer assembly or function.  相似文献   

3.
Serum- and glucocorticoid-regulated kinase 3 (Sgk3) is a serine/threonine protein kinase activated by the phospholipid phosphatidylinositol 3-phosphate (PI3P) downstream of growth factor signaling via class I phosphatidylinositol 3-kinase (PI3K) signaling and by class III PI3K/Vps34-mediated PI3P production on endosomes. Upregulation of Sgk3 activity has recently been linked to a number of human cancers; however, the precise mechanism of activation of Sgk3 is unknown. Here, we use a wide range of cell biological, biochemical, and biophysical techniques, including hydrogen–deuterium exchange mass spectrometry, to investigate the mechanism of activation of Sgk3 by PI3P. We show that Sgk3 is regulated by a combination of phosphorylation and allosteric activation. We demonstrate that binding of Sgk3 to PI3P via its regulatory phox homology (PX) domain induces large conformational changes in Sgk3 associated with its activation and that the PI3P-binding pocket of the PX domain of Sgk3 is sequestered in its inactive conformation. Finally, we reconstitute Sgk3 activation via Vps34-mediated PI3P synthesis on phosphatidylinositol liposomes in vitro. In addition to identifying the mechanism of Sgk3 activation by PI3P, our findings open up potential therapeutic avenues in allosteric inhibitor development to target Sgk3 in cancer.  相似文献   

4.
Phosphatidylinositol 3-phosphate (PI(3)P) plays an important role in insulin-stimulated glucose uptake. Insulin promotes the production of PI(3)P at the plasma membrane by a process dependent on TC10 activation. Here, we report that insulin-stimulated PI(3)P production requires the activation of Rab5, a small GTPase that plays a critical role in phosphoinositide synthesis and turnover. This activation occurs at the plasma membrane and is downstream of TC10. TC10 stimulates Rab5 activity via the recruitment of GAPEX-5, a VPS9 domain-containing guanyl nucleotide exchange factor that forms a complex with TC10. Although overexpression of plasma membrane-localized GAPEX-5 or constitutively active Rab5 promotes PI(3)P formation, knockdown of GAPEX-5 or overexpression of a dominant negative Rab5 mutant blocks the effects of insulin or TC10 on this process. Concomitant with its effect on PI(3)P levels, the knockdown of GAPEX-5 blocks insulin-stimulated Glut4 translocation and glucose uptake. Together, these studies suggest that the TC10/GAPEX-5/Rab5 axis mediates insulin-stimulated production of PI(3)P, which regulates trafficking of Glut4 vesicles.  相似文献   

5.
P34(BSA), a BSA conjugate of a synthetic 10-mer peptide deduced from Treponema denticola major outer sheath protein (Msp), stabilizes actin filaments in fibroblasts and retards cell motility. We reported previously that it is internalized by cells, binds and bundles actin filaments in vitro, and activates RhoA; yet, its site and mechanism of action were not defined. We have assessed P34(BSA)'s modes of interaction with and signaling to fibroblasts. At 4 degrees C, P34(BSA) was not internalized, but it bound to the plasma membrane and promoted actin stress fiber formation at approximately 80% capacity compared with 37 degrees C controls, casting doubt that cellular uptake is a critical step for its cytoskeleton-stabilizing property. In Rho G-LISA and co-immunoprecipitation assays, P34(BSA) was found to activate RhoA, even at 4 degrees C, to promote its interaction with guanosine nucleotide exchange factor p114RhoGEF. It also caused phosphorylation of cofilin. Upon RhoA inhibition, either by C3 transferase RhoA inhibitor or by transfection with a dominant negative RhoA construct, P34(BSA) did not achieve the stress fiber formation seen with P34(BSA) alone. By inhibiting phosphatidylinositol-3 kinase (PI 3-K) with LY294002, the P34(BSA) effects were completely blocked. Depletion of cholesterol with methyl-beta-cyclodextrin (MbetaCD) partially inhibited P34(BSA) signaling via the plasma membrane to the cytoskeleton. This suggests that multivalent P34(BSA) activation of lipid raft components requires active PI 3-K, and initiates the pathway through a RhoGEF and RhoA, which mediates stress fiber formation in fibroblasts. Hence, P34(BSA) may represent a novel tool to investigate RhoA-dependent processes, such as remodeling filamentous actin in eukaryotic cells.  相似文献   

6.
Myotubularins constitute a ubiquitous family of phosphatidylinositol (PI) 3-phosphatases implicated in several neuromuscular disorders. Myotubularin [myotubular myopathy 1 (MTM1)] PI 3-phosphatase is shown associated with early and late endosomes. Loss of endosomal phosphatidylinositol 3-phosphate [PI(3)P] upon overexpression of wild-type MTM1, but not a phosphatase-dead MTM1C375S mutant, resulted in altered early and late endosomal PI(3)P levels and rapid depletion of early endosome antigen-1. Membrane-bound MTM1 was directly complexed to the hVPS15/hVPS34 [vacuolar protein sorting (VPS)] PI 3-kinase complex with binding mediated by the WD40 domain of the hVPS15 (p150) adapter protein and independent of a GRAM-domain point mutation that blocks PI(3,5)P(2) binding. The WD40 domain of hVPS15 also constitutes the binding site for Rab7 and, as shown previously, contributes to Rab5 binding. In vivo, the hVPS15/hVPS34 PI 3-kinase complex forms mutually exclusive complexes with the Rab GTPases (Rab5 or Rab7) or with MTM1, suggesting a competitive binding mechanism. Thus, the Rab GTPases together with MTM1 likely serve as molecular switches for controlling the sequential synthesis and degradation of endosomal PI(3)P. Normal levels of endosomal PI(3)P and PI(3,5)P(2) are crucial for both endosomal morphology and function, suggesting that disruption of endosomal sorting and trafficking in skeletal muscle when MTM1 is mutated may be a key factor in precipitating X-linked MTM.  相似文献   

7.
Rab3A, a member of the Rab3 small G protein family, regulates Ca(2+)-dependent exocytosis of neurotransmitter. The cyclical activation and inactivation of Rab3A are essential for the Rab3A action in exocytosis. GDP-Rab3A is activated to GTP-Rab3A by Rab3 GDP/GTP exchange protein (Rab3 GEP), and GTP-Rab3A is inactivated to GDP-Rab3A by Rab3 GTPase-activating protein (Rab3 GAP). It remains unknown how or in which step of the multiple exocytosis steps these regulators are activated and inactivated. We isolated here a novel protein that was co-immunoprecipitated with Rab3 GEP and GAP by their respective antibodies from the crude synaptic vesicle fraction of rat brain. The protein, named rabconnectin-3, bound both Rab3 GEP and GAP. The cDNA of rabconnectin-3 was cloned from a human cDNA library and its primary structure was determined. Human rabconnectin-3 consisted of 3,036 amino acids and showed a calculated M(r) of 339,753. It had 12 WD domains. Tissue and subcellular distribution analyses in rat indicated that rabconnectin-3 was abundantly expressed in the brain where it was enriched in the synaptic vesicle fraction. Immunofluorescence and immunoelectron microscopy revealed that rabconnectin-3 was concentrated on synaptic vesicles at synapses. These results indicate that rabconnectin-3 serves as a scaffold molecule for both Rab3 GEP and GAP on synaptic vesicles.  相似文献   

8.
A family of phosphatidylinositol 3-kinases (PI 3-kinase), comprising three major classes (I-III) in terms of substrate specificity and regulation, play important roles in a variety of cell functions. We previously reported that the class-I heterodimeric PI 3-kinase consisting of p110beta-catalytic and p85-regulatory subunits is synergistically activated by two different types of membrane receptors, one possessing tyrosine kinase activity and the other activating trimeric G proteins. Here we report an additional unique feature of the p110beta/p85 PI 3-kinase. The small GTPase Rab5 was identified as a binding protein for the p110beta-catalytic subunit in a yeast two-hybrid screening system. The interaction appears to require at least two separated amino-acid sequences present specifically in the beta isoform of p110 and the GTP-bound form of Rab5. The expressions of constitutively active and dominant negative mutants of Rab5 in THP-1 cells induce the stimulation and inhibition, respectively, of protein kinase B activity, which is dependent on the PI 3-kinase product phosphatidylinositol 3,4,5-triphosphate. These results suggest that there is a specific interaction between GTP-bound Rab5 and the p110beta/p85 PI 3-kinase, leading to efficient coupling of the lipid kinase product to its downstream target, protein kinase B.  相似文献   

9.
Rab5 regulates motility of early endosomes on microtubules   总被引:1,自引:0,他引:1  
The small GTPase Rab5 regulates membrane docking and fusion in the early endocytic pathway. Here we reveal a new role for Rab5 in the regulation of endosome interactions with the microtubule network. Using Rab5 fused to green fluorescent protein we show that Rab5-positive endosomes move on microtubules in vivo. In vitro, Rab5 stimulates both association of early endosomes with microtubules and early-endosome motility towards the minus ends of microtubules. Moreover, similarly to endosome membrane docking and fusion, Rab5-dependent endosome movement depends on the phosphatidylinositol-3-OH kinase hVPS34. Thus, Rab5 functionally links regulation of membrane transport, motility and intracellular distribution of early endosomes.  相似文献   

10.
Role of Rab5 in the recruitment of hVps34/p150 to the early endosome   总被引:7,自引:3,他引:4  
PI 3-kinases are important regulators of endocytic trafficking. We have previously proposed a model in which the Rab5 GTPase recruits EEA1 to the early endosome both directly, by binding to EEA1, and indirectly, through the recruitment of the p150/hVps34 PI 3-kinase and the production of PI[3]P in the endosomal membrane. In this study we have examined this model in vivo . We find that both endogenous hVps34 and p150 are targeted to enlarged endosomal structures in cells expressing constitutively activated Rab5, where they are significantly colocalized with EEA1. Recombinant fragments of p150 disrupt the endosomal localization of EEA1, showing that p150 is required for EEA1 targeting. We further analyzed the mechanism of GTP-dependent Rab5-p150 binding, and showed the p150 HEAT and WD40 domains are required for binding, whereas deletion of the protein kinase domain increases binding to Rab5. Overexpression of constitutively active Rab5 caused a redistribution of epitope-tagged hVps34 and p150 to Rab5-positive endosomes. However, subcellular fractionation showed that this was not due to a significant recruitment of hVps34 or p150 from the cytosolic to the particulate fraction. These data suggest that the binding of Rab5 to the HEAT/WD40 domains of p150 is important in regulating the localization of hVps34/p150. However, Rab5 does not appear to act by directly recruiting p150/hVps34 complexes from the cytosol to the endosomal membrane.  相似文献   

11.
Hua Su 《Autophagy》2018,14(6):1086-1087
PIK3C3/VPS34 (phosphatidylinositol 3-kinase catalytic subunit type 3) converts phosphatidylinositol (PtdIns) to phosphatidylinositol-3-phosphate (PtdIns3P), sustaining macroautophagy/autophagy and endosomal transport. So far, facilitating the assembly of the PIK3C3/VPS34-BECN1-PIK3R4/VPS15/p150 core complex at distinct membranes is the only known way to activate PIK3C3/VPS34 in cells. We have recently revealed a novel mechanism that regulates PIK3C3/VPS34 activation; cellular PIK3C3/VPS34 is repressed under nutrient-rich conditions by EP300/p300-mediated acetylation. Following nutrient-deprivation that drops EP300 activity, PIK3C3/VPS34 is liberated by deacetylation. Intriguingly, while deacetylation of the N-terminal K29 residue accounts for core complex formation, deacetylation at the C-terminal K771 site determines the binding of PIK3C3/VPS34 to its substrate PtdIns. In vitro and in cell evidence shows that EP300-dependent acetylation and deacetylation is a switch for turning off/on PIK3C3/VPS34 in which deacetylation of K771 is required for its full activation. This PIK3C3/VPS34 activation mechanism is utilized not only by starvation-induced autophagy but also by autophagy without the involvement of AMPK, MTORC1 or ULK1. These findings suggest an alternative circuit in cells for PIK3C3/VPS34 activation, which is involved in membrane transformations in response to metabolic and nonmetabolic cues.  相似文献   

12.
Rab11 small G protein has been implicated in vesicle recycling, but its upstream regulators or downstream targets have not yet been identified. We isolated here a downstream target of Rab11, named rabphilin-11, from bovine brain. Moreover, we isolated from a rat brain cDNA library its cDNA, which encoded a protein with a M(r) of 100,946 and 908 amino acids (aa). Rabphilin-11 bound GTP-Rab11 more preferentially than GDP-Rab11 at the N-terminal region and was specific for Rab11 and inactive for other Rab and Rho small G proteins. Both GTP-Rab11 and rabphilin-11 were colocalized at perinuclear regions, presumably the Golgi complex and recycling endosomes, in Madin-Darby canine kidney cells. In HeLa cells cultured on fibronectin, both the proteins were localized not only at perinuclear regions but also along microtubules, which were oriented toward membrane lamellipodia. Treatment of HeLa cells with nocodazole caused disruption of microtubules and dispersion of GTP-Rab11 and rabphilin-11. Overexpression of the C-terminal fragment of rabphilin-11 (aa 607-730), lacking the GTP-Rab11 binding domain, in HeLa cells reduced accumulation of transferrin at perinuclear regions and cell migration. Rabphilin-11 turned out to be a rat counterpart of recently reported bovine Rab11BP. These results indicate that rabphilin-11 is a downstream target of Rab11 which is involved in vesicle recycling.  相似文献   

13.
Hepatitis C virus (HCV) is a major causative agent of chronic liver disease in humans. To gain insight into host factor requirements for HCV replication, we performed a siRNA screen of the human kinome and identified 13 different kinases, including phosphatidylinositol-4 kinase III alpha (PI4KIIIα), as being required for HCV replication. Consistent with elevated levels of the PI4KIIIα product phosphatidylinositol-4-phosphate (PI4P) detected in HCV-infected cultured hepatocytes and liver tissue from chronic hepatitis C patients, the enzymatic activity of PI4KIIIα was critical for HCV replication. Viral nonstructural protein 5A (NS5A) was found to interact with PI4KIIIα and stimulate its kinase activity. The absence of PI4KIIIα activity induced a dramatic change in the ultrastructural morphology of the membranous HCV replication complex. Our analysis suggests that the direct activation of a lipid kinase by HCV NS5A contributes critically to the integrity of the membranous viral replication complex.  相似文献   

14.
Phosphatidylinositol 3-kinase (PI 3-kinase) is stimulated by insulin and a variety of growth factors, but its exact role in signal transduction remains unclear. We have used a novel, highly specific inhibitor of PT 3-kinase to dissect the role of this enzyme in insulin action. Treatment of intact 3T3-L1 adipocytes with LY294002 produced a dose-dependent inhibition of insulin-stimulated PI 3-kinase (50% inhibitory concentration, 6 microM) with > 95% reduction in the levels of phosphatidylinositol-3,4,5-trisphosphate without changes in the levels of phosphatidylinositol-4-monophosphate or its derivatives. In parallel, there was a complete inhibition of insulin-stimulated phosphorylation and activation of pp70 S6 kinase. Inhibition of PI 3-kinase also effectively blocked insulin- and serum-stimulated DNA synthesis and insulin-stimulated glucose uptake by inhibiting translocation of GLUT 4 glucose transporters to the plasma membrane. By contrast, LY294002 had no effect on insulin stimulation of mitogen-activated protein kinase or pp90 S6 kinase. Thus, activation of PI 3-kinase plays a critical role in mammalian cells and is required for activation of pp70 S6 kinase and DNA synthesis and certain forms of intracellular vesicular trafficking but not mitogen-activated protein kinase or pp90 S6 kinase activation. These data suggest that PI 3-kinase is not only an important component but also a point of divergence in the insulin signaling network.  相似文献   

15.
Spatially restricted activation of signaling molecules governs critical aspects of cell migration; the mechanism by which this is achieved nonetheless remains unknown. Using time-lapse confocal microscopy, we analyzed dynamic redistribution of lipid rafts in chemoattractant-stimulated leukocytes expressing glycosyl phosphatidylinositol-anchored green fluorescent protein (GFP-GPI). Chemoattractants induced persistent GFP-GPI redistribution to the leading edge raft (L raft) and uropod rafts of Jurkat, HL60, and dimethyl sulfoxide-differentiated HL60 cells in a pertussis toxin-sensitive, actin-dependent manner. A transmembrane, nonraft GFP protein was distributed homogeneously in moving cells. A GFP-CCR5 chimera, which partitions in L rafts, accumulated at the leading edge, and CCR5 redistribution coincided with recruitment and activation of phosphatidylinositol-3 kinase gamma in L rafts in polarized, moving cells. Membrane cholesterol depletion impeded raft redistribution and asymmetric recruitment of PI3K to the cell side facing the chemoattractant source. This is the first direct evidence that lipid rafts order spatial signaling in moving mammalian cells, by concentrating the gradient sensing machinery at the leading edge.  相似文献   

16.
Abrahamsen H  Stenmark H  Platta HW 《FEBS letters》2012,586(11):1584-1591
The class III phosphatidylinositol 3-kinase (PI3K-III) complex and its phosphorylated lipid product phosphatidylinositol 3-phosphate (PtdIns3P) control the three topologically related membrane-involution processes autophagy, endocytosis, and cytokinesis. The activity of the catalytic unit of PI3K-III complex, the Vacuolar sorting protein 34 (VPS34), depends on the membrane targeting unit Vacuolar sorting protein 15 (VPS15), and the tumor suppressor protein Beclin 1. It is established that the overall activity of VPS34 is positively regulated by Beclin 1, whose positive influence is further controlled through the association with a set of Beclin1 interacting components, which stimulate or inhibit VPS34. The interaction between Beclin 1 and Beclin 1-associated components are controllable and is regulated by phosphorylation in a context-dependent manner. Here, we focus on an emerging concept whereby the activity of the PI3K-III complex is controlled by ubiquitination of Beclin 1 or Beclin 1-associated molecules. In summary, at least three different ubiquitin ligases can affect the positive regulatory function of Beclin 1 towards VPS34, suggesting that ubiquitination is an important and physiologically relevant event in tuning the tumor suppressor function of Beclin 1.  相似文献   

17.
Scaffolding adapter Grb2-associated binder 2 (Gab2) is a key component of FcepsilonRI signaling in mast cells, required for the activation of PI3K. To understand how Gab2 is activated in FcepsilonRI signaling, we asked which protein tyrosine kinase is required for Gab2 phosphorylation. We found that Gab2 tyrosyl phosphorylation requires Lyn and Syk. In agreement with published results, we found that Fyn also contributes to Gab2 tyrosyl phosphorylation. However, Syk activation is defective in Fyn(-/-) mast cells, suggesting that Syk is the proximal kinase responsible for Gab2 tyrosyl phosphorylation. Then, we asked which domains in Gab2 are required for Gab2 tyrosyl phosphorylation. We found that the Grb2-Src homology 3 (SH3) binding sites are required for, whereas the pleckstrin homology (PH) domain contributes to, Gab2 tyrosyl phosphorylation. Using a protein/lipid overlay assay, we determined that the Gab2 PH domain preferentially binds the PI3K lipid products, PI3, 4,5P3 and PI3, 4P2. Furthermore, the Grb2-SH3 binding sites and PH domain binding to PI3K lipid products are required for Gab2 function in FcepsilonRI-evoked degranulation and Akt activation. Our data strongly suggest a model for Gab2 action in FcepsilonRI signaling. The Grb2 SH3 binding sites play a critical role in bringing Gab2 to FcepsilonRI, whereupon Gab2 becomes tyrosyl-phosphorylated in a Syk-dependent fashion. Phosphorylated Gab2 results in recruitment and activation of PI3K, whose lipid products bind the PH domain of Gab2 and acts in positive feedback loop for sustained PI3K recruitment and phosphatidylinositol-3,4,5-trisphosphate production, required for FcepsilonRI-evoked degranulation of mast cells.  相似文献   

18.
Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3‐phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2‐mediated hyperactivation of Cdk5 downstream of receptor‐ and activity‐dependent calcium influx. Our results unravel an unexpected function for PI(3)P‐containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P‐producing VPS34 kinase in neurological disease and neurodegeneration.  相似文献   

19.
PI3K-Akt pathway: Its functions and alterations in human cancer   总被引:26,自引:0,他引:26  
Phosphatidylinositol-3-kinase (PI3K) is a lipid kinase and generates phosphatidylinositol-3,4,5-trisphosphate (PI(3, 4, 5)P3). PI(3, 4, 5)P3 is a second messenger essential for the translocation of Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase (PDK) 1 and PDK2. Activation of Akt plays a pivotal role in fundamental cellular functions such as cell proliferation and survival by phosphorylating a variety of substrates. In recent years, it has been reported that alterations to the PI3K-Akt signaling pathway are frequent in human cancer. Constitutive activation of the PI3K-Akt pathway occurs due to amplification of the PIK3C gene encoding PI3K or the Akt gene, or as a result of mutations in components of the pathway, for example PTEN (phosphatase and tensin homologue deleted on chromosome 10), which inhibit the activation of Akt. Several small molecules designed to specifically target PI3K-Akt have been developed, and induced cell cycle arrest or apoptosis in human cancer cells in vitro and in vivo . Moreover, the combination of an inhibitor with various cytotoxic agents enhances the anti-tumor efficacy. Therefore, specific inhibition of the activation of Akt may be a valid approach to treating human malignancies and overcoming the resistance of cancer cells to radiation or chemotherapy.  相似文献   

20.
Activated GTP-bound Rab proteins are thought to interact with effectors to elicit vesicle targeting and fusion events. Vesicle-associated v-SNARE and target membrane t-SNARE proteins are also involved in vesicular transport. Little is known about the functional relationship between Rabs and SNARE protein complexes. We have constructed an activated allele of VPS21, a yeast Rab protein involved in vacuolar protein sorting, and demonstrated an allele-specific interaction between Vps21p and Vac1p. Vac1p was found to bind the Sec1p homologue Vps45p. Although no association between Vps21p and Vps45p was seen, a genetic interaction between VPS21 and VPS45 was observed. Vac1p contains a zinc-binding FYVE finger that may bind phosphatidylinositol 3-phosphate [PtdIns(3)P]. In other FYVE domain proteins, this motif and PtdIns(3)P are necessary for membrane association. Vac1 proteins with mutant FYVE fingers still associated with membranes but showed vacuolar protein sorting defects and reduced interactions with Vps45p and activated Vps21p. Vac1p membrane association was not dependent on PtdIns(3)P, Pep12p, Vps21p, Vps45p, or the PtdIns 3-kinase, Vps34p. Vac1p FYVE finger mutant missorting phenotypes were suppressed by a defective allele of VPS34. These data indicate that PtdIns(3)P may perform a regulatory role, possibly involved in mediating Vac1p protein-protein interactions. We propose that activated-Vps21p interacts with its effector, Vac1p, which interacts with Vps45p to regulate the Golgi to endosome SNARE complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号