首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient cryopreservation conditions for the edible alkalophilic cyanobacterium Arthrospira (Spirulina) platensis were investigated using a model strain A. platensis NIES-39. As a result, it was found that more than 60% of cells were viable upon thawing, when they had been frozen at a cooling rate of approximately ?1 °C min?1 in the presence of 10% (v/v) dimethyl sulfoxide. Further examination with other Arthrospira strains showed that many of them had strain-dependent optimal conditions for cryopreservation. For example, the best freezing conditions for A. platensis SAG 21.99 were snap-freezing in liquid nitrogen in the presence of 5% (v/v) dimethyl sulfoxide, while they were slow cooling at approximately ?1 °C min?1 in the presence of 10% (v/v) methanol for A. platensis NIES-46, NIES-2308 and UTEX 1926. The variety of successful cryopreservation conditions presented in this study is useful when attempting to cryopreserve various Arthrospira strains.  相似文献   

2.
Intact adult rat hearts were cooled in the presence of 10% DMSO according to an external cooling program which approximated the optimal external three-step cooling program for the isolated adult heart cells: 20 min at ?20 °C, 0.2 °C/min from ?20 to ?25, ?30, or ?50 °C, and rapid cooling to ?196 °C. Following rapid thawing, cells were isolated after perfusion with a 0.1% collagenase solution. Only cells which originated from the free wall of the right ventricle could be isolated, even after cooling to ?20 °C. Most cells from hearts cooled to ?196 °C did not survive. When the third cooling step was omitted and the end temperature of the second cooling step was ?30 °C, 38% of the cells excluded trypan blue, 29% were morphologically intact, and 30% showed spontaneous contractions after thawing, expressed as percentages of the control, A much lower survival was found after cooling to ?50 °C.Histological and electron microscopical study of the heart immediately after thawing revealed no differences between hearts cooled to ?20, ?30, or ?196 °C. Also no marked differences were observed between the morphological integrity after freezing and thawing of the atrium, the left and right ventricle walls, and the ventricular septum. The survival data suggest the presence of nonmorphologically detectable alterations in cells frozen to ?196 °C, compared to cells frozen to ?30 °C. The morphological investigations indicate no essential differences in resistance of atrial and ventricular cells to the freezing process.Experiments involving neonatal rat hearts cooled to ?196 °C, according to the method which gave optimal preservation of the isolated cells, revealed that after thawing cells are present from which growing and contracting cultures can be derived. It appears that cells in the neonatal rat heart are more resistant to freezing to ?196 °C than cells in the adult rat heart.  相似文献   

3.
M Haight  J Frim  J Pasternak  H Frey 《Cryobiology》1975,12(5):497-505
Approximately 75% or more of the L2 and L3 juvenile stages of the free-living nematode Caenorhabditis briggsae survived freezing and thawing without loss of fertility. Optimum survival depended upon a combination of conditions: (1) pretreatment with 5% DMSO at 0 °C for 10 min, (2) 0.2 °C per minute cooling rate from 0 to ?100 °C prior to immersion into liquid nitrogen, and (3) a 27.6 °C per minute warming rate from ?196 °C to ?10 °C. Storage at ?196 °C for more than 100 days was without effect on viability or fertility. Some of the L4 (about 50%) and adult (about 3%) stages survive the routine freeze-thaw treatment. However, there was no recovery of either embryonic stages or embryonated eggs from ?196 °C under these standard conditions. Either very fast cooling (about 545 °C/min) or fast warming (about 858 °C/min) rates diminished survival of the L2 and L3 stages drastically.Scanning electron microscopy revealed that freeze-thaw survivors with aberrant swimming behavior had cuticular defects. In juvenile forms, the altered swimming motion was lost after a molt whereas as abnormal adults grew, sinusoidal movement resumed. In the L4 and adult forms the cuticular abnormalities lowered viability and fertility. It is concluded that survival of nematodes from a freeze-thaw cycle is contingent upon establishing specific cryobiological conditions by varying aspects of the procedure that gave high recoveries of L2 and L3 stages.  相似文献   

4.
Settled zoospores of the green macroalga Enteromorpha intestinalis were subjected to several different freezing and storing treatments at both cryogenic and non-cryogenic temperatures after which their viability was assessed using a spore germination bioassay. Three different cooling rates were tested: slow cooling at –1°C min−1 and –0.5°C min−1 to end temperatures in the range –20°C to –40°C, and a two-step procedure whereby the spores were frozen to –30°C at a rate of –1°C min−1 prior to immersion in liquid nitrogen at –196°C. Spore viability was also investigated using the cryoprotectants glycerol and dimethyl suphoxide (DMSO), a reduced saline medium and various storage times. In the majority of experiments, the use of a cryoprotectant during the freezing process significantly increased the viability of the spores, with DMSO affording slightly greater protection than glycerol. All treatments produced high viabilities (ranging from 75.3–100.0%) after 5-min storage at the different end temperatures. However, progressively longer storage up to 7 days generally resulted in a marked reduction in viability. This was with the exception of spores frozen in a reduced saline medium; a medium of 75% seawater and either 5 or 10% DMSO greatly increased spore viability, with values of > 40% recorded for spores stored at –20°C for up to 5 weeks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Among 50 strains of Pseudomonas aeruginosa tested for the resistance to antibiotics, strain ryn32 was selected for this study based on its resistance level. It showed complete resistance toward aztreonam and almost complete resistance (96%) against kanamycin. Iron nanoparticles (FeNPs) were then prepared and found with diameters 30–50 nm. The threshold level of FeNPs for pyoverdines (PVDs) production by P. aeruginosa ryn32 was found at 25 μM concentration. PVDs production was optimal with pH 7.5, 35°C, succinate as carbon source, ammonium sulfate as nitrogen source at 60 hr fermentation time. Interestingly, when used the PVDs as conjugates with FeNPs they showed antibacterial action against the producing strain and some other gram-negative bacteria. This suggests that the conjugates enter the bacterial cell via the ferriPVDs uptake pathway, which triggers the accumulation of FeNPs inside the cell, which is crucial on bacterial viability. Growth stimulation with the same concentrations of FeNPs and PVDs in separate treatments supported this view.  相似文献   

6.
The factors that affect the survival of mouse lymphocytes throughout a procedure for storage at ?196 °C have been studied both for the improvement of recovery and the possible extension to the mouse system of cell selection by freezing. After thawing, the survival of cells cooled at different rates in dimethyl sulphoxide (DMSO, 5 or 10%, vv) was assessed from the [3H]thymidine incorporation in response to phytohaemagglutinin and concanavalin A. Before freezing the protection against freezing damage increased with time (up to 20 min) in DMSO (5%, vv) at 0 °C. Superimposed upon this effect was toxicity due to the DMSO. During freezing and thawing the cooling rate giving optimal survival was 8 to 15 °C/min for cells in DMSO (5%) and 1 to 3 °C/min for DMSO (10%). Omission of foetal calf serum was detrimental. Rapid thawing (>2.5 °C/min) was superior to slow thawing. After thawing dilution at 25 or 37 °C greatly improved cell survival compared with 0 °C; at 25 °C survival was optimal (75%) at a moderate dilution rate of 2.5 min for a 10-fold dilution in FCS (10%, vv) followed by gentle centrifugation (50g).Dilution damage during both thawing and post-thaw dilution may be due to osmotic swelling as DMSO and normally excluded solutes leave the cell. The susceptibility of the cell membrane to dilution damage may also be increased during freezing. The need to thaw rapidly and dilute at 25 °C after thawing is probably due to a decrease in dilution stress at higher temperatures. Optimisation of dilution procedures both maximised recovery and also widened the range of cooling rates over which the cells were recovered. These conditions increase the possibility of obtaining good recovery of a mixed cell population using a single cooling procedure. Alternatively, if cell types have different optimal cooling rates, stressful dilution may allow their selection from mixed cell populations.  相似文献   

7.
This article reviews the literature on freezing mammalian oocytes and embryos, with emphasis on embryos of domestic animals. Mammalian embryos must be stored in a quiescent state to retain viability for long periods. This has been accomplished by freezing and storing the embryos at ?196°C. To freeze embryos, a cryoprotectant like dimethyl sulfoxide (DMSO) or glycerol was required, slow cooling (0.1 to 2.0°C/min) and warming (1 to 50°C/min) rates were used, enucleation or seeding the freezing medium was a necessity, and stepwise addition and removal of the cryoprotectant at room temperature seemed to be beneficial. Using the above parameters embryos have been frozen and stored at ?196°C for several years and upon thawing and transfer to a suitable recipient, viable offspring have developed. Initially embryo viability was low after freezing-thawing, but with refinement of freezing-thawing techniques has increased sufficiently so that freezing embryos is no longer a laboratory technique, but is applicable to field use.  相似文献   

8.
Adult rat heart cells were exposed to two-step cooling to ?196 °C with different holding periods at different subzero temperatures between both steps. The highest survival based on the percentage of trypan blue-excluding cells was 25% with 10% DMSO and a holding period of 6 min, and 21% with 15% DMSO and a holding period of 30 min. The highest survival based on morphological intactness was about 10%; there was no difference in results after cooling with 10 and 15% DMSO, and after holding between 2 and 30 min. The optimal survival based on the percentage of contracting cells was 52%, with 15% DMSO and a holding period of 2 min.When the holding period was replaced by a programmed cooling stage, the results could be improved. With this threestep cooling method, the optimal values, based on the number of trypan blue-excluding, intact, and contracting cells, were 40, 32, and 60%, respectively. It appeared that in the presence of 10% DMSO, which provided better survival than 5 and 15%, no significantly different results were obtained when the starting temperatures of the second cooling step varied between ?10 and ?20 °C, when the end temperatures varied between ?30 and ?60 °C, or when the cooling rates of the second cooling step varied between 0.1 and 1 °C/min. Three-step cooling provided similar results as linear cooling from 0 to ?100 °C, followed by rapid cooling to ?196 °C.  相似文献   

9.
L E McGann  J Farrant 《Cryobiology》1976,13(3):261-268
A two-step freezing procedure has been examined in order to separate some of the causes of damage following freezing and thawing. Different holding temperatures and times have been studied during the freezing of Chinese hamster tissue culture cells in dimethyl sulphoxide (5%, vv). Damage following rapid cooling to, time at, and thawing from different holding temperatures was found to increase at lower holding temperatures and at longer times. Damage on subsequent cooling from the holding temperature to ?196 °C and thawing was found to diminish at lower holding temperatures and longer times. The net result was that optimal survival from ?196 °C was obtained after 10 min at ?25 °C. Protection against the second step of cooling to ?196 °C was acquired at the holding temperature itself and was absent at ?15 °C without freezing.It seems that this technique will allow the different phases of freezing injury to be separated. These phases may include thermal shock to the holding temperature, hypertonic damage at the holding temperature and dilution shock on thawing from ?196 °C.  相似文献   

10.
The freshwater cyanobacterium Microcystis aeruginosa NIES-88, which can produce microcystins, micropeptins, and argicyclamides, was subjected to a one strain many compounds (OSMAC) analysis. We report its response to two environmental stressors, temperature and iron limitation, by means of untargeted and targeted metabolomics. The results demonstrated a slower specific growth rate of 0.20 per day and 0.16 per day in adverse conditions of 37°C and iron limitation, respectively. The metabolic signature of M. aeruginosa was highly dependent on incubation temperatures. Production of microcystins LR and RR was severely downregulated while that of argicyclamide B was significantly upregulated, with a highest 10-fold increase on day 14 of heat shock treatment. M. aeruginosa NIES-88 was found to produce a new compound, argicyclamide D (1), in iron limited medium, which has the same macrocyclic structure as the previously reported analogs. Hence, it is proposed that acclimation of M. aeruginosa to environmental stressors might be mediated by a change in the metabolic pathways as well as modulation of the levels of their expressed metabolites.  相似文献   

11.
The effect of five cooling rates, 1, 5, 10, 30, and 50 °C/min, and of four DMSO concentrations, 2.5, 5, 7.5, and 10%, on the survival of neonatal rat heart cells after freezing and thawing were studied. Growth area, contracting area and contraction frequency were used as viability parameters. Growth area and contracting area were measured in a number of fields in statistically adjusted locations of the culture dish on the second and on the fifth day of culturing.Without freezing, DMSO concentrations higher than 5% caused a considerable decrease of the growth area and of the contracting area. After freezing and thawing, biphasic survival curves were found with a narrow optimum at 2.5, 5, and 10% DMSO and a broad optimum at 7.5% DMSO. The survival based on the growth area and the survival based on the contracting area were about the same on the second day of culturing but differed on the fifth day. On the second day of culturing the highest survival was 73%, at a cooling rate of 5 °C/min and with 5% DMSO. On the fifth day of culturing the highest survival based on the growth area was 100%, at a cooling rate of 10 °C/min with 7.5% DMSO; the contracting area was the same as on the second day. The cooling rate of 5 °C/min was optimal at all DMSO concentrations tested. There was no correlation between the contracting area and the spontaneous contraction frequency after freezing and thawing when both were expressed as percentages of the control. The contraction frequency after freezing and thawing was independent of the cooling rate and was maximally 50% of the control value.  相似文献   

12.
13.
Aims: Pseudomonas aeruginosa LBI (Industrial Biotechnology Laboratory) was isolated from hydrocarbon-contaminated soil as a potential producer of biosurfactant and evaluated for hydrocarbon biodegradation. The emulsifying power and stability of the product was assessed in the laboratory, simulating water contamination with benzene, toluene, kerosene, diesel oil and crude oil at various concentrations. Methods and Results: Bacteria were grown at 30°C and shaken at 200 rpm for 168 h, with three repetitions. Surface tension, pH and biosurfactant stability were observed in the cell-free broth after 168 h of incubation. The strain was able to produce biosurfactant and grow in all the carbon sources under study, except benzene and toluene. When cultivated in 30% (w/v) diesel oil, the strain produced the highest quantities (9·9 g l−1) of biosurfactant. The biosurfactant was capable of emulsifying all the hydrocarbons tested. Conclusion: The results from the present study demonstrate that Ps. aeruginosa LBI can grow in diesel oil, kerosene, crude oil and oil sludge and the biosurfactant produced has potential applications in the bioremediation of hydrocarbon-contaminated sites. Significance and Impact of the Study: Pseudomonas aeruginosa LBI or the biosurfactant it produces can be used in the bioremediation of environmental pollution induced by industrial discharge or accidental hydrocarbon spills.  相似文献   

14.
Progressive changes to MRC-5 and CHA cells during the cooling process were measured by thawing samples of cells in 10% DMSO from various points in the cooling phase between +20 ° and ?196 °C. The results showed that the period of phase transition was not the part of the cooling process in which cells were most susceptible to freeze-thaw damage. Indications were that most cell damage, as measured by the release of radiochromate, occurred between ?30 ° and ?80 °C. The possibility that cell survival from freeze-thaw cycles could be improved by the use of different cooling rates at different stages of the cooling process was investigated.  相似文献   

15.
Knowledge of tolerance to cryoprotectants is important in determining viability after biological freezing of algae. Six taxonomically diverse marine microalgae were evaluated for their tolerance to the widely used cryoprotectants dimethyl sulfoxide (DMSO) and methanol. Tetraselmis chuii Butcher survived exposure to 30% (v/v) DMSO and 25% methanol for periods of up to 4 h. All other species were more sensitive to high concentrations of these cryoprotectants. DMSO was lethal at 25% after a 15-min exposure of Rhodomonas baltica Karsten, Isochrysis off. galbana (strain T-ISO) Parke, and Nannochloropsis gaditana Lubian. Nannochloris atomus Butcher could tolerate only a 1-min exposure at this concentration; Chaetoceros gracilis Schutt completely lost viability when exposed to 20% for 60 min. Safe concentrations for DMSO incubations were similar (about 5% lower) to lethal thresholds. Methanol incubations did not significantly decrease cell viability at concentrations of 5% (1 min) for R. baltica, 25% (up to 60 min) for T. chuii, 15% (up to 120 min) for I. galbana, 5% (up to 60 min) for N. gaditana, 15% (up to 240 min) for Ch. gracilis, and 15% (up to 120 min) for N. atomus. Nannochloris atomus has the potential to be cryopreserved without the need for any cryoprotectant. The other five species were clearly dependent on a 15% DMSO preincubation to achieve a growth response after thawing from ?196° C. Only N. atomus and N. gaditana could be grown after being cryopreserved in the presence of 5% methanol.  相似文献   

16.
Cryopreservation of heart cells from the eastern oyster   总被引:7,自引:0,他引:7  
Summary Conditions were developed to cryopreserve cells from pronase-dissociated atria and ventricles of eastern oysters (Crassostrea virginica). The effect of three concentrations (5, 10, 15%) of the cryoprotectants (dimethyl sulfoxide, glycerol, and propylene glycol), three thawing temperatures (25, 45, 75°C), and three cooling rates (slow, medium, fast) were compared. Cells were frozen at −80°C and plunged in liquid nitrogen. Thawed cells were seeded in 96-well plates and primary cultures were evaluated after 3 d by measuring the metabolic activity using a tetrazolium compound, 3-(4,5-dimethylthiazol-2-yl)-5-( 3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, and by comparing the relative spreading of cells between treatments. The best conditions for freezing and thawing of cells for each cryoprotectant were selected and a final study was performed to compare cryoprotectants. For this final study, we measured the number of cells and their viability 3 d after thawing, in addition to determining cell metabolic activity and cell spreading. Primary cultures of cells frozen without cryoprotectant and of nonfrozen cells were used as controls in all studies. Atrial cells were best cryopreserved with glycerol at a concentration of 10%, a medium cooling rate, and thawing at 45°C. After thawing, atrial cells showed 53±5% of the metabolic activity, 84±5% of the number, and 92±2% of the viability of nonfrozen cells. For ventricular cells, 10% glycerol, a medium cooling rate, and thawing at 25°C yielded the best results. The thawed ventricular cells showed 83±5% of the metabolic activity, 91±5% of the number, and 96±2% of the viability of nonfrozen cells.  相似文献   

17.
The aim of this study is to investigate the feasibility of using well defined, serum‐free freezing solutions with a reduced level of dimethylsulfoxide (DMSO) of 7.5, 5, and 2.5% (v/v) in the combination with polyethylene glycol (PEG) or trehalose to cryopreserve human bone marrow‐derived mesenchymal stem cells (hBMSCs), a main source of stem cells for cell therapy and tissue engineering. The standard laboratory freezing protocol of around 1°C/min was used in the experiments. The efficiency of 1,2‐propandiol on cryopreservation of hBMSCs was explored. We measured the post‐thawing cell viability and early apoptotic behaviors, cell metabolic activities, and growth dynamics. Cell morphology and osteogenic, adipogenic and chondrogenic differentiation capability were also tested after cryopreservation. The results showed that post‐thawing viability of hBMSCs in 7.5% DMSO (v/v), 2.5% PEG (w/v), and 2% bovine serum albumin (BSA) (w/v) was comparable with that obtained in conventional 10% DMSO, that is, 82.9 ± 4.3% and 82.7 ± 3.7%, respectively. In addition, 5% DMSO (v/v) with 5% PEG (w/v) and 7.5% 1,2‐propandiol (v/v) with 2.5% PEG (w/v) can provide good protection to hBMSCs when 2% albumin (w/v) is present. Enhanced cell viability was observed with the addition of albumin to all tested freezing solutions. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
Pseudomonas aeruginosa biofilms are problematic and play a critical role in the persistence of chronic infections because of their ability to tolerate antimicrobial agents. In this study, various cell-wall degrading enzymes were investigated for their ability to inhibit biofilm formation of two P. aeruginosa strains, PAO1 and PA14. Xylanase markedly inhibited and detached P. aeruginosa biofilms without affecting planktonic growth. Xylanase treatment broke down extracellular polymeric substances and decreased the viscosity of P. aeruginosa strains. However, xylanase treatment did not change the production of pyochelin, pyocyanin, pyoverdine, the Pseudomonas quinolone signal, or rhamnolipid. In addition, the anti-biofilm activity of xylanase was thermally stable for > 100 days at 45°C. Also, xylanase showed anti-biofilm activity against one methicillin-resistance Staphylococcus aureus and two Escherichia coli strains.  相似文献   

19.
Recently, we found that staphylococcal enterotoxin A (SEA)-producing Staphylococcus aureus strains produced SEA in raw milk with microbial contaminants at high temperatures like 40 °C only. Moreover, the concentration of SEA produced in raw milk gradually decreased after the peak. The reason(s) for SEA degradation in raw milk was studied in this study. Degradation of SEA spiked in raw milk was observed at 40 °C, but not at 25 °C. A Pseudomonas aeruginosa isolate from raw milk degraded SEA spiked in broth at 40 °C. A sample partially purified with a chromatographic method from culture supernatant of the isolate degraded SEA. Two main proteolytic bands were observed in the sample by zymographic analysis with casein. These results suggested that the SEA in raw milk might be degraded by a protease(s) produced by the P. aeruginosa isolate. This finding might be the first report on SEA degradation by a proteolytic enzyme(s) derived from Pseudomonas bacteria to our knowledge.  相似文献   

20.
Abstract

A study was conducted in the greenhouse to examine the resistance of three soybean cultivars against root-infecting fungi, and to determine the role of five strains of Pseudomonas aeruginosa in protecting the roots from these fungal pathogens. In this study soybean cv RAWAL was found to be less susceptible against charcoal rot fungus Macrophomina phaseolina than cvs PARC and BRAGG. Most of the strains of P. aeruginosa used as seed dressing significantly reduced M. phaseolina and Rhizoctonia solani infection on all three cvs PARC, BRAGG and RAWAL (p < 0.05). Most of the strains of P. aeruginosa were effective on cv PARC against Fusarium solani infection, while on cv BRAGG P. aeruginosa strain Pa3, and on cv RAWAL strain Pa5 were effective. Both strains Pa3 and Pa22 gave maximum plant height and fresh weight of shoots, respectively on cvs PARC and BRAGG than other strains. These characteristics make these P. aeruginosa strains good candidates for use as biocontrol agents against soil-borne plant pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号